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ABSTRACT
Graph pattern matching has been widely used in e.g., so-
cial data analysis. A number of matching algorithms have
been developed that, given a graph pattern Q and a graph
G, compute the set M(Q,G) of matches of Q in G. How-
ever, these algorithms often return an excessive number of
matches, and are expensive on large real-life social graphs.
Moreover, in practice many social queries are to find matches
of a specific pattern node, rather than the entire M(Q,G).
This paper studies top-k graph pattern matching. (1) We

revise graph pattern matching defined in terms of simula-
tion, by supporting a designated output node uo. Given G
and Q, it is to find those nodes in M(Q,G) that match uo,
instead of the large set M(Q,G). (2) We study two classes of
functions for ranking the matches: relevance functions δr()
based on, e.g., social impact, and distance functions δd() to
cover diverse elements. (3) We develop two algorithms for
computing top-k matches of uo based on δr(), with the early
termination property, i.e., they find top-k matches without
computing the entire M(Q,G). (4) We also study diversified
top-k matching, a bi-criteria optimization problem based on
both δr() and δd(). We show that its decision problem is
NP-complete. Nonetheless, we provide an approximation
algorithm with performance guarantees and a heuristic one
with the early termination property. (5) Using real-life and
synthetic data, we experimentally verify that our (diversi-
fied) top-k matching algorithms are effective, and outper-
form traditional matching algorithms in efficiency.

1. INTRODUCTION
Graph pattern matching is being widely used in social

network analysis [5, 32], among other things. A number of
algorithms have been developed for graph pattern match-
ing that, given a graph pattern Q and a graph G, compute
M(Q,G), the set of matches of Q in G (e.g., [11, 18]).

Social data analysis, however, introduces new challenges
to graph pattern matching. Social graphs are typically large,
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Figure 1: Querying collaboration network

with millions of nodes and billions of edges. This gives rise
to the following problems with the matching algorithms.

(1) The matching algorithms often return an excessive num-
ber of results. Indeed, when matching is defined by subgraph
isomorphism [14], M(Q,G) may contain exponentially many
subgraphs of G; when graph simulation is adopted, M(Q,G)
is a relation of size O(|G||Q|) [18], which may be larger than
graph G. It is a daunting task for the users to inspect such
a large M(Q,G) and find what they are searching for.

(2) The sheer size of social graphs makes matching costly:
for matching defined by simulation, it takes O(|G||Q|+ |G|2)
time to compute M(Q,G) [11]; for subgraph isomorphism,
it is NP-complete to decide whether a match exists (cf. [29]).

(3) Social queries often need to find matches of a specific
pattern (query) node uo as “query focus” [3], i.e., we just
want those nodes in a social graph G that are matches
of uo in M(Q,G), rather than the entire set M(Q,G) of
matches of Q. Indeed, this is how “graph search” (http:
//www.facebook.com/about/graphsearch) of Facebook is
conducted on a big social graph with more than 1 bil-
lion users and 140 billion links( http://newsroom.fb.com/).
The need for this is also evident in, e.g., egocentric search [6]
and expert recommendation [27, 31]. In fact, 15% of social
queries are to find matches of specific pattern nodes [27].

These highlight the need for top-k graph pattern match-
ing: given Q, G and a designated pattern node uo, it is to
find top-k matches of uo in M(Q,G), ranked by a quality
function. The users only need to check k matches of uo in-
stead of M(Q,G). Better still, if we have an algorithm with
the early termination property, i.e., it finds top-k matches of
uo without computing the entire M(Q,G), we do not have
to pay the price of full-fledged graph pattern matching.

Example 1: A fraction of a collaboration network is given
as graph G in Fig. 1. Each node in G denotes a person,
with attributes such as job title, e.g., project manager (PM),
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database developer (DB), programmer (PRG), business ana-
lyst (BA), user interface developer (UD) and software tester
(ST). Each edge indicates a supervision relationship; e.g.,
edge (PRG1, ST1) indicates that PRG1 supervised ST1.
A company issues a graph search query to find PMs who

supervised both DBs and PRGs, and moreover, (1) the DB

worked under the PRG directly or indirectly, and vice versa;
and (2) both the DB and the PRG supervised an ST [21].
The requirements for the PMs are expressed as a graph pat-
tern Q shown in Fig. 1 (a). Here PM is the “focus” of the
query, i.e., only the matches of PM are asked for [3]. This is
indicated by labeling PM with ‘∗’ as the “output node” of Q.
When graph pattern matching is defined in terms of sub-

graph isomorphism [29], no match of Q can be identified
in G. Indeed, it is too restrictive to define matches as iso-
morphic subgraphs [11]. Bisimulation [8] extends subgraph
isomorphism with matching relations as equivalence rela-
tions, which is still unable to identify some sensible matches,
e.g., PM1. Instead, we adopt simulation [18] with a des-
ignated node, extending graph search by supporting both
matching relation and a specified “query focus”. With graph
simulation, M(Q,G) is a binary relation on the pattern
nodes in Q and their matches in G, including (PM, PMi),
(DB, DBj), (PRG, PRGi), (ST, STi) for i ∈ [1, 4] and j ∈ [1, 3].
Observe that M(Q,G) contains most of the nodes in G

as matches, which are excessive since, e.g., the matches STi

(i ∈ [1, 4]) for ST are not required. However, what the user
wants are the PM matches. It is hence unnecessary and too
costly to compute the entire large set M(Q,G). Even for
the output node PM, too many PMi are returned (i ∈ [1, 4]).

