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ABSTRACT
Nowadays Web search engines are experiencing significant per-
formance challenges caused by a huge amount of Web pages and
increasingly larger number of Web users. The key issue for ad-
dressing these challenges is to design a compact structure which
can index Web documents with low space and meanwhile process
keyword search very fast. Unfortunately, the current solutions typi-
cally separate the space optimization from the search improvement.
As a result, such solutions either save space yet with search ineffi-
ciency, or allow fast keyword search but with huge space require-
ment. In this paper, to address the challenges, we propose a novel
structure bitlist with both low space requirement and support-
ing fast keyword search. Specifically, based on a simple and yet
very efficient encoding scheme, bitlist uses a single number to
encode a set of integer document IDs for low space, and adopts fast
bitwise operations for very efficient boolean-based keyword search.
Our extensive experimental results on real and synthetic data sets
verify that bitlist outperforms the recent proposed solution, in-
verted list compression [23, 22] by spending 36.71% less space and
61.91% faster processing time, and achieves comparable running
time as [8] but with significantly lower space.

1. INTRODUCTION
Nowadays Web search engines are experiencing significant per-

formance challenges caused by a huge amount of Web pages and
large number of Web users. For example, large search engines need
to process thousands of keyword searches per second over tens of
billions of Web pages [23].

The key to tackle the above challenges is to design a compact
structure which can index Web documents with low space and fast
keyword search. Practically, commercial Web engines use the in-
verted list index. The inverted list maintains a directory of terms,
and each term in the directory refers to a posting list of document
IDs (in short docIDs) and other items (e.g., term frequency).

Unfortunately, existing solutions typically separate space opti-
mization from search improvement. Due to the huge amount of
documents, the space cost of the associated inverted list is often
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large, with the size ranging from gigabytes to terabytes. The in-
verted list compression techniques [3, 9, 23, 24] greatly reduce the
space cost, but compromise the search performance caused by de-
compression. On the other hand, the recent work [8] achieves fast
keyword intersection search by hash bits, but introduces high space
cost caused by the maintenance of reverse mapping from hash bits
to docIDs.

In this paper, we propose a novel full-text indexing structure,
namely bitlist, to achieve space optimization as well as search
improvement. The key idea of bitlist is to design a simple
and yet very efficient coding scheme, which uses an encoded num-
ber to represent a set of docIDs with low space cost. Meanwhile,
bitlist adopts bitwise operations (such as AND and OR) over the
encoded numbers for fast keyword search. As a result, bitlist
achieves fast keyword search with low space cost. Specifically,
bitlist first uses a binary 0/1 bit to indicate whether an indexed
document contains a specific term. Then, bitlist encodes a base
number (say B) of bits associated with consecutive docIDs into
a single integer number (called eid). By maintaining only those
non-zero eids, bitlist achieves low space cost. Meanwhile, via
the bitwise operations over the encoded eids, bitlist can per-
form very fast keyword search. In this paper, other than the novel
bitlist index itself, we further make the following contributions.

• First, the space of bitlist is determined by the number of
non-zero eids. To optimize the space cost of bitlist, we
propose to re-assign new docIDs for the indexed documents,
such that more consecutive docIDs are associated with the 0-
bits and lead to more zero eids (correspondingly fewer non-
zero eids are maintained). The key of the re-assignment is
to leverage a new metric, accumulation similarity, instead
of the traditional pairwise similarity. The new metric not
only optimizes the space cost of bitlist by re-assigning
new docIDs for the carefully selected documents, but also
improves the bitwise operations for fast keyword search.

• Second, to enable fast boolean-based keyword search, most
previous keyword search algorithms leverage the fact that
the docIDs in posting lists are sorted (e.g., by ascending or-
der), and then compare docIDs (with each other) in the vis-
ited posting lists. Instead, we adopt the bitwise operations
(such as AND and OR) over the encoded 0/1 bits (i.e., the non-
zero eids) to allow very fast keyword search. Furthermore,
we show that given multiple input terms, the keyword pro-
cessing order is important to evaluate the keyword search.
If some keywords are processed first, the associated posting
lists are then visited earlier. Thus, we have chance to avoid
visiting (part of) the posting lists of those terms with low pri-
ority, and thus decrease the processing time. Based on the

1522



intuition, we define problems to design the optimal process-
ing order such that we minimize the search processing time.
After proving the ordering problems are NP-hard, we design
the approximation algorithms.

• Finally, based on synthetic and real data sets (including input
query logs and three real document sets), we conduct experi-
ments to compare bitlist with the state of arts. The exper-
imental results verify that bitlist outperforms the popular
inverted list compression techniques [23, 22] and the recent
work [8] in terms of space and searching time.

The rest of the paper is organized as follows. First we introduce
the basic structure of bitlist in Section 2. Next, we give the de-
tails to optimize the space of bitlist in Section 3, and design the
keyword search algorithms in Section 4. After that, we evaluate
bitlist in Section 5, and review related works in Section 6. Fi-
nally Section 7 concludes the paper. Fig. 1 summarizes the main
symbols and associated meanings in the paper. Due to the space
limit, we skip the proofs of theorems and refer interested readers to
our technical report [18] for a full version of the paper.

Symbol Meaning
ti, d j i-th term (1 ≤ i ≤ T ), j-th document (1 ≤ j ≤ D)
θi j a binary bit to indicate whether d j contains ti
Ii, Ii; Li, Li Posting list of ti, size of Ii; Pair list of ti, size of Li
〈didik , eidik〉 k-th pair in Li with docID num. and encoded num.
B, q, wi Base num., top-k query condition, weight of ti in q
GS (d j), GS u(d j), AGS (d j) goodness score, and its upper bound, avg. goodness.
D′,D′ # of docs reassigned with new docIDs, docs in tail cell.

Figure 1: Used Symbols and the meanings

2. OVERVIEW
Section 2.1 defines the design objective and Section 2.2 presents

the data structure of bitlist.

2.1 Design Objective
Given a set of documents dj with 1 ≤ j ≤ D, we assume that

each document dj contains |dj| terms and the D documents contain
totally T terms ti with 1 ≤ i ≤ T . Our task is to design a full-text
indexing structure for such documents. The design should meet
two requirements: (i) low space to index the documents, and (ii)
fast running time to answer the boolean-based keyword search.

First, for a large number D of documents, the inverted list struc-
ture incurs high space. To reduce the space, various compression
techniques are proposed, e.g., PForDelta coding [12, 25, 24, 23].
Such techniques typically compromise the search processing time
caused by the decompression to restore original docIDs. Essen-
tially the compression is independent of the keyword search and
does not optimize search efficiency. Instead, bitlist integrates
the compression and keyword search together for both lower space
and faster keyword search.

Second, in terms of keyword search, the state-of-the-art query
processing systems involve a number of phases such as query pars-
ing, query rewriting, and ranking aggregation scores [23]. The ag-
gregation scores frequently involve hundred of features, and need
complex machine-learning techniques to compute the scores. How-
ever, at the lower layer, such query processing algorithms funda-
mentally rely on extremely fast access to the index, which helps
finding the documents containing the input terms. Furthermore,
keyword search frequently involves boolean-based intersection and
union operations over the input terms. In order to achieve the re-
quired processing time, the key is to quickly find the expected doc-
uments based on the boolean operations of input terms.

As a summary, our objective of this paper is to design a compact
indexing structure with low space to answer the boolean-based key-
word search efficiently (i.e., the union and intersection queries).

2.2 Structure of bitlist
Before giving bitlist, we first introduce two alternative index-

ing schemes. For demonstration, these indexing schemes will index
12 documents d0...d11 shown in Table 1. For a specific document
dj, we assume that the docID of dj is the integer j.

doc terms doc terms doc terms
d0 t1, t2, t3 d4 t0, t1 d8 t1, t3
d1 t0, t1, t2, t3 d5 t0 d9 t2, t3
d2 t3 d6 t3 d10 t2
d3 t2 d7 t3 d11 t3

Table 1: 12 documents with the associated terms
First, the inverted list maintains a directory of terms. Each term

ti (1 ≤ i ≤ T ) in the directory refers to a posting list Ii. Ii contains
docIDs of the documents containing ti (each document is associated
with a unique docID). We denote the size of Ii to be Ii.

Figure 2: Three Indexing schemes: (a) Inverted list; (b) a 0/1
matrix; (c) bitlist with B = 4; and (d) bitlist with B = 12
Example 1 Fig. 2(a) uses an inverted list to index the 12 docu-
ments. For example, the posting lists of the terms t0 and t3 respec-
tively contain 3 docIDs (i.e., 1, 4 and 5) and 8 docIDs (i.e., 0, 1, 2,
6, 7, 8, 9 and 11) to represent the documents containing such terms.

Second, we use a T ×D matrix, consisting of binary bits θi j (1 ≤
i ≤ T and 1 ≤ j ≤ D), to indicate whether a document dj contains a
term ti. If dj contains ti, the bit θi j is 1, and otherwise 0. We assume
that the documents (i.e., the columns) in the matrix are associated
with consecutive docIDs from 0 to D − 1.
Example 2 Fig. 2(b) uses a 4 × 12 matrix to indicate the occur-
rence of terms in documents. A problem of this scheme is the huge
number of bits in the matrix. For example, given the terms t0 and
t3, no matter how many documents contain the terms, the matrix
always uses the exactly same 12 bits (i.e., the number D of the in-
dexed documents). This obviously incurs high space.