We can do better with top-k matching. When k = 2, we
find two top-ranked PMi’s that match PM, and return them
in response to the request, instead of M(Q,G). Better still,
it is less costly. Indeed, while a naive algorithm for top-k
matching is to first compute M(Q,G) and then pick top-
2 PMi’s, an algorithm with the early termination property
identifies the PMi’s without computing the entire M(Q,G).
To rank the matches PMi’s of PM, one may consider the

following criteria. (1) Social impact [21]. Observe that PM2

can reach more people than any other PM, i.e., PM2 has
collaborated with more people. Thus PM2 has stronger so-
cial impact. (2) Social diversity [2,35]. Consider match sets
{PM1,PM2} and {PM2,PM3}. While PM2 and PM3 worked
with the same people, PM1 and PM2 are quite “dissimi-
lar” since they covered different groups of people. Putting
these together, {PM1,PM2} makes a good candidate for top-
2 matches in terms of both social impact and diversity. ✷

This example shows that top-k graph pattern matching
may rectify the limitations of existing matching algorithms.
To make practical use of it, however, several questions have
to be answered. How can specific output nodes be incorpo-
rated into graph pattern matching? What quality and di-
versity functions should be used to rank the matches? What
is the complexity of computing top-k matches based on one
or both of the functions? How can we guarantee early ter-
mination by our algorithms for computing top-k matches?

Contributions. This paper answers these questions. We
focus on graph pattern matching defined by graph simula-
tion, which has proved useful in social data analysis [5, 32].

(1) We revise the traditional notion of graph pattern match-
ing by designating an output node uo (Section 2). Given Q
and G, it is to compute Mu(Q,G, uo), the set of matches of

uo in G via Q. That is, the set of nodes in G that are in
M(Q,G) and moreover, match the output pattern node uo.

(2) We study two classes of functions to rank matches of uo

(Section 3), namely, relevance functions δr() that measure
the relevance of a match, and distance functions δd(), which
measure the “dissimilarity” of two matches. Based on both,
we define a bi-criteria (balanced by a parameter λ) diversi-
fication function F (), which aims both to maximize social
impact and to cover social elements as diverse as possible.
To simplify the discussion, we focus on two simple relevance
and distance functions. Nonetheless, we show that our tech-
niques support a range of such functions used in practice.

(3) We investigate top-k graph pattern matching (Section 4).
Given a graph pattern Q, a graph G and a positive integer
k, it is to find k top-ranked matches of uo based on the
relevance function δr(). We provide two algorithms for doing
so, in O(|G||Q| + |G|2) time yet with the early termination
property [10]. That is, they stop as soon as the top-k matches
are found, without computing the entire M(Q,G).

(4) We also study the diversified top-k graph pattern match-
ing problem (Section 5). It is to find top-k matches of uo

based on the diversification function F (). We show that
its decision version is NP-complete. The bi-criteria opti-
mization problem is also hard to approximate, as suggested
in [4] (see more in Section 5). Despite this, we develop an
approximation algorithm in time O(|G||Q|+ |G|2) with ap-
proximation ratio 2. We also give a heuristic algorithm in
time O(|Q||G|+ |G|2), with the early termination property.

(5) Using both real-life and synthetic data, we experimen-
tally verify the efficiency and effectiveness of our methods
(Section 6). We find that they effectively reduce excessive
matches: when k = 10, our top-k matching methods only
need to examine 40% - 45% of matches in M(Q,G) on av-
erage, and our diversified top-k heuristic finds high-quality
matches by inspecting 45% of the matches. Better still, our
algorithms are more efficient than their traditional coun-
terparts, improving the efficiency by 64% (resp. 48%) on
average for acyclic (resp. cyclic) patterns. In addition, they
scale well with |Q|, |G| and k, and are not sensitive to the
change of λ. These verify that our methods indeed remedy
the limitations of traditional matching, to an extent.

These results yield a promising approach to querying so-
cial data. In the worst case, our (diversified) top-k matching
algorithms have the same complexity O(|G||Q| + |G|2) as
traditional matching algorithms, despite the extra computa-
tion introduced for ranking and diversifying matches. Bet-
ter still, they have the early termination property and hence,
perform better than the traditional algorithms in efficiency,
as verified analytically and experimentally. All the proofs,
algorithms and complexity analyses can be found in [1].

Related work. We categorize the related work as follows.

Top-k queries. There has been a host of work on top-k
query answering for relational data, XML and graphs.

Relational databases. Top-k query answering is to retrieve
top-k tuples from query result. Given a monotone scoring
function and sorted lists, one for each attribute, Fagin’s al-
gorithm [9] reads attributes from the lists and constructs
tuples with the attributes. It stops when k tuples are con-
structed from the top-ranked attributes that have been seen.
It then performs random access to find missing scores. It is
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optimal with high probability for some monotone scoring
functions. Extending Fagin’s algorithm, the threshold algo-
rithm [10] is optimal for all monotone scoring functions, and
allows early termination with approximate top-k matches. It
reads all grades of a tuple once seen from the lists, and per-
forms sorted access to tuples by predicting maximum possi-
ble grades in unseen tuples, until k tuples are found. Other
top-k queries, e.g., selection, join and Datalog queries, adapt
and extend the methods of [9, 10] (see [19] for a survey).