Third, we treat the proposed bitlist as a hybrid of the inverted
list and binary matrix, illustrated by the following examples.
Example 3 We divide the 12 columns of Fig. 2(b) by a base num-
ber B = 4, and have 3 cells in each of the 4 rows. For example,
for the term t0, the associated bits 010011000000 are divided into
three cells 0100, 1100 and 0000. The first cell 0100 is associated
with the docIDs 0, 1, 2 and 3. By treating the bits 0100 as the bi-
nary form of the integer number 4, we represent the four docIDs of
the whole cell by a pair 〈0, 4〉, where the first number 0 is the left-
most docID in the cell and 4 is just the encoded number. Similarly,
the second cell 1100 and third one 0000 are represented by 〈4, 12〉
and 〈8, 0〉, respectively. Next, for the term t3, the associated bits
111000111101 are divided into three cells 1110, 0011 and 1101.
We use 3 pairs 〈0, 14〉, 〈4, 3〉 and 〈8, 13〉 to represent the docIDs of
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the three cells, respectively. As shown in Fig. 2(c), each term refers
to a list of the pairs. Note that if the encoded number in a pair is
zero (e.g., the pair 〈8, 0〉), we will not maintain the pair in order to
reduce the space cost.

Given the above pairs, we can restore the associated docIDs. For
example, we consider the pair 〈4, 12〉 in row t0. The binary num-
ber of 12 is 1100. Then, we infer that the two documents, having
the docIDs 4 and 5 respectively, contain t0 (due to the consecutive
docIDs from 0 to 11 in the columns of the matrix).

Example 4 To reduce the space of bitlist, we use a larger base
B = 12 to divide the matrix of Fig. 2(b). In Fig. 2(d), each term
refers to only 1 pair. Instead, the terms t0 and t3 in Fig. 2(c) with
B = 4 refer to 2 and 3 pairs, respectively.

Based on the above examples, we define the bitlist structure
as follows. Specifically, bitlist maintains a directory of all T
document terms ti. Each term ti in the directory refers to a list
of the 〈didik, eidik〉 pairs. Formally, we denote the list of pairs (or
equally the pair list) of ti by Li as follows.

Definition 1 Li consists of a list of 〈didik, eidik〉 pairs sorted by
ascending order of didik, where didik %B = 0 and eidik > 0. If the
l-th leftmost bit (0 ≤ l ≤ B − 1) in the binary number of eidik is 1,
the document having the docID l + didik must contain ti.

In the above definition, didik is the minimal (or leftmost) docID
encoded by the 〈didik, eidik〉 pair, and didik %B = 0 indicates that
we use the pair to encode the bits associated with B consecutive
docIDs. In addition, for lower space, bitlist does not maintain
the pairs 〈didik, eidik〉 with eidik = 0. As shown above, we use a
simple but yet efficient coding scheme by treating the bits of the B
consecutive docIDs as the binary form of eidik.

Based on the definition, we can decode the pair 〈didik, eidik〉 back
to the original docIDs. Given the binary form of eidik, we determine
whether a bit is either 1 or 0. If the l-th leftmost bit (0 ≤ l ≤ B − 1)
is 1, the document having the docID didik + l must contain ti (since
the docIDs of the matrix columns are consecutive), and otherwise
it does not contain ti.

We are interested in the size Li of a pair list Li, and particularly,
how Li is comparable with the size Ii of the posting list Ii.

Theorem 1 For any term ti, 'Ii/B( ≤ Li ≤ Ii holds.

We have has introduced the basic structure of bitlist. Nev-
ertheless, the basic structure is far beyond the optimal space cost
and search efficiency. In rest of the paper, we present solutions
to further optimize bitlist in terms of the space cost and search
efficiency in Section 3 and Section 4, respectively.

3. SPACE OPTIMIZATION
In this section, to optimize the space cost of bitlist, we first

highlight the basic idea (Section 3.1), and define the optimization
problem and show the complexity (Section 3.2). Next, we present
the algorithm details (Section 3.3), give a practical design (Section
3.4), and finally report the maintenance of bitlist (Section 3.5).

3.1 Basic Idea
In this section, we give the overview of two techniques to save

the space of bitlist.
(i) DocID re-assignment: It is easy to find that the space of
bitlist depends on the non-zero eids and thus the key is to reduce
the number of non-zero eids. To this end, we propose to re-assign a
new docID for every document dj, illustrated by Fig. 3. Before the
re-assignment, row t0 needs 2 pairs 〈0, 4〉 and 〈4, 12〉 (with B = 4).

Figure 3: Re-assignment of docIDs

To reduce the number of non-zero eids in this row, we exchange the
docIDs between d0 and d4 and the docIDs between d2 and d5 for the
re-assignment of new docIDs. After the re-assignment, the row t0
maintains all 0-bits for the consecutive new docIDs 4...11 (and all
1-bits for the consecutive new docIDs 0,1 and 2). The pair list of t0
maintains only one pair 〈0, 14〉.

The re-assignment for a single row is simple. However, given
totally T terms and D documents, the global re-assignment is rather
challenging. Fig. 3 does optimize the space regarding to row t0.
Yet for row t1, the re-assignment does not reduce the associated
space cost (still using 3 pairs). Similar situation occurs for row t2
and row t3. Consequently, the re-assignment for the total T pair
lists is challenging. Our purpose is to optimize the overall space of
bitlist by minimizing the total number of non-zero eids.

(ii) Setting the base B: Example 4 indicates that a lager base B
might save more space. However, as shown above, the local re-
assignment is difficult to optimize the global space of all pair lists.
Thus, a larger B unnecessarily means smaller space. Moreover,
there are limitations of the bit length (e.g., an integer eid typically
allows 32 bits). Finally, there are options to set either fixed a B for
all pair lists or a various B adaptively decided by each pair list.

In view of the above issues, we will give a practical design to set
B for the tradeoff between the space and search processing time.

3.2 Problem Definition and Complexity
In this section, we assume a fixed base B = 32, depending on

the limit of machine word length. With the assumption, we first
formally define the docID re-assignment problem to minimize the
overall space, and then prove that it is NP-hard. Before giving the
formal problem definition, we note that the key is to explicitly mea-
sure the overall space in terms of the number of non-zero eids. To
this end, we define three binary parameters.
Doc Membership: Given the D documents dj (1 ≤ j ≤ D) and
associated T terms ti (1 ≤ i ≤ T ), we define a binary coefficient αi j:

αi j =
{

1 if d j contains ti;
0 otherwise;

Group Membership: Recall that based on a fixed base B, we di-
vide the total D columns (i.e., documents) into R = 'D/B( groups
(denoted by Rr with 1 ≤ r ≤ R). Each group Rr has the 'B(member
docIDs. Note that in case that the (D%B) ! 0, where % indicates
the modulus operator, we have one group with the cardinality equal
to D%B. Given the membership of Rr, we define the second binary
parameter β jr as follows.

β jr =
{

1 if the docID of d j is inside Rr ;
0 otherwise;

Based on the above αi j and β jr, we define the third binary param-
eter γir as follows:

γir =
{

1 if there exists docs d j satisfying both αi j = 1 and β jr = 1;
0 otherwise;

The parameter γir = 1 indicates the existence of documents dj
satisfying two requirements: (i) the docIDs of dj are inside Rr, i.e.,
β jr = 1, and (ii) the documents dj meanwhile contain the term ti,
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i.e., αi j = 1. Thus, γir = 1 means that Rr contains at least one
member docID, such that the associated document contains ti.

Based on the parameters, we compute the overall space of bitlist
implicitly by the total number of non-zero eids. First, for a pair list
of ti, if the group Rr has associated with γir = 1, the cell regarding
to the group Rr contains at least one 1-bit. We then have a non-
zero number eid. For the pair list of ti having R cells, we have the
number Li =

∑R
r=1 γir of non-zero eids. Given T pair lists, we have

totally
∑T

i=1 (
∑R

r=1 γir) non-zero eids.
Now we define the following re-assignment problem.

Problem 1. Given the D documents dj, the associated T terms
ti, and the binary coefficient αi j with 1 ≤ j ≤ D and 1 ≤ i ≤ T , we
want to configure the parameter β jr (with 1 ≤ r ≤ R), such that the
overall space

∑T
i=1 (
∑R

r=1 γir) is minimized.

Problem 1, reducible from the SET BASIS problem [11], is NP-
hard (the proof refers to the report [18]). Following the previous
work [21, 15], the SET BASIS problem is equivalent to the mini-
mal biclique cover (MBC) problem and hard to approximate. For
example, results of Simon [20] and of Lund and Yannikakis [16]
have shown that there is no polynomial time approximation to solve
MBC (and SET BASIS) with factor nδ for δ > 0 unless P=NP.

3.3 Heuristics
Since Problem 1 is NP-hard, we propose a heuristic algorithm

by the following basic idea. By re-assigning a new docID for a
carefully selected document, we repeat the re-assignment by D it-
erations. In each iteration, we select a best document dj among the
remaining unprocessed documents. The selected dj, together with
those already selected documents, causes the least space. For the
selected dj, we re-assign an incrementally larger new docID (e.g.,
starting from the integer zero). The re-assignment is terminated
until all documents are re-assigned with new docIDs.

In the rest of this section, we first define a new metric, the accu-
mulation similarity of documents, to measure the goodness of the
selected document dj (Section 3.3.1), next we formulate the prob-
lem to find the best document as a classic top-k (= 1) query problem
[10], and finally propose an efficient algorithm to solve the top-k
problem (Section 3.3.2). Please note that the defined accumulation
similarity differs from the traditional pairwise document similarity
[19, 5, 6], because the former one defines the similarity of (≥ 2)
documents and the latter one involves the similarity of a pair of
documents.

3.3.1 Measuring the goodness of a document dj

The goodness of a candidate document dj depends on the in-
creased space incurred by dj. For the document dj, we have a bit
θi j = 1 for every ti ∈ dj and otherwise θi j = 0 for ti " dj. When
dj is selected, we append the 0/1 bits to the tail cell of each pair
list (suppose we have re-assigned new docIDs for the number D′ of
documents, and the tail cell is the +D′/B,-th one, having the new
docIDs from B · +D′/B, to D′). Next, when the selected dj is re-
assigned with a new docID, a 1-bit is appended to the tail cell in the
pair list of ti ∈ dj and a 0-bit is appended to the tail cells in the pair
lists of all other terms ti " dj.

Example 5 In Fig. 4, we need to select one of the 4 remaining doc-
uments d j...dj+3 to re-assign a new docID. First if d j is selected, the
1-bit is appended to the two pair lists of t0 ∈ dj and t1 ∈ dj, respec-
tively. Because the tail cell in each of the two pair lists consists of
one 1-bit and one 0-bit, the appending of 1-bit does not incur an
extra non-zero eid. Next, the appending of 0-bit to the pair lists of
t2, t3 and t4 does not affect their original eids.

Figure 4: Goodness of selecting documents. Base number
B = 4, two documents d0 and d1 have been re-assigned with
consecutive docIDs, and still four documents dj...dj+3 remain to
re-assign new docIDs.

Second, if d j+1 is selected, the above situation occurs for the ap-
pending of 1-bit to the pair lists of t1 and t2, without incurring an
extra non-zero eid.

Next, if d j+2 is selected, the appending of 1-bit to the pair lists of
t2 and t3 similarly does not incur an extra non-zero eid. Note that
in the pair list of t3, the tail cell consists of two 1-bits. We consider
that the appending of 1-bit to the pair list of t3 saves more space.
Generally, if a tail cell contains more 1-bits, the appending of 1-bit
to the cell could save more space.

Finally, if d j+3 is selected,1-bit is appended to the pair lists of
t3 and t4, and 0-bit to the other three pair lists. As before, the
appending of 1-bit to the pair list of t3 does not incur an extra eid.
However, in the pair list of t4, the appending of 1-bit incurs an
extra non-zero eid. It is because the current cell in the pair list of
t4 contains two 0-bits. Thus, the selection of d j+3 incurs one extra
non-zero eid.

Until now, the goodness of dj depends on the two following ben-
efits. (i) Column benefit: among the |dj| tail cells associated with
ti ∈ dj, some of the appended 1-bits incur extra non-zero eids (e.g.,
the 1-bit appended to the pair list of t4 ∈ dj+3) and others not (e.g.,
the 1-bits appended to the pair list of t0 ∈ dj and to the pair list of
t3 ∈ dj+3). Thus, we are interested in the number of extra non-zero
eids caused by the appended 1-bits. (ii) Row benefit: for the 1-bits
appended to the pair list of t0 ∈ dj and to the pair list of t3 ∈ dj+3,
it is obvious that the latter case saves more space than the former
case. Intuitively, when the tail cell contains more 1-bits, we have
chance to save more space. Based on the two benefits, we define
the following formula to quantify the goodness score of dj:

GS (dj) =
|d j |∑

i=1

ϑti · bs(ti) (1)

In the above formula, ϑti is a binary coefficient decided by whether
the tail cell of ti ∈ dj contains at least one 1-bit. It is related to the
column benefit. bs(ti) is the number of 1-bits inside the tail cell of
ti. It is related to the row benefit.

Based on the above equation, in Example 5, dj+2 is associated
with the largest goodness score 3. We thus select the document
dj+2 as the best document. Note that if the widely used pairwise
similarity [19, 5, 6] is adopted, we compute the similarity of a pair
of documents. Following Fig. 4, the pairwise similarity between
the document d1 and any of four remaining documents is 1, and
any remaining document can be selected as the best document. By
referring back to Example 5, we easily verify that the selection of
dj+2, instead of any other documents, offers more benefits in terms
of the space cost of bitlist.

Essentially, the above GS (dj) accumulates the pairwise simi-
larity and indicates more advantages than the pairwise similarity.
In detail, suppose that the number D′ of documents have already
been re-assigned with new docIDs. Then, the number D′%B of
documents (i.e., those assigned with the new docIDs ranging from
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B ·+D′/B, to D′) are inside the tail cell. We denote such D′%B doc-
uments to beD′. The GS (dj) is just equal to the sum of the pairwise
similarity between dj and each of the documentsD′. Thus, we call
GS (dj) the accumulation similarity of dj. By the incorporation of
both row benefit and column benefit, the above GS (dj) intuitively
ensures that all 1-bits are densely encoded by a small number of
eid and leads to low space cost and fast keyword search.

Due to the above difference between the pairwise similarity and
accumulation similarity, the previous re-assignment schemes [19,
5, 6], based on pairwise similarity, are inapplicable for our prob-
lem (the reason refers to the related work section). We propose an
accumulation similarity-based algorithm as follows.

3.3.2 Algorithm Details
Top-k query formulation: Intuitively, the accumulation similarity
GS (dj) is an aggregation score function between a document dj and
the documentsD′. We treat the selection of the best document dj as
a top-k (=1) query problem, illustrated by the following example.
Example 6 In Fig. 4, documents D′ (i.e., d0 and d1) contain four
terms t0, t1, t2 and t3, respectively having the non-zero weights 1,
1, 1 and 2 (Note that a term ti’s weight wi is equal to bs(ti) in Eq.
1, and bs(ti) is the number of documents inside D′ containing ti).
Such terms and weights are together as the top-k query condition
q. Then the top-1 query problem is to find a document d j among
the remaining documents, such that the goodness score between q
and dj is largest. Since the goodness score between q and dj+2 is 3
and all other scores are 2, we select d j+2 as the best document.

We might follow the classic algorithm TA/NRA [10] to find the
top-k (=1) document. To enable the TA/NRA algorithm, we as-
sume that the remaining (D − D′) documents dj are indexed as the
traditional inverted list with the space of O(

∑D−D′
j=1 |dj|) where |dj|

is the number of terms inside dj. In the inverted list, each posting
list maintains sorted docIDs in ascending order (note that such do-
cIDs are the old ones before the re-assignment of new docIDs, and
we denote the old docIDs to be oids). Next, the TA/NRA continu-
ously scans the posting lists associated with the query terms ti ∈ q
to select candidates of the final result, until the TA/NRA stopping
condition is met. Once the final top-1 document dj is selected, we
then append the bits of the terms ti ∈ dj to the tail cell for the
construction of bitlist.

When more documents are appended to the tail cell,D′ contains
more documents. Then the number |q| of terms in q becomes larger,
and the TA/NRA algorithm correspondingly scans more posting
lists, leading to higher overhead.
Basic Idea: We extend the TA/NRA algorithm for less process-
ing overhead. The basic idea is as follows. We denote dc to be a
current candidate having the largest goodness score GS (dc) among
the already known candidates. If the score GS (dc) is larger than
the goodness upper bound GS u(dj) of any remaining document dj,
then dc must be the final top-k (=1) document. Thus, the key is to
measure the goodness upper bound GS u(dj).

To this end, we sort the query terms ti ∈ q by descending order
of weights wi with w1 ≥ ... ≥ w|q|. After that, we process the
associated posting lists by the order of t1→...→ t|q|. That is, the
posting lists Ii with higher weights wi are processed first. If all the
documents inside the posting list of a term ti (associated with the
weight wi) are processed, we then mark the term ti to be processed.

Now we leverage the above processing order and derive the fol-
lowing theorem in terms of the upper bound GS u(dj).
Theorem 2 Assume we begin to scan the posting list of a term ti
associated with the weight wi, for any document d j containing only
those unprocessed terms (i.e., from ti to t|q|), the associated good-
ness score upper bound is at more

∑i+|d|−1
i′=i wi′ .

In the above theorem, the parameter |d| denotes the number of
terms inside a document, and we use the average value of the test
data in our experiment. Once the above upper bound GS u(dj) is
even smaller than the goodness GS (dc) of the current top-k (=1)
candidate dc, we then return dc as the final result.
Improvement: We improve Theorem 2 by setting a tighter upper
bound GS u(dj) as follows. We note that Theorem 2 implicitly as-
sumes the terms from ti to ti+|d|−1 all appear inside the same docu-
ments. In case that no document contains all such terms, we corre-
spondingly reduce GS ub to a smaller value. Thus, we propose the
following technique to determine whether there exists a document
containing such terms ti... ti+|d|−1.