We focus on top-k matching on graphs rather than re-
lational tables. Moreover, while the prior work assumes
monotone scoring functions and requires ranked lists to be
provided as input, (1) we combine the query evaluation and
result ranking in a single process, without requiring ranked
lists as input, and (2) our relevance and diversification func-
tions are more involved than monotone scoring functions.
Nonetheless, our algorithms promise early termination, and
return answers without computing the entire M(Q,G).

XML and graph matching. Top-k queries have also been
studied for XML, and for graph queries defined in terms of
subgraph isomorphism. (1) XML keyword search (e.g., [15])
is to find top-k subtrees of a document, given a set of key-
words. Essentially, the prior work is to find top-ranked trees
or connected subgraphs induced from a set of keywords,
rather than to find matches for a general graph pattern.
(2) Top-k XPath queries are to identify top matches for the
nodes in a tree pattern, based on tree pattern matching.
For example, [26] finds top-ranked matches for tree patterns
in terms of keyword and document frequency. (3) Top-k
subgraph matching is to find top-ranked subgraphs that are
isomorphic to a graph pattern [14, 37, 38], ranked by, e.g.,
the total node similarity scores [38].

Our work differs from the prior work in the following. (1)
We study top-k queries defined by graph simulation [18],
rather than subgraph (tree) isomorphism. Further, we con-
sider matches of a single output node that are computed
with early termination. (2) We support result diversifica-
tion, which is not studied in the prior work mentioned above.

Result diversification. Result diversification is a bi-
criteria optimization problem for balancing result relevance
and diversity [4,13], with applications in e.g., social search-
ing [2]. (1) General frameworks for query result diversifica-
tion are introduced in [4,13,30]. A set of axioms for design-
ing diversification systems is proposed in [13], to characterize
reasonable diversification functions. A general framework
for diversified top-k search is proposed in [30], which con-
sists of three general functions that capture the termination
conditions and search strategies. (2) Based on result diver-
sification, Top-k diversity queries are to find k answers that
maximize both the relevance and overall diversity, which
have been studied for e.g., keyword search [7, 17]. Gener-
ally speaking, the approaches to finding top-k diversified
results consist of two steps: (1) a ranked list w.r.t. relevance
score is computed; and (2) the list is re-ranked by com-
bining diversity scores to find top-k diversified objects [30].
It is shown [13, 35] that query diversification is intractable.
An O(1− 1

e
) approximation is given in [17] for submodular

relevance and diversity functions. Closer to our work is [4],
which generalizes diversification function with a submodular
weight function and a “supermodular” part of distance sum.

In contrast, (1) we study top-k diversified matches for
a designated node in graph pattern matching. We are not

aware of any prior work on this topic. (2) Our algorithms
combine query evaluation and result ranking, with early ter-
mination, while the previous work assumes that the query
result is already known, except [7] for keyword search. (3)
While our diversification function is not submodular as as-
sumed in [17] and moreover, it is nontrivial to approximate
based on a recent result of [4] (see Section 5 for a detailed
discussion), we provide a 2-approximation algorithm.

Pattern queries with output nodes. Several query lan-
guages allow one to specify a designated output node, no-
tably twig queries on XML data [26]. Such nodes can also
be specified with a “return” clause in XQuery [25], or a
“select” clause in SPARQL. These languages are typically
based on subgraph (tree) isomorphism. To reduce search ef-
fort, [33] proposes a “Seed-Finder” that identifies matches
for certain pattern nodes. These nodes are, however, not
specified by users. This work extends twig queries to graph
pattern matching defined in terms of graph simulation, and
provides algorithms for computing diversified top-k matches
with early termination, which were not studied for XPath.

2. GRAPH PATTERN MATCHING
In this section, we first review data graphs, pattern graphs

and graph simulation [18]. We then revise the traditional
matching notion by designating an output node.

2.1 Data Graphs and Pattern Graphs

Data graphs. A data graph (or simply a graph) is a di-
rected graph G = (V,E, L), where (1) V is a finite set of
nodes; (2) E ⊆ V ×V , in which (u, u′) denotes an edge from
node u to u′; and (3) L is a function such that for each node
u in V , L(u) is a label from an alphabet Σ. Intuitively, the
node labels denote e.g., keywords, social roles, ratings [11].

Pattern graphs. A pattern graph is a directed graph Q =
(Vp, Ep, fv), where (1) Vp is the set of query nodes, (2) Ep

is the set of query edges, and (3) fv is a function defined on
Vp such that for each node u ∈ Vp, fv(u) is a label in Σ.

Graph simulation [18]. A graph G matches a pattern Q
if there exists a binary relation S ⊆ Vp × V such that (1)
for each node u ∈ Vp, there exists a node v ∈ V such that
(u, v) ∈ S, referred to as a match of u; (2) for each pair
(u, v) ∈ S, (a) fv(u) = L(v), and (b) for each edge (u, u′) in
Ep, there exists an edge (v, v′) in G such that (u′, v′) ∈ S.

It is known that if G matches Q, then there exists a unique
maximum relation M(Q,G) [18]. If G does not match Q,
M(Q,G) is the empty set. This maximum relation M(Q,G)
is referred to as the set of matches of Q in G. The relation
M(Q,G) can be depicted as the result graph of Q in G [11].

Example 2: Example data graph G and pattern Q are
given in Fig. 1. One may verify that G matches Q, with the
unique, maximum match M(Q,G) given in Example 1. The
label fv(u) of a query node u specifies a search condition: a
node v in G can match u only if L(v) = fv(u). ✷

Given G and Q, the traditional notion of graph pattern
matching by simulation is to compute M(Q,G). It is known
that M(Q,G) can be computed in O((|Vp|+|V |)(|Ep|+|E|))
time [11], where |M(Q,G)| is bounded by O(|V ||Vp|) [18].

We denote |Vp|+|Ep| as |Q| (the size of the pattern graph),
and |V |+ |E| as |G| (the size of the data graph).
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2.2 Graph Pattern Matching Revised
We extend a pattern to be Q = (Vp, Ep, fv, uo), where uo

is a query node in Vp labeled with ‘∗’, referred to as the
output node of Q, and Vp, Ep and fv are the same as above.

Given a pattern Q and a graphG, we define thematches of
Q in G to be Mu(Q,G, uo) = {v | (uo, v) ∈ M(Q,G)}, i.e.,
the matches of the output node uo in the unique maximum
M(Q,G). Here Mu(Q,G, uo) = ∅ if G does not match Q.

Note that Mu(Q,G, uo) is smaller than M(Q,G): its size
is bounded by |V | as opposed to |V ||Vp|.

Example 3: Recall graphG and patternQ from Example 1.
The node PM is marked as the output node of Q. Then the
set Mu(Q,G,PM) = {PMi | i ∈ [1, 4]}, which consists of 4
nodes as opposed to 15 node pairs in M(Q,G). ✷

Graph pattern matching can be readily extended to sup-
port the following: (1) patterns (resp. graphs) with multiple
predicates (resp. attributes) on its nodes, i.e., search con-
ditions defined with multiple predicates; and (2) patterns
with multiple output nodes. To simplify the discussion, we
focus on a single designated output node in this paper, as
commonly found in practice [27]. Nonetheless, the results
of this work extend to patterns with multiple output nodes;
the interested reader is invited to consult [1] for details.

3. RANKING PATTERN MATCHES
The result set Mu(Q,G, uo) could still be excessively large

when G is large, while users are often only interested in the
best k matches of the output node of Q [19]. This suggests
that we define certain functions to rank the matches, and
compute top-k matches for uo based on the functions.
In this section we study two sets of ranking functions: rel-

evance functions to measure the relevance of matches (Sec-
tion 3.1), and distance functions to measure match diver-
sity (Section 3.2). We then define a diversification function,
which is a bi-criteria objective function combining relevance
and diversity (Section 3.3). Based on these, we introduce
two top-k graph pattern matching problems. To simplify the
discussion, we start with a simple formulation of the ranking
functions based on “social impact”, and we generalize the
problems to a variety of ranking functions (Section 3.4).

3.1 Relevant Matches
We start with a simple function to measure the relevance

of the matches of uo. It is based on a notion of relevant sets.

Relevant set. Given a match v of a query node u in Q,
the relevant set of v w.r.t. u (denoted as R(u,v)) includes all
matches v′ of u′ for each descendant u′ of u in Q, such that
if u reaches u′ via a path (u, u1, . . . , un, u

′), then v reaches v′

via (v, v1, . . . , vn, v
′), where (ui, vi) ∈ M(Q,G) (i ∈ [1, n]).

That is, R(u,v) includes all matches v′ to which v can reach
via a path of matches. Following [11], one can verify the
following, which shows that the relevant set is well-defined.

Lemma 1: Given a pattern graph Q and a data graph G, if
G matches Q, then for any match v of a query node u, there
exists a unique, maximum relevant set R(u,v). ✷

Relevance function. On a match v of u, we define the
relevance function δr() in terms of the relevant set R(u,v):

δr(u, v) = |R(u,v)|.

That is, the relevance function favors those matches that can
reach more other matches: for a match vo of the output node

uo, the more matches vo can reach, the bigger “impact” it
may have, as observed in social network studies [20]. Thus,
the matches with high δr() values are preferred for relevance.

Top-k matching problem. We now state the top-k match-
ing problem, denoted by topKP. Given a graph G, a pattern
Q with output node uo, and a positive integer k, it is to find
a subset S ⊆ Mu(Q,G, uo), such that |S| = k and

δr(S) = argmax
S′⊆Mu(Q,G,uo),|S′|=k

∑

vi∈S′

δr(uo, vi).

Abusing δr(), we also use δr(S) to denote
∑

vi∈S δr(uo, vi),
referred to as the relevance of S to uo.

That is, topKP is to identify a set of k matches of uo that
maximizes the total relevance to uo. In other words, for all
S′ ⊆ Mu(Q,G, uo), if |S

′| = k then δr(S) ≥ δr(S
′).

Example 4: Recall G and Q from Fig. 1. The relevant sets
of the matches in Mu(Q,G,PM) are shown below.

match relevant set

PM1 {DB1, PRG1, ST1, ST2}
PM2 {DB2, DB3, PRG2, PRG3, PRG4, ST2, ST3, ST4}

PMi (i ∈ [3, 4]) {DB2, DB3, PRG2, PRG3, ST3, ST4}

One may verify that S = {PM2, PM3} or S = {PM2, PM4}
is a top-2 relevant match set, i.e., S reaches more matches
in G than any other 2-match set for PM. The total relevance
δr(S) = δr(PM, PM2) + δr(PM, PM3) = 8 + 6 = 14. ✷

The need for studying topKP is evident: instead of in-
specting possibly large set Mu(Q,G, uo), we want to find
top-k elements that are most relevant to our search.