Inside a posting list Ii of ti, we denote oidL
i and oidU

i to be
the oids of the currently processed document and the final to-be-
processed document, respectively. Since the member oids in Ii are
sorted in ascending order, the unprocessed docIDs in Ii must be in-
side the interval [oidL

i , oidU
i ]. For a term ti′ with i+1 ≤ i′ ≤ i+|d|−1,

we similarly have the interval [oidL
i′ , oidU

i′ ]. If the overlapping re-
sult [oidL

i , oidU
i ]. [oidL

i′ , oidU
i′ ] is empty, then it is obvious that no

documents contain the two terms ti and ti′ .
Now, if the terms ti and ti′ do not appear in the same documents,

we then consider the following scenarios to set a smaller GS ub:
• We assume that the |d| terms ti+1...ti′ ...ti+|d| could appear in-

side the same document, and then have a new upper bound∑|d+i|
l=i+1 wl. It intuitively indicates that we slide down the orig-

inal terms ti...ti′ ...ti+|d|−1 to the terms ti+1...ti′ ...ti+|d|.

• We alternatively assume that the (i′ − i) terms ti...ti′−1 and the
(|d| + i − i′) terms ti′+1...ti+|d| could appear inside the same
document and have the upper bound

∑|d+i|
l=i wl − wi + wti+|d| .

Given the above two bounds, we use the larger one as GS u(dj)
without introducing false negative.

Algorithm 1: Select best candidate (input bitlist and inverted list)
1 build the document selection query q consisting of |q| pairs 〈ti,wi〉 with wi > 0;
2 sort the pairs 〈ti,wi〉 with w1 ≥ ... ≥ w|q|;
3 denote GS ub to be the goodness score upper bound of an unprocessed doc;
4 initiate a variable dc to be the candidate result;
5 for i=1...|q| do
6 GS ub =

∑|d|
i′=i+1 wi′ , i.e., sum of top-|d| weights of unprocessed terms;

7 foreach unprocessed doc d j in the inverted list of ti do
8 if GS (d j) > GS (dc) then dc = d j;
9 foreach term ti′ from ti+1 to ti+|d| do

10 if [oidL
i , oidU

i ] . [oidL
i′ , oidU

i′ ] == null then
11 GS ub= larger one btw.

∑|d|
i′=i wi′ − wi′ + wi+|d| and

∑|d+i|
i′=i+1 wi′ ;

12 if GS (dc) > GS ub then break;

13 post-process the input bitlist and inverted lists, and return dc;

Pseudocode: Based on the above improvement, we report the pseu-
docode in Alg. 1. First, we build the query condition q based on the
tail cells. Since only the terms having weights wi > 0 contribute to
the goodness score, the input query q contain only the terms having
wi > 0. Next we sort the weights wi by descending order. After
that, we define two variables GS ub and dc to be the goodness score
upper bound of any unprocessed document and a candidate of the
final chosen document, respectively.

Next, for each document dj inside the currently processed Ii, we
determine whether GS (dj) > GS (dc) holds. If true, we then let
dc = dj. After that, among the terms ti+1...ti+|d|−1 which contribute
to the GS ub, we verify whether there exist a document containing
all such terms from di...di+|d|−1 by the for loop in lines 9-11. In the
loop, we follow the aforementioned idea to determine whether the
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overlapping result [oid j, oidU
i ] . [oidL

i′ , oidU
i′ ] is null or not. If yes,

we verify that the terms ti and ti′ do not appear inside the same doc-
uments, and line 11 sets a tighter bound GS ub as described before.

After the above steps, we post-process the bitlist and inverted
list as follows. For the bitlist, given the selected document dc,
we append the 1-bit associated with ti ∈ dc to the tail cell in Ii. For
the inverted list, we remove the oid regarding to the selected dc.

In addition, recall that Alg. 1 selects only one document. We ac-
tually need to select B documents to encode the associated docIDs
into the 〈did, eid〉 pair. Thus, during the selection of the leftmost
document encoded by the pair, we practically select top-k (> 1)
best documents. The top-1 document is as the leftmost document.
The other (k − 1) selected documents help setting goodness score
lower bounds to prune unnecessary documents for the selection of
the remaining (B − 1) documents.

3.4 Practical Design
In this section, we implement two bitlist versions: bitlist-fix

and bitlist-dyn.

3.4.1 Design of bitlist-fix
After Alg. 1 re-assigns new docIDs for documents, we follow the

idea of bitlist (see Section 2.2) to build the lists of bits, which
are then encoded into lists of pairs 〈did, eid〉. For such pairs, the
bitlist associates each did with a corresponding eid. It essen-
tially adopts a fixed base number B to encode the bits in bitlist.
We call this approach bitlist-fix.

We show the organization of bitlist-fix as follows. The or-
ganization is fairly similar to the previous inverted list and the com-
pressed one [24]. The overall structure of bitlist-fix is shown
in Fig. 5 (a). The index is partitioned into data blocks (e.g., with
the size of 64 KB). Due to the large size of a pair list, the pair list
could span multiple blocks (e.g., starting from some position of a
block and ending at some position of another block). Inside each
block, the metadata information of the pairs maintained inside the
block (including the number of the maintained dids, the number of
eids, and positions of the pairs, etc.) are located at the beginning;
after that, hundreds of chucks are maintained. Inside the chucks,
besides the maintained dids and eids, we also need to maintain
other information (such as term frequency and term positions in-
side the documents). Here, we do not organize the pairs (e.g., 128
pairs) of did and eid belonging to a document together as a unit.
Instead, the chunk maintains 128 dids, followed by 128 eids and
128 items of other information. The purpose of our organization is
to further leverage previous compression techniques to reduce the
space of bitlist. For example, due to the sorted dids, we fol-
low PForDelta and the improved version [23] to compress the 64
sorted dids, Rice coding to compress the 64 eids (note that the eids
are not necessarily sorted as the dids do), and [22] to compress the
term frequency.

3.4.2 Design of bitlist-dyn
bitlist-dyn optimizes the space of bitlist-fix by a vari-

able base number B for each pair list of ti. That is, given a pair list
Li in bitlist-fix, the following case could occur. For ' adjacent
pairs 〈didi,k, eidi,k〉, 〈didi,k+1, eidi,k+1〉 ... 〈didi,k+'−1, eidi,k+'−1〉 in Li,
the equation

didi,k + ' ∗ B = didi,k+1 + (' − 1) ∗ B = ... = didi,k+'−1

holds. bitlist-dyn then optimizes bitlist-fix by using only
one did and ' eids, i.e., 〈didi,k, eidi,k...eidi,k+'−1〉, to replace the origi-
nal ' pairs. Thus bitlist-dyn uses less space than bitlist-fix
does. Intuitively, the base number in bitlist-dyn adaptively

varies by the value ' · B, instead of the fixed B in bitlist-fix.
For example, in Fig. 5 (b), we assume that the bitlist-fix has
the fixed B = 32, and the three pairs 〈0, 8〉, 〈32, 17〉 and 〈64, 41〉
follow the above case 0 + 32 ∗ 2 = 32 + 32 ∗ 1 = 64. Thus, we use
the quadruple 〈0, 8, 17, 41〉 to replace the original three pairs.

By the above idea, we implement bitlist-dyn based on an
input bitlist-fix. First, for each pair list Li in bitlist-fix,
bitlist-dyn creates a list of Li bit flags to indicate the association
between the did and eids. The number of such flags is equal to
the size Li of the pair list Li in bitlist-fix. After that, we set
the such bit flags fl (1 ≤ l ≤ Li) as follows. First for k = 1,
bitlist-dyn always sets the first bit flag f1 to be 0. Next, for l >
1, given the number Li of dids in bitlist-fix, if didi,l = didi,l−1+
B, bitlist-dyn does not maintain the didi,l and instead set the l-th
bit flag fl be to 1. If and only if didi,l ! didi,l−1 + B, bitlist-dyn
maintains the didi, j and meanwhile sets fl = 0. Finally, for such Bi
bit flags, we again encode it into a list of 'Bi/B( numbers. In Fig.
5 (b), bitlist-dyn maintains the bit flags 0110....

Figure 5: (a) bitlist-fix organization, (b) Transform from
bitlist-fix to bitlist-dyn

Our experiments in Section 5 will show that bitlist-dyn saves
around 23% space when compared with bitlist-fix. Neverthe-
less, bitlist-dyn meanwhile introduces more overhead for the
search algorithm. For example, to restore the docID, we need ex-
tra overhead to check the bit flags. Thus, it involves the tradeoff
between the reduced space and increased query processing time.

In the rest of the paper, for convenience of presentation, the term
bitlist by default indicates the implementation of bitlist-fix,
consisting of the lists of pairs 〈did, eid〉.

3.5 Maintenance
When a set D of documents are indexed by a bitlist struc-

ture, we need to maintain the bitlist structure for newly coming
documents dj. We might simply use the solution in Section 3.3
to periodically index such documents. However, before that, the
un-indexed documents cannot benefit from the proposed bitlist
scheme. Thus, we propose a solution to update the existing bitlist
structure for newly added documents dj.