3.2 Match Diversity
We next introduce a simple metric for result diversity [30].

As observed in [2, 35], it is important to diversify (social)
search results to avoid repeated recommendations for similar
elements (see Example 1), advocate elements in different
groups and to cover elements with new information.

Diversity function. To characterize the diversity of a
match set, we define a distance function to measure the “dis-
similarity” of two matches. Given two matches v1 and v2 of
a query node u, we define their distance δd(v1, v2) to be:

δd(v1, v2) = 1−
|R(u,v1) ∩R(u,v2)|

|R(u,v1) ∪R(u,v2)|
.

The distance function δd() computes the number of distinct
matches that two matches of uo may impact. The larger
δd(v1, v2) is, the more dissimilar v1 and v2 are. It indicates
the social diversity between the matches. Observe that the
function constitutes a metric. For any matches v1, v2 and
v3 of uo, (1) δd(v1, v2) = δd(v2, v1), and (2) it satisfies the
triangle inequality, i.e., δd(v1, v2) ≤ δd(v1, v3) + δd(v3, v2).

Example 5: GivenG andQ in Fig. 1, we have the following:
(1) δd(PM3,PM4) = 0; this suggests that PM3 and PM4 have
impact on exactly the same group of people in G, i.e., they
cannot be distinguished in terms of “social impact”; and (2)
δd(PM1,PM2) = 10

11
, δd(PM2,PM3) = 1

4
, δd(PM1,PM3) = 1.

Thus PM1 and PM3 are most dissimilar to each other, as they
are related to two completely different groups of people. ✷

3.3 Match Diversification
It is recognized that search results should be relevant, and

at the same time, be as diverse as possible [13,35]. Based on
δr() and δd() we next introduce a diversification function.
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Diversification function. On a match set S =
{v0, . . . , vk} of the output node uo, the diversification func-
tion F () is defined as

F (S) = (1−λ)
∑

vi∈S

δ′r(uo, vi)+
2 · λ

k − 1

∑

vi∈S,vj∈S,i<j

δd(vi, vj),

where λ ∈ [0, 1] is a parameter set by users, δ′r(uo, vi) is a

normalized relevance function defined as δr(uo,vi)
Cuo

, and Cuo

is the total number of the candidates of all those query nodes
u′ to which uo can reach in Q. Here a node v′ in G is called
a candidate of a query node u′ if L(v′) = fv(u

′), i.e., they
share the same label. The diversity metric is scaled down

with 2·λ
k−1

, since there are k·(k−1)
2

numbers for the difference
sum, while only k numbers for the relevance sum.
The function F () is a minor revision of max-sum diver-

sification introduced by [13]. It is a bi-criteria objective
function to capture both relevance and diversity. It strikes
a balance between the two with a parameter λ that is con-
trolled by users, as a trade-off between the two [35].

Diversified top-k matching problem. Based on the
function F (), we next state the diversified top-k matching
problem, denoted by topKDP. Given G, Q with output node
uo, a positive integer k, and a parameter λ ∈ [0, 1], it is to
find a set of k matches S ⊆ Mu(Q,G, uo) such that

F (S) = argmax
S′⊆Mu(Q,G,uo)

F (S′),

i.e., for all k-element sets S′ ⊆ Mu(Q,G, uo), F (S) ≥ F (S′).
In contrast to topKP that is to maximize relevance only,
topKDP is to find a set of k matches from Mu(Q,G, uo) such
that the bi-criteria diversification function is maximized.

Example 6: Recall graph G and pattern Q from Fig. 1.
One can verify that (a) when λ = 0, i.e., when only relevance
is considered, a top-2 set is {PM2, PM3}; and (b) when λ = 1,
i.e., when the users only care about diversity, a top-2 set is
{PM1, PM3}. Moreover, (c) when 4

33
< λ < 0.5, {PM1,PM2}

makes a top-2 diversified match set, (d) when λ ≤ 4
33
, {PM2,

PM3} is the best choice; and (e) when λ ≥ 0.5, {PM1, PM3}
turns out to be the best diversified match set. ✷

3.4 Generalized Top-k Matching
We next generalize δr() and δd() to define generic rele-

vance and distance functions, based on which we character-
ize generalized (diversified) top-k matching problems.

Generalized ranking functions. For a match v of a pat-
tern node u, we use a generalized relevant set R∗(u, v) to
represent the set of descendants of v in G that are “rele-
vant” to u or its descendants (denoted as R(u)) in Q. We
denote by M(Q,G,R(u)) the matches of the nodes in R(u).

(1) We consider a class of generic relevance functions,
which are arbitrary monotonically increasing polynomial-
time computable (PTIME) functions defined in terms ofR(u)
and R∗(u, v). We refer to such functions as generalized rel-
evance functions δ∗r (u, v). Accordingly, the relevance func-
tion of a match set S, denoted by δ∗r (S), is a monotonically
increasing PTIME function of δ∗r (u, v), for each v ∈ S.

(2) A generalized distance function δ∗d(v1, v2) of two matches
v1 and v2 can be any PTIME computable function metric
defined with R∗(u, v1) and R∗(u, v2). Given a match set S,
the generalized diversification function F ∗(·) is defined as

F ∗(S) = (1− λ)δ∗r (S) +
2 · λ

k − 1

∑

vi∈S,vj∈S,i<j

δ∗d(vi, vj),

where λ ∈ [0, 1] is a parameter set by users.

One may verify that δr(), δd() and F () given earlier are
special cases of δ∗r (), δ∗d() and F ∗(), respectively. More-
over, δ∗r () and δ∗d() are able to express a variety of rank-
ing functions commonly used in e.g., social/information net-
works [22,24] and Web search [28], including the following:

Ranking functions Types Formulations

Preference attachment [24] relevance |R(u)| ∗ |R∗(u, v)|
Common neighbors [22] relevance |M(Q,G,R(u)) ∩ R∗(u, v)|

Jaccard Coefficient [28] relevance |M(Q,G,R(u))∩R∗(u,v)|
|M(Q,G,R(u))∪R∗(u,v)|

Neighborhood diversity [23] distance 1-
|R∗(u,v1)∩R∗(u,v2)|

|V |

Distance-based diversity [36] distance

1− 1
d(v1,v2)

(d(v1, v2) is the

distance between v1 and v2),
or 1 if d(v1, v2)=∞.

Generalized top-k matching. Given Q with output
node uo, graph G and an integer k, the generalized topKP

(resp. topKDP) problem is to find a subset S ⊆ Mu(Q,G, uo)
of k matches, which maximizes δ∗r (S) (resp. F

∗(S)).

Remarks. A function f(S) over a set S is called submodular
if for any subset S1 ⊆ S2 ⊂ S and x ∈ S \ S2, f(S1 ∪ {x}) -
f(S1) ≥ f(S2 ∪ {x}) - f(S2). Note that our diversification
functions are not necessarily submodular. For example, F (·)
(Section 3.3) is not submodular. Indeed, one may verify that
F (S1 ∪ {v}) - F (S1) ≤ F (S2 ∪ {v}) - F (S2), although F (·)
contains a submodular component δr(·).

To simplify the discussion, we present algorithms for
topKP (Section 3.1) and topKDP (Section 3.3). Nonetheless,
we show that the algorithms can be readily extended to sup-
port generalized top-k matching stated above.

4. FINDING TOP-K MATCHES
We next develop several algorithms for solving the top-k

matching problem (topKP) in quadratic time.
The first one, referred to as Match, follows a “find-all-

match” strategy. Given Q with output node uo, G and k,
(1) it first finds M(Q,G) with the algorithms in e.g., [11,18];
(2) it then simply computes the relevance for all the matches
of uo, and selects k most relevant matches. One may verify
that the algorithm is in O((|Q|+ |V |)(|V |+ |E|)) time.

This algorithm, however, always computes the entire
M(Q,G) and is costly for big G. We can rectify this by
using “early termination” algorithms. In contrast to Match,
these algorithms stop as soon as top-k matches are identi-
fied, without computing the entire M(Q,G).

Proposition 2: For given Q, G and an integer k, topKP

can be solved by early-termination algorithms. ✷

These algorithms leverage a sufficient condition for early
termination. For a query node u, we denote as can(u) the
set of all the candidates v of u, i.e., v has the same label as
u. We use l(u, v) and h(u, v) to denote a lower bound and
upper bound of δr(u, v), respectively, i.e., l(u, v) ≤ δr(u, v)
≤ h(u, v). Then one can easily verify the following.

Proposition 3: A k-element set S ⊆ can(uo) is a set of
top-k matches of uo if (1) each v in S is a match of uo, and
(2) minv∈S(l(uo, v)) ≥ maxv′∈can(uo)\S(h(uo, v

′)). ✷

That is, the smallest lower bound of the matches in S is no
less than the largest upper bound of those in can(uo)\S. We
use this condition to decide whether S is a top-k match set.
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Input: A DAG pattern Q = (Vp, Ep, fv , uo),
data graph G, and a positive integer k.

Output: A top-k match set of uo.

1. min-heap S := ∅; termination := false;
2. for each u ∈ Vp do

3. compute topological rank r(u); initialize can(u);
4. for each v ∈ can(u) do initialize v.T ;
5. while (termination = false) do

6. select a set of unvisited candidates Sc ⊆ can(u)
of query nodes u in Q, where r(u) = 0;

7. if Sc 6= ∅ then

8. 〈G, S〉 := AcyclicProp(Q,Sc, G, S);
9. check the termination condition and update termination;
10. else termination:= true;
11. return S;

Figure 2: Algorithm TopKDAG

We also use the notion of ranks. For a graph G, the
strongly connected component graph GSCC is a DAG obtained
by collapsing each strongly connected component SCC of
G into a single node. We use vSCC to denote the SCC node
containing v and ESCC as the set of edges between SCC nodes.
The topological rank r(v) of a node v in G is defined as (a)
r(v) = 0 if vSCC is a leaf in GSCC (i.e., with outdegree 0), and
otherwise, (b) r(v) = max{(1+ r(v′)) | (vSCC, v

′
SCC) ∈ ESCC}.

Based on these notations and Proposition 3, we provide
two algorithms for topKP as a constructive proof of Prop. 2,
when Q is a DAG pattern (Section 4.1) and a cyclic pattern
(Section 4.2), respectively. The detailed proofs are in [1].