The basic idea is as follows. Among all pairs of 〈did, eid〉 in the
existing bitlist structure, we first find those not-well-compressed
pairs (i.e., the pairs with the smallest AGS (did) that will be defined
soon). Next, we update such not-well-compressed pairs by the new
documents dj. In this way, we avoid processing the whole docu-
ments inD, and meanwhile achieve low space cost.

Based on the above idea, we need to consider (i) how to effi-
ciently find those not-well-compressed pairs? and (ii) how to up-
date such pairs by the new documents dj? The two subproblems
are answered as follows.

First, for each did in a bitlist index, we define an average ac-
cumulation similarity AGS (did) to measure the compression good-
ness, and select the smallest one as the not-well-compressed. We
illustrate this using the following example.
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Example 7 In Fig. 2(c), for a did value, say 0, we first find all
four pairs with the didi = 0, i.e., 〈0, 4〉,〈0, 12〉,〈0, 13〉 and 〈0, 14〉.
Next, we count the 1-bits in the four pairs, and have the average
AGS (0) = 9/4. For the didi = 4 and didi = 8, we have AGS (4) =
5/3 and AGS (8) = 6/3, respectively. Given the smallest AGS (4) =
5/3, we consider the three pairs with the didi = 4, i.e., 〈4, 12〉,
〈4, 8〉 and 〈4, 3〉, as those not-well-compressed.

Next, among the documents encoded by the not-well-compressed
pairs, we find the document having the fewest 1-bits, and swap it
with the new document dj, if the swap leads to a larger AGS (did).

Example 8 Following the above example, we assume the docu-
ment d j containing two terms t0 and t1 in Fig. 4 is newly added.
Among the documents d4...d7 encoded by the pairs with didi = 4,
d4 contributes to two 1-bits, and each of the three documents d5...d7
contributes to only one 1-bit. If any of the documents d5...d7, say d5,
is swaped with the new document d j, we have a larger AGS (4) =
6/3, and update the original three pairs by the new ones 〈4, 12〉,
〈4, 12〉 and 〈4, 3〉. Finally, for the replaced document d5, we re-
assign it with a new docID 12, and encode it with a new pair 〈12, 8〉.

In terms of running time of the maintenance, AGS (did) can be
pre-computed, and the not-well-compressed pairs can be found by
the solution of Section 3.3 in builds a bitlist structure. Sup-
pose that only the did values of such not-well-compressed pairs are
maintained for low maintenance overhead, we then have the com-
plexity O(

∑
ti∈d j log Li + |dj| · B). Here, O(

∑
ti∈d j log Li) is caused

by finding the pairs having the maintained did over each of the
sorted pair lists Li (see Definition 1) involving the terms ti ∈ dj;
and O(|dj| · B) is the cost of finding the to-be-replaced document
(say the above d5) and the swap between such a document and a
new document dj.

4. KEYWORD SEARCH ALGORITHMS
In this section, we design the keyword search algorithms, includ-

ing the union (Section 4.1) and intersection (Section 4.2).

4.1 Union
Given a set of input terms t1...tn, the union docs(t10...0tn) returns

the docIDs of those documents containing any of the input terms ti
(with 1 ≤ i ≤ n). To answer the union, we scan the number n of
associated pair lists L1...Ln, and conduct the union operation over
the pairs in such pair lists. The process involves two subproblems:
(i) for any 1 ≤ i ! i′ ≤ n, how to conduct the union over any two
pairs 〈didi, eidi〉 and 〈didi′ , eidi′ 〉 which are inside the pair lists Li
and Li′ , respectively (Section 4.1.1); (ii) given the n pair lists and
associated pairs, which of them are loaded and processed first and
which are later, i.e., the processing order of the pairs. Based on the
two subproblems, we give the final algorithm detail (Section 4.1.2).

4.1.1 Union of two pairs 〈didi, eidi〉 0 〈didi′ , eidi′ 〉
To conduct the union of two pairs, we use the intervals of docIDs

to model the encoded docIDs. Given the two pairs 〈didi, eidi〉 and
〈didi′ , eidi′ 〉, we denote the associated intervals to be [ai, bi] and
[ai′ , bi′ ], respectively. For bitlist-fix, the interval [ai, bi] is cal-
culated by [didi, didi+B−1]; for bitlist-dyn, the interval [ai, bi]
is calculated by [didi, didi + ' ∗B−1] where ' is the number of eids
associated with the did. We consider the following cases.

Figure 6: Three cases of [ai, bi] and [ai′ , bi′ ]

(i) Covering: In Fig. 6(a), the interval [ai, bi] covers the interval
[ai′ , bi′ ]. Denote Li(ai′ , bi′ ) to be the subset of docIDs in Li inside
the range [ai′ , bi′ ], highlighted by the bold segment in Fig. 6(a). If
Li(ai′ , bi′ ) is associated with all 1-bits, we directly return 〈didi, eidi〉
as the union result of 〈didi, eidi〉 0 〈didi′ , eidi′ 〉, without efforts to
load the pair 〈didi′ , eidi′ 〉. Otherwise, if Li(ai′ , bi′ ) is not associated
with all 1-bits, we still need to load 〈didi′ , eidi′ 〉 and use the ma-
chine bitwise OR operation to answer 〈didi, eidi〉0 〈didi′ , eidi′ 〉. The
detail of the bitwise operation will be given by Alg. 2.
(ii) Overlapping: In Fig. 6(b), for the interval [ai, bi], its left part,
denoted by Li(ai, bi′ ) and highlighted by the bold segment in the
figure, overlaps the interval of Li′ . If the subinterval Li(ai, bi′ )
consists of all 1-bits, we only need to scan the remaining subin-
terval Li′ (ai′ , ai), thus leading to less overhead. Otherwise, if the
Li(ai, bi′ ) does not consist of all 1-bits, we still need to load the
pair 〈didi′ , eidi′ 〉, and then adopt the machine bitwise OR operation
to answer 〈didi, eidi〉 0 〈didi′ , eidi′ 〉.
(iii) No overlapping: In Fig. 6(c), the two intervals do not overlap.
Thus, we need to load the two pairs and decode their associated
docIDs as the union result.

Note that for bitlist-fix, the intervals [ai, bi] and [ai′ , bi′ ] are
associated with the equal width B. Thus, we have only two cases
for the intervals associated with the pairs: exact coverage (a spe-
cial case of the coverage) and non-overlapping. The overlapping
case is useful for the bitlist-dyn when the subinterval Li(ai, bi′ )
consists of pairs of all 1-bits.

4.1.2 Algorithm Detail
Given n terms t1...tn, we have n pair lists L1...Ln and associated

pairs. Given such pairs, the order to load the pairs and conduct the
union over the loaded pairs is the key to optimize the union, which
is formally defined as follows.

Problem 2. To answer docs(t10 ...0 tn), our goal is to minimize
the overhead of retrieving the pair lists of the bitlist.

In the above problem, we implicitly measure the overhead by the
number of the processed pairs of bitlist. Unfortunately, Problem
2, reducible from the known set cover problem, is NP-hard.

Since Problem 2 is NP-hard, we might use the document-at-a-
time (DAAT) query processing style [23], widely adopted by the
literature of inverted list-based keyword search. By the DAAT
scheme, the posting lists associated with input keywords are all
opened and read in an interleaved fashion.

Beyond the DAAT scheme, for less overhead, our solution can
reduce the number of processed pairs in the opened pair lists. The
basic idea of our solution is as follows. For the currently visited
pairs 〈didik, eidik〉 in all opened pair lists, we sort such pairs by de-
scending order of the associated didik values. Next, with a higher
priority, we process the pairs having smaller didik values. In this
way, all pairs 〈didik, eidik〉 are processed and loaded by descend-
ing order of the associated didik values. Such an order ensures that
(i) each pair is processed and loaded by only one time, and (ii)
the pairs involving the covering or overlapping cases (See Fig. 6)
are aligned for further processing. The alignment will reduce the
number of loaded and then processed pairs for less overhead. Con-
sequently, the algorithm focuses on how to load and process the
〈didik, eidik〉 pairs by ascending order of didik, and how to reduce
the processing overhead for the the covering or overlapping pairs.

Alg. 2 gives the pseudo-code of the union query. First, the min-
imal heap H (implemented by Fibonacci heap) in line 1 and the
inner while loop (line 5) work together to ensure that the pairs are
loaded by ascending order of the didi values, and pair lists are tra-
versed by the interleaved style. Second, the outer while loop (line
3) ensures that Alg. 2 reaches the end positions of all pair lists.
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Algorithm 2: Answer docs(t1 0 ... 0 tn)
1 initiate a minimal heapH and setsU and S, initiate two variables did and eid;
2 for all terms t1...tn do add 〈ti, didi〉 to the heapH ;
3 while at least a pair list Li does not reach the end position do
4 did ← −1; eid ← −1;
5 whileH is not empty do
6 //pairs are loaded by ascending order o f the didi values
7 pop the item 〈ti, didi〉 fromH ;
8 if did == −1 and eid == −1 then did ← didi; eid ← eidi;
9 else if did == didi and eid < 2B − 1

//align equal dids and eid contains at least one 0 − bit then
eid ← eid ∨ eidi;

10 else if did < didi then break the inner while loop;

11 if did ≥ 0 and eid > 0 then add 〈did, eid〉 toU;
12 foreach term ti popped by line 7 do
13 if ti is processed by line 8 or 9 then
14 add 〈ti, didi+1〉 toH //move f orward pair lists, load new pairs;

15 else add the 〈ti, didi〉 toH ;

16 foreach pair 〈did, eid〉 inU //decoding do
17 for {n = 0; n < B; n + +} do
18 if {eid ∧ (1 << n) == (1 << n)} then {add (did + n) to S};

19 return S;

Next, by the first condition did == didi in line 9, we ensure that
the covering or overlapping pairs are aligned for the union opera-
tion eid ← eid ∨ eidi, if and only if the current eid is associated
with at least one 0-bit (i.e., eid < 2B − 1). It implicitly means that
if eid == 2B − 1 holds (i.e., the eid is associated with all B 1-bits),
the result eid ∨ eidi is always equal to eid. Thus, it is unnecessary
to load the eidi, saving the overhead of loading eidi.

After that, in the for loop (lines 12-15), it moves the current
positions of the pair lists (processed by lines 8 or 9) forward and
then adds the didi+1 at the new position to the heap. For the pair
lists processed by line 10, we have to push the already poped didi
values back to the heap (line 13) without falsely missing the pairs
for future alignment. Finally, for the set U containing the pairs
〈did, eid〉, we restore them to the result docIDs.

The running time of Alg. 2 mainly depends on three parts: (i)
the traversal of the pairs in all pair lists L1...Ln (operated by the
outer while loop), (ii) the pop/add operations of the heap H (op-
erated by the inner while loop), and (iii) the final decoding (lines
16-18). Since the H maintains at most the number n of dids and
the decoding involves at most N · B operations (where N is the to-
tal number of pairs in the n pair lists), the complexity of Alg. 2 is
O(N · (log n + B)).

4.2 Intersection
Given a set of input terms t1...tn, the intersection docs(t1. .... tn)

returns the docIDs of those documents containing all of the input
terms ti (with 1 ≤ i ≤ n). Following Section 4.1, we are interested
in (i) the intersection over any two loaded pairs respectively from
the lists Li and Li′ (with 1 ≤ i ! j ≤ n), and (ii) the optimal order
of processing the pairs.

First, in terms of the intersection over two pairs 〈didi, eidi〉 and
〈didi′ , eidi′ 〉, we note that if and only if the associated intervals
[ai, bi] and ai′ , bi′ involve the overlapping or covering relations, it is
necessary to conduct the intersection 〈didi, eidi〉 . 〈didi′ , eidi′ 〉 with
the help of the machine bitwise AND operation.

Second, in terms of the optimal order to load the pairs from pair
lists, we define the following problem.

Problem 3. To answer docs(t1 . .... tn), we minimize the over-
head of retrieving the docIDs of the bitlist.

Unfortunately, we prove that Problem 3 is still NP-hard by showing

that it is reducible from the known NP-complete problem Traveling
Salesman Problem (TSP).

Since Problem 3 is NP-hard, we propose a heuristic algorithm
(Alg. 3). Similar to Alg. 2, we adopt the interleaved fashion of
the DAAT scheme. Nevertheless, due to the difference between
intersection and union, the order to process the pairs differs from
the one in Alg. 2, and the minimal heapH in Alg. 3 maintains the
number Ui of currently unprocessed pairs in Li (note that the heap
in Alg. 2 maintains the didi values). Thus, the pair list Li having
the smallest number Ui is processed first, such that Alg. 3 reaches
the end position of the pair list Li with the fewest Ui as early as
possible and the outer while loop is then terminated.

Algorithm 3: Answer docs(t1 . ... . tn)
1 initiate a minimal heapH and a setU, initiate two variables did and eid;
2 for all terms t1...tn do add 〈ti,Ui〉 to the heapH ;
3 while all pair lists Li do not reach the end position do
4 did ← −1; eid ← −1;
5 whileH is not empty do
6 pop the item 〈ti,Ui〉 fromH ;
7 if did == −1 then did ← didi; eid ← eidi;
8 else if advance(did,Li) == 1 and eid > 0 then eid ← eid ∧ eidi;
9 else eid ← −1;

10 if eid ≤ 0 then beak the inner while loop;

11 if did ≥ 0 and eid > 0 then add 〈did, eid〉 toU;
12 foreach term ti popped by line 6 do
13 if did ! −1 and eid == −1 then advance(did,Li);
14 add the upt 〈ti,Ui〉, if any, toH ;

15 same to lines 14-16 of Alg. 2;

Next, with help of the advance() function (we will introduce the
function soon), the inner while loop aligns the dids of the current
position of the n pair lists. In line 8, we conduct the insertion eid ∧
eidi if and only if the alignment is successful (i.e., advance(did,
Li)==1) and eid > 0. Otherwise, if eid == 0, it is unnecessary
to load the eidi, avoiding the loading overhead. By the function
advance(did,Li), the current position of Li moves forward to a
new position, such that the didi value at the new position of Li is
at most did, i.e., didi ≤ did. If such a didi is found, the function
returns 1 and otherwise 0.

Similar to Alg. 2, Alg. 3 has the complexity O(N · (log n + B)),
where N is the total number of pairs of the pair lists associated with
the n input terms.

5. EVALUATION
Based on the experimental setting (Section 5.1), we conduct ex-

periments on real and synthetic data sets to study the performance
of bitlist respectively in Sections 5.2 and 5.3.

5.1 Experimental Setting
We use both real and synthetic data sets including indexed doc-

uments and query terms.

5.1.1 Real Data Set
Documents: We use two standard Text Retrieval Conference (TREC)
data sets and one social blog data set. (i) The TRACE AP data set is
composed of only 1,050 articles but with a large number of terms,
on average 6,054.9 per article. (ii) We use an available subset of
TREC WT10G web corpus, a large test set widely used in web re-
trieval research. The subset contains around 159,339 web page doc-
uments. Different from the TREC AP dataset with large articles, the
average size of each document is only 5.91KB. (iii) For the social
blog data set (http://socialcomputing.asu.edu/datasets/BlogCatalog),
we preprocess the entries of < snippet > ... < /snippet > in the set
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TREC AP TREC WT Blog data
Space Intersection Union Space Intersection Union Space Intersection Union

Inv. List 23.96 MB 0.0099 ms 0.00962 ms 39.03 MB 0.0231 ms 0.0194 ms 188.96 MB 0.511 ms 0.225 ms
IntGroup 119.78 MB 0.0553 ms 172.23 MB 0.0937 ms 370.37 MB 0.612 ms
RanGroupScan 102.25 MB 0.00792 ms 155.49 MB 0.0195 ms 358.89 MB 0.255 ms
Kamikaze 13.13 MB 0.0168 ms 0.0269 ms 10.66 MB 0.0512 ms 0.1957 ms 139.27MB 0.626 ms 0.325 ms
Zip 4.61 MB 160.147 ms 160.241 ms 5.56 MB 182.0512 ms 182.1957 ms 38.80 MB 2258.52 ms 2252.17 ms
bitlist-fix 6.25 MB 0.00816 ms 0.00836 ms 7.25 MB 0.0105 ms 0.0116 ms 106.59 MB 0.405 ms 0.169 ms
bitlist-dyn 4.82 MB 0.0104 ms 0.0112 ms 5.95 MB 0.0452 ms 0.0348 ms 95.95 MB 0.593 ms 0.308 ms

Table 2: Space and query processing time on three real data sets

and generate 111,772 files with on average 99.28 unique terms per
file. The above three data sets were stemmed with the Porter algo-
rithm and common stop words e.g.,“the” and “and” were removed.
Query log: We conduct keyword search based on a query log file
(with 80,000 queries) of a search engine. For each query, we con-
duct intersection and union over the above three data sets. In the
query log, the average number of terms per query is 2.085. The
largest number of terms per query is 11. We note that though
around 38.13% queries contain only 1 term, the remaining queries
contain at least 2 terms. As a result, the optimal order of processing
input terms is still useful to improve the efficiency of those queries
containing multiple terms.

5.1.2 Synthetic Data Set
Documents: We generate documents to measure how bitlist
performs well on three key parameters (similarities s of documents,
number |dj| of terms in documents dj, and number D of documents
to be indexed). Specifically, to generate a document, we first fol-
low the Zipf distribution to generate the number |dj| with a given
maximal number of terms. Next, depending on the similarity s, we
select the document term by probability s among 1,000 available
subject words, and the remaining terms among a very huge amount
(232 − 1, 000) of words. In this way, a larger s indicates that these
generated documents more similarly contain the subject words.
Queries: Depending on the query length, we randomly select the
average three query terms per query among the 1,000 subject words.

5.1.3 Metrics and Counterparts
We use the following counterparts (See Section 6 for the intro-

duction of [23, 22, 8]). (i) Kamikaze: We use the LinkedIn’s open
source implementation of [23, 22], namely Kamikaze version 3.0.6
[1, 2] released on Jan. 4th, 2012. Kamikaze supports the optimized
PForDelta compression [23, 22] over sorted arrays of docIDs and
docID set operations (intersection and union). (ii) Inverted list: We
use Kamikaze’s Integer arraylist to implement the uncompressed
inverted list and then conduct the boolean-based keyword search
(intersection and union). (iii) Zip: For comparison, we use the
Zip compression package provided by JDK 1.6.0. to compress
the sorted arrays of docIDs (offered by Kamikaze) and measure
the space. Next, we then decompress the compressed docIDs be-
fore we conduct the docID set operations. (iv) IntGroup and Ran-
GroupScan [8]: Following the previous work [8], we implement
the the fixed-width partition algorithm (called by IntGroup) and
the efficient and simple algorithm based on randomized partitions
(called RanGroupScan). Since the work [8] only supports intersec-
tion searches, we ignore the evaluation of IntGroup and RanGroup-
Scan for union searches.