4.1 Algorithm for Acyclic Patterns
We start with an algorithm for topKP when Q is a DAG

pattern, denoted as TopKDAG. To simplify the discussion,
we assume that the output node uo is a “root” of Q, i.e.,
it has no parent, and it can reach all the query nodes in Q.
We will discuss the case for “non-root” uo shortly.
We use the condition given in Proposition 3 to achieve

early termination. For each candidate v of a query node u
in Q, TopKDAG dynamically maintains a vector v.T , which
contains (1) a Boolean equation v.bf of the form Xv = f ,
where f is a Boolean formula that indicates whether v is a
match of u; (2) a subset v.R of its relevant set R(u,v) and (3)
integers v.l and v.h to estimate the lower and upper bound
of δr(u, v), respectively. Instead of computing M(Q,G),
TopKDAG computes a set of matches for some query nodes,
and iteratively updates the vectors of the other candidates
by “propagating” the partially evaluated results.

Algorithm. Algorithm TopKDAG is shown in Fig. 2. It has
two stages: initialization and propagation, given as follows.

(1) Initialization (lines 1-4). TopKDAG first initializes (a)
a min-heap S to maintain the matches of uo ranked by v.l,
and (b) a Boolean variable termination for the termination
condition (line 1). For each query node u in Q, it then com-
putes its topological rank r(u), initializes data structures for
all the candidates of u (lines 2-4).

The vector v.T is initialized as follows (line 4). For each
candidate v of u, (1) if r(u) = 0, then v is already a match,
thus TopKDAG sets v.bf as Xv = true, v.R = ∅, and v.l =
v.h = 0; (2) otherwise, v.R = ∅, v.l = 0, and v.bf is set
as Xv =

∧
(u,ui)∈Ep

(
∨

vi∈can(ui)
Xvi), for each child vi of v.

Intuitively, Xv is true iff for each child ui of u, v has a child
vi that matches ui. In addition, v.h = Cu(v) (Section 3).

(2) Propagation (lines 5-10). In the propagation, TopKDAG

(1) checks whether some candidates become matches of uo,
and (2) updates the lower and upper bounds of the can-
didates, until either the termination condition is satisfied,
or all the matches are identified. It iteratively propagates
the known matches and their relevance to evaluate Boolean
equations of candidates, and adjusts their lower and upper
bounds. Using a greedy heuristic, it selects a set Sc of can-
didates of query nodes ranked 0 (line 6), which is a minimal
set that includes all the children of those candidates of query
nodes with rank 1. Note that Sc is already a match set
since each node in Sc is a leaf. If Sc is not empty, i.e., there
exist unvisited matches (line 7), TopKDAG then propagates
v.T to all the ancestors v′ of v and updates v′.T and S,
by invoking procedure AcyclicProp (line 8). If the condition
specified in Prop. 3 holds, or if Sc is empty, termination is
set true (line 9-10). It returns S as the result (line 11).

Procedure AcyclicProp. Given a set Sc of matches,
AcyclicProp (not shown) updates G and S as follows. For
each match v of u in Sc, where Xv is true, and for each
pattern edge (u′, u), it identifies all the parents v′ of v that
are candidates of u′, and updates v′.T as follows: (1) v′.bf
is re-evaluated with Xv = true; (2) if Xv′ becomes true,
then for each child v′′ of v′ of which Xv′′ is true, v′.R :=
v′.R∪ v′′.R∪{v′′}; (3) if Xv′ is true, v′.l is set as |v′.R| after
v′.R is updated; intuitively, only when v is determined to
be a match, its lower bound can be “safely” estimated by
v′.R; (4) v′.h is set to be |v′.R| as soon as for all children
v′′ of v′, none of v′′.h is changed further; and (5) if v′.bf no
longer has Boolean variables that are not instantiated, v.l
= v.h, i.e., R(u,v) is determined now. If v′.T is updated, v′

is added in a queue for further propagation.
During the process, AcyclicProp inserts a new match v into

the min-heap S if it has less than k matches, or replaces a
match v′′ in S with v′, which is a new match of uo and is
not in S, if v′.l > v′′.h. It then returns updated S and G.

Example 7: Consider graph G given in Fig. 1 and a DAG

pattern Q1 with edge set {(PM,DB), (PM,PRG), (PRG,DB)},
where uo = PM. When Q1 is issued on G, TopKDAG identi-
fies the top-1 match for uo as follows.

(1) For initialization (lines 1-4), TopKDAG sets the vectors
v.T = 〈v.bf, v.R, v.l, v.h〉 for (parts of) candidates as follows.

v v.T = 〈v.bf, v.R, v.l, v.h〉

PM2 〈XPM2
= (XPRG3

∨ XPRG4
) ∧ XDB2

, ∅, 0, 3〉
PM3 〈XPM3

= XPRG3
∧ XDB2

, ∅, 0, 2〉
PRGj (j ∈ [3, 4]) 〈XPRGj

= XDB2
, ∅, 0, 1〉

DBk (k ∈ [1, 3]) 〈XDBk
= true, ∅, 0, 0〉

(2) In the propagation stage, AcyclicProp selects Sc as e.g.,
a candidate {DB2} for the query node DB ranked 0 in Q1.
It then starts the propagation, which update the vectors as:

v v.T = 〈v.bf, v.R, v.l, v.h〉

PM2 〈XPM2
= true, {PRG3,PRG4,DB2}, 3, 3〉

PM3 〈XPM3
= true, {PRG3,DB2}, 2, 2〉

PRGj (j ∈ [3, 4]) 〈XPRGj
= true, {DB2}, 1, 1〉

One can verify that PM2 is determined to be a match of
PM after a single iteration. Better still, the early termination
condition is satisfied: PM2.l is 3, which is already the largest
relevance value. Hence, TopKDAG returns PM2 directly. ✷

Correctness. Algorithm TopKDAG correctly computes S

as a top-k match set for uo based on δr(). (1) It always
terminates. In each while iteration (lines 5-10), a set of
unvisited candidates Sc is checked. TopKDAG terminates
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either when the termination condition is true, or when Sc

is empty, i.e., all matches have been found. (2) TopKDAG

returns S that consists of either top-k matches by Prop. 3,
or all matches of uo when uo has less than k matches.