Since Kamikaze is implemented by Java, for fairness, we imple-
ment IntGroup and RanGroupScan and the proposed bitlist-fix
and bitlist-dyn also by JDK 1.6.0 (64 bits).

We measure the space and average query time of the above schemes,
and are particularly interested in (i) how the two bitlist versions
are comparable with Kamikaze and Zip in terms of the space, and

(ii) how bitlist-fix and bitlist-dyn are comparable with Int-
Group and RanGroupScan in terms of the query processing time.

5.2 Experiments on Real Data
In this section, the baseline test first compares the bitlist-fix

and bitlist-dyn (setting B = 32) with the four counterparts.
Next, the sensitivity test varies the parameters (such as B and the
term processing order) to study how the performance of bitlist
responds to the changes of such parameters. All results in this sec-
tion is based on the three real document sets.
Baseline test: We report the results of the baseline test in Table 2.

First for the TREC AP data, the Zip approach uses the least space
and RanGroupScan has the fastest running time. Compared with
the Zip approach, bitlist-dyn uses the slightly more space, but
achieves a significantly smaller running time than Zip. It is because
the running time of Zip is dominated by the decompression time
(around 159 ms). Next compared with the Kamikaze approach,
bitlist-fix uses 47.60% of Kamikaze’s space, and meanwhile
achieves 51.43% and 68.91% less running time for the intersec-
tion and union queries than Kamikaze. Meanwhile bitlist-dyn
uses 22.89% less space than bitlist-fix, but with 21.53% and
25.36% more running time for the intersection and union queries
than bitlist-fix.

In terms of IntGroup and RanGroupScan, the associated high
space is caused by the reverse mapping from hash bits to the origi-
nal docIDs. Moreover, due to the existence of hash collusion, one
hash bit could be associated with multiple docIDs, which harm the
running time of IntGroup and RanGroupScan. When the number
of documents ia larger, the accumulated chance of such collusion
becomes higher, incurring higher running time. This is verified by
the results using the large data set TREC WT and blog data sets,
and bitlist-fix uses less running time than RanGroupScan.

Next, for the TREC WT data, the two bitlist implementations
consistently follow the similar results as the TREC AP data. Note
that though TREC WT contains much more documents than TREC
AP (with more than 100 folds of the number of documents), the
used space of uncompressed inverted list is only 1.62 folds. It is
because the average number of terms per document in TREC WT
is much smaller than the one in TREC AP and particularly the over-
all number of (distinct) terms in TREC WT is even smaller than the
one in TREC AP. In addition, for all approaches, the query pro-
cessing time of TREC WT is larger than the one of TREC AP. It is
due to the average size of a posting list (i.e., the average number of
docIDs per posting list) in TREC WT is much larger than the one
in TREC AP.

Third, in terms of the social blog data, the associated result is
roughly consistent with the results of the two TREC data. Never-
theless, the compression rates of Kamikaze and two bitlist ver-
sions are relatively smaller than those of the two TREC data. By
carefully analyzing the original inverted lists of three data sets, we
find that the average size per posting list in the social blog set, only
8.47, is much smaller than the average size of the TREC AP and
WT data sets with 130.31 and 422.69 respectively, and meanwhile
the number of the unique terms in the social blog set, 1,310,015,
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Figure 8: From left to right: Effect of document re-assignment algorithms (a) Space cost, (b) Intersection, and (c) Indexing efficiency

is significantly larger than the numbers in two other sets, 48,788
and 14,877 respectively. Such numbers indicate that the short ar-
ticles have low similarities in the blog data set, consequently in-
curring lower compression rate of the Kamikaze and two bitlist
versions. This result will be further verified by the results of our
synthetic data.
Study of base num. B: Next, we vary the base number B from 4 to
64 and build bitlist-fix and bitlist-dyn. Fig. 7 (a-b) show
the space and average query processing time (we use intersection
as the example) associated with the varied base number. The base
number B = 64 indicates the least space and query processing time
for both bitlist-fix and bitlist-dyn. Nevertheless, we note
that the used space of both bitlist-fix and bitlist-dyn has no
significant decrease when B varies from 32 to 64. It is consistent
with our claim in Section 3.1 that a larger B unnecessarily leads to
less space. In addition, for B = 64, we use a long data type and the
number of used bytes by a long number is still two folds of the ones
used by two integers. As a result, the number of data bytes used by
the eids is not changed when B varies from 32 to 64.
Study of query processing alg: We measure the effect of the pro-
cessing order of input terms. Besides, we are interested in how
the number of terms per query affects the query processing time.
Thus, based on the documents, we particularly generate 10 groups
of queries (each group has 1000 queries). For the i-th group (1 ≤
i ≤ 10), each query contains the number i of terms. For all queries,
besides the processing order of our approaches (i.e., Alg. 3 for in-
tersection and Alg. 4 for union), we adopt the random order as the
counterpart. Next, for each group of queries (including both in-
tersection and union operations), we measure the query processing
time by the different term processing order.

Fig. 7 (c-d) plots the rate between the query time by the random
approach and the time by our approaches. The line 1.0 indicates
that the time by the random approach is just equal to the one by our
approach. Except two outline points (i.e., the groups with 3 and 4
terms), other groups of queries benefit from the proposed process-
ing order. When the groups are associated with a larger number
of input terms per query, the rate values become higher. This indi-
cate that the proposed approach is helpful for those queries having
more input terms. For example, for the groups of queries having 10
terms, the rate of union on the bitlist-fix and bitlist-dyn is
1.375 and 1.29, respectively. It is because given more terms, Alg.
3 has more options to find the best term processing order.
Study of building and maintaining bitlist: In this experiment, we
study how our re-assignment algorithm is comparable with the pre-
vious works [19, 9] in terms of space cost, intersection time and
running time to build and maintain the associated indexes.

[19] re-assigns new docIDs based on the pairwise document sim-
ilarity and are reducible from the travelling salesman problem (TSP).
[9] adopts the Local Sensitive Hashing (LSH) scheme (we use an
open source implementation TarsosLSH in http://tarsos.0110.be/)
to reduce the dimensionality of documents by the KNN approach
(we choose K to be the base number B) to achieve a sparse graph.
After that, we still follow the classic TSP approach to re-assign do-
cIDs as [19] does. With the LSH-based dimensionality reduction,
[9] then improves the running time of the TSP approach. Based
on the re-assigned docIDs by [19, 9], we then follow the idea of
bitlist-fix and bitlist-dyn to encode such new docIDs, and
measure the associated space and average intersection query time.

In Fig. 8, we respectively label the results of [19] by “pairwise
TSP” and [9] by “LSH TSP”, and label the results of Section 3.3.2
to build the bitlist-fix by“build” and the results of Section 3.5
to maintain the bitlist-fix by “maintain”. During the mainte-
nance, we first build the bitlist-fix to index half of TREC AP
files, and then update the built bitlist-fix index by another half
of TREC AP files.

In Fig. 8 (a-b), the proposed “build” and “maintain” schemes
achieve less space cost and less running time than the two pairwise
similarity-based TSP schemes (“pairwise TSP” and “LSH TSP”).
The results verify the advantages of bitlist over the TSP schemes.
Second, the “LSH TSP” incurs higher space cost and larger run-
ning time than the “pairwise TSP”. It is because the sparse graph
achieved by dimensionality reduction could miss the terms con-
tributing to the document similarity. Lastly, recall that the main-
tenance only updates an existing bitlist index, without optimiz-
ing the space cost of new documents. Thus, the “maintain” scheme
uses higher space cost and more keyword query time than the “build”
scheme which is based on the optimization of the whole data set.

Next we proceed to evaluating the indexing efficiency in terms of
average running time to build and maintain the associated indexes
per document. We respectively measure (i) the running time of
“pairwise TSP” [5] to compute pairwise similarity, re-assign do-
cIDs and then build the bitlist-fix, (ii) the running time of
“LSH TSP” [9] to adopt the LSH, compute the document simi-
larity of the spare graph, re-assign docIDs and finally build the
bitlist-fix, (iii) the running time of building the bitlist-fix,
and (iv) finally the running time of maintaining the bitlist-fix.