Complexity. The initialization (lines 1-4) takes O(|Q||G|)
time, by using an index. For each node v in G, the index
records the numbers of its descendants with a same label,
and efficiently estimates v.h by aggregating the numbers. It
takes in total O(|V |(|V | + |E|)) time to propagate changes
and update vectors (lines 5-10). Min-heap S can be main-
tained in O(|V | log k) time in total (line 8). Checking early
termination can be done in O(1) time (line 9), by using a
max-heap to record the upper bounds of those candidates
of uo. Thus TopKDAG takes O(|Q||G| + |V |(|V | + |E|) +
|V | log k) time in the worst case, i.e., O(|Q||G| + |V |(|V | +
|E|)) as log k is often far smaller than |Q| (see [1] for details).

Early termination. Algorithm TopKDAG has the early
termination property. More specifically, it combines the
evaluation and ranking in a single process, and terminates as
soon as top-k matches are identified based on Proposition 3.
That is, it computes top-k matches for uo without comput-
ing and sorting the entire Mu(Q,G, uo). As will be verified
in Section 6, while TopKDAG has the same worst-case
complexity as Match, it substantially outperforms Match.
Algorithm TopKDAG can also be extended to support uo

that is not a root node. Besides the termination condition
(Prop. 3), it simply checks whether there exists a match for
all query nodes in Q. One can verify that the correctness
and complexity results hold for the extended TopKDAG, as
well as the early termination property (see [1] for details).

4.2 Algorithm for Cyclic Patterns
To cope with a cyclic pattern Q, we next provide an algo-

rithm for topKP, denoted as TopK, by extending TopKDAG.
Given Q, topKP first computes the strongly connected com-
ponent graph QSCC of Q (Section 4.1). Treating QSCC as a
DAG pattern, it then conducts initialization and bottom-up
propagation along the same lines as TopKDAG. It termi-
nates as soon as the condition of Proposition 3 is satisfied.
In contrast to TopKDAG, however, TopK has to deal with

nontrivial nodes in Q, i.e., those nodes u whose correspond-
ing SCC node uSCC contains more than one query node of
Q. TopK first verifies whether a candidate matches the
nontrivial node. It then employs a fixpoint strategy to prop-
agate relevance changes: when a candidate v is known to be
a match of u, relevance changes caused by v is propagated
to the matches of those query nodes in uSCC only, to adjust
their vectors. The propagation proceeds until a fixpoint is
reached, i.e., when no vector can be updated in the propa-
gation for all the candidates of the query nodes in this uSCC.

Algorithm. Similar to TopKDAG, TopK works in two steps,
i.e., initialization and propagation. In the initialization step,
(a) it defines the rank r(u) of a query node u of Q to be the
rank r(uSCC) of the node uSCC in QSCC, and (b) for each
candidate v ∈ can(u) with r(u) = 0, if uSCC contains a single
node u, it assigns a vector v.T = 〈Xv = true, ∅, 0, 0〉 to v;
otherwise, v.T is initialized in the same way as in TopKDAG.

In the propagation step, TopK selects a set Sc of candi-
dates, such that for each node v in Sc, there exist an SCC

node uSCC ranked 0 in QSCC and a query node u ∈ uSCC,
where u and v have the same label. For each candidate
v ∈ can(u) of a query node u ∈ uSCC, it first verifies whether

Procedure SccProcess

Input: pattern Q = (Vp, Ep, fv , uo), graph G = (V,E, L), node vc,
a nontrivial node uSCC ∈ QSCC, and a min-heap S.

Output: Updated 〈G, S〉.

1. stack VA := ∅; termination := false;
2. push vc onto VA;
3. while VA 6= ∅ and termination = false do

4. node v := VA.pop(); Xv := true;
5. for each (v′, v) ∈ E and (u′, u) ∈ Ep do

/*v ∈ can(u) for u ∈ uSCC, and v′ ∈ can(u′) */
6. update v′.T ;
7. if Xv′ is evaluated to true then

8. if v′ 6= vc then VA.push(v′);
9. else if v′ = vc then

10. update vi.T for each vi ∈ VA;
11. if u′ = uo then update S;
12. check the termination condition; update termination;
13. if termination = true then break ;
14. if v.bf 6= true then restore v′.bf for each visited node v′;
15. return 〈G, S〉;

Figure 3: Procedure SccProcess
v matches u via procedure SccProcess, when uSCC contains
more than one query node. After validity checking of v, if
v.bf is evaluated true, i.e., v has children as matches of each
child of u, TopK then propagates relevance as follows: (a) if
uSCC contains u only, the propagation process from v is the
same as in procedure AcyclicProp (Section 4.1); (b) other-
wise, it employs the similar strategy as procedure SccProcess
(which takes v as an “entry” node vc in its input) and prop-
agates relevance