We plot the above running time in Fig. 8 (c). First, the run-
ning time of two TSP approaches is dominated by the preprocess-
ing time (i.e., the time to compute pairwise similarity in “pairwise
TSP” and time to adopt the LSH and compute the document simi-
larity of the spare graph in “LSH TSP”). Consequently, the overall
running time of such approaches is much higher than the time of
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Figure 9: From left to right: Compression rate (a) similarity of docs and (b) num. of docs; Query saving rate (c) similarity of docs and (d) num. of docs.

the “build” scheme. The “build” scheme can leverage the existing
inverted list instead of any preprocessing efforts needed by the two
TSP schemes. For example, “pairwise TSP” requires high over-
head to compute and maintain the pairwise similarity at the scale of
O(D2), where D is the number of documents. We note that the over-
all time of our approach, even if the efforts to build an inverted list
are considered, is still only 41.34% of the time used by “pairwise
TSP”. Finally, the “maintain” scheme uses slightly higher average
time than the “build” scheme. Nevertheless, the benefit is that new
documents can be immediately incorporated to the bitlist index.
Since the “maintain” scheme uses higher space cost and intersec-
tion time than the “build” scheme, it makes sense to periodically
use Alg. 1 in Section 3.3.2 to optimize the bitlist index updated
by the “maintain” scheme.

5.3 Experiments on Synthetic Data
We next use the synthetic data to measure the space cost and

running time of bitlist. Due to the space limit, we mainly report
the results of bitlist-fix. In terms of the space cost, we de-
fine the relative compression rate to be the rate between the space
size of inverted list and the size of bitlist-fix. A higher com-
pression rate indicates less space cost of bitlist-fix. Next, we
define the query saving rate to be the rate between the running time
of Kamikaze on the inverted list and the time of the proposed in-
tersection algorithm on bitlist-fix. A higher query saving rate
indicates a faster running time of the proposed algorithm.
Space compression rate: When the similarity of generated docu-
ments grows from 0.0 to 0.98, we note that the real space sizes of
both inverted list and bitlist-fix decrease. Specifically, when
we fix the number of terms of generated documents, the high sim-
ilarity means longer post lists but with a smaller number of post-
ing lists. In addition, we use the Zipf distribution to generate the
number of terms of synthetic documents (the maximal number of
terms per document is 100 by default). When the Zipf parameter
α becomes larger (e.g., from 0.1 to 0.9), more synthetic documents
contain a small number of terms, leading to smaller size of the both
data structure. Besides the real space cost, we are interested in
the relative compression rate. As shown in Fig. 9(a), we find that
a larger similarity (from 0.0 to 0.98) leads to a higher compres-
sion rate (from 1.09 to 2.81 for α = 0.9 and from 1.09 to 3.31 for
α = 0.1). This result show that bitlist-fix achieves the higher
compression benefit when the indexed documents are similar.

When we change the number of indexed documents from 103

to 105, the real space sizes of both inverted list and bitlist-fix
obviously increase too. In addition, when we change the maximal
number of terms per document (used by the Zipf distribution to
generate the number of terms per document) from 100 to 500, the
synthetic documents contain more terms and the real sizes of the
both indexing structures also increase. Now, in terms of the rel-
ative compression rate in Fig. 9(b), a higher number of indexed
documents (i.e., the x-axis) leads to a slightly larger compression
rate (from 1.53 to 1.71 for the maximal number of 100 terms). In
addition, this figure indicates that when the maximal number of
terms per document becomes larger (e.g., 500), we have a higher

compression rate. For example, given 105 documents, we have the
compression rate 2.04 for the 500 maximal terms per document.
That is because given the fixed document similarity, a larger maxi-
mal number of document terms helps select more subject terms and
the synthetic documents become more similar.
Query saving rate: By using the intersection as an example, we
measure the running time of bitlist-fix and inverted list based
on the previous experiment, and plot the query saving rate in Fig.
9 (c-d). First, a larger similarity leads to the increased intersection
time for both bitlist-fix and inverted list. It is because given
higher similarity, the posting lists contain more member items of
docIDs inside posting lists and thus more traversal time is needed.
Nevertheless, in terms of the query saving rate of the y-axis in Fig.
9(c), the larger similarity still benefits bitlist-fix with a higher
query saving rate. This result indicates the benefit of bitlist-fix
to save more query time when documents are more similar. Sec-
ond, when more documents are indexed, the real running time of
both inverted list and bitlist-fix obviously becomes higher. In
terms of the query time rate, as shown in Fig. 9(d), bitlist-fix
saves more running time when the bitlist-fix indexes a larger
number of documents.

Finally, as for bitlist-dyn, it achieves a larger compression
rate but smaller query saving rate than bitlist-fix. This is con-
sistent with the previous baseline test of real data set. Neverthe-
less, bitlist-dyn exhibits the similar curve as Fig. 9. For exam-
ple, given 105 documents and 500 maximal terms per document,
bitlist-dyn has the compression rate 2.41, with 21.2% growth
than bitlist-dyn.

6. RELATED WORK
Inverted List Compression: To save the space of inverted lists,
some inverted list compression techniques leverage the following
intuition. Given the inverted list consisting of a sequence of do-
cIDs (e.g., integers) in ascending order, it is also considered as a
sequence of gaps between docIDs. If the keyword search starts
from the beginning of the list, the original docIDs are recomputed
by sums of the gaps. Simple9 [3], Simple16 [24] and PForDelta
[12, 25] adopt this idea for compression, and [24, 23] further im-
proves the PForDelta. Instead, Rice coding and Interpolative Cod-
ing (IPC) [17] compress standard unordered docIDs.

The above approaches essentially separate the space optimiza-
tion from the search improvement. For example, the encoded num-
ber in the above approaches is only used for compression but not
helpful for the search. Moreover, the search needs overhead to re-
store the original docIDs. Taking the compression solutions using
gaps of docIDs as an example. The decompression requires the full
scan of the posting lists from the beginning. It incurs high over-
head, particularly for the intersection search which may result in a
very few number of search results. The improvement by dividing
the posting lists into pieces of gap-encoding and using two-levels
of hierarchy could avoid the full scan. However, the gap-encoded
numbers inside each piece still need the full scan of such a piece.
DocID Reassignment: Re-assigning docIDs is frequently used to
compress inverted lists. The general intuition is as follows. Encod-
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ing a small integer docID requires fewer bits than a large integer do-
cID. Thus, consecutive docIDs mean small gaps, which then need
a small number of bits. Based on the intuition, the previous works
[19, 5, 9] connect the pairs of documents into the paths, such that
the whole paths are associated with the largest weight sum (e.g.,
formulated as a traveling salesman problem TSP). [9] enhances the
works [19, 5] by LSH dimensionality reduction. In addition, [14],
focusing on the general topic of sparse matrix compression, shares
the similar idea to the docID reordering solutions (e.g., [19, 5]). It
is treated as a parallel line of the docID reordering problem.

We cannot simply re-use the above TSP schemes. The TSP
schemes model documents as vertexes in a graph, and use pairwise
similarity as weights of edges. During each iteration of the TSP
schemes, only an edge (involving only two vertexes) is connected.
Because the proposed accumulation similarity involves (≥ 2) doc-
uments (and the vertexes), an edge obviously cannot cover (≥ 2)
documents, and the TSP schemes are inapplicable to our case.
Boolean-based Keyword Search: Based on sorted docIDs inside
posting lists, [13, 7] use the number of comparisons (instead of
running time) to measure the search cost, and minimize the cost
by binary merging and binary search algorithms. In case that the
posting lists significantly differ in terms of the associated size, the
hash-based implementation [4] can greatly speedup the search. The
recent work [8] studies the problem of fast set intersection for main
memory resident data. The basic idea of [8] is to partition input sets
into smaller subsets, and leverage hash functions to map the subsets
into a small universe. Next, the small universe is encoded as sin-
gle machine words. The bitwise-AND operations over the machine
words then achieve very fast set intersection.

We discuss our work with the above work [8] as follows. First,
[8] is not optimized for less space cost. It maintains the reverse
mapping from each universe item to the associated set element, in-
curring high space cost. Second, in term of intersection search,
given multiple input sets, [8] does not specify the processing order.
Instead, we design algorithms to optimize the processing orders
which then save the running time.

7. CONCLUSION
In this paper, we present a novel full-text index bitlist. It is a

hybrid structure of the traditional inverted list and the T ×D binary
matrix. By using a simple yet efficient bit encoding technique and
machine bitwise operations, bitlist achieves both low space cost
and fast keyword search. Based on real and synthetic data sets, our
experimental results show significant benefits of bitlist over the
previous works in terms of low space and fast keyword search.

Our work could motivate several open questions. First, the de-
sign of a goodness score function is the key for better tradeoff be-
tween the space cost and query processing time. For example, an
optimization might be tuning a weight of each term ti based on ti’s
popularity in query logs and ti’s frequency in the indexed docu-
ments. The selected best document is helpful for lower space cost
and faster keyword search. Moreover, we note that most users are
interested in the most relevant documents of input terms. Many
previous works assume that the docIDs in inverted lists are sorted
by descending order of term weights. To this end, we optionally
plug-in the term weights to the goodness score function in Eq. 1.
Then the documents with higher term weights have chance to be
the ones having larger goodness score. Therefore, the meaningful
goodness score function motivates our continuing work to enable
the effectiveness and efficiency of bitlist.

Second, the performance result of bitlist depends on the sim-
ilarity and number of documents to be indexed. For example, our
experiments indicate that higher similarity and larger number of

documents help achieving better compression result. How to fur-
ther optimize bitlist for live and short documents (e.g., social
blogs, Twitter Tweets) could be one of our future works.

Finally, we are interested in how a main memory-based bitlist
can work together with the disk-based bitlist studied in this
paper. For example, the design of an efficient bitlist caching
scheme can speedup the access to the disk-based bitlist.
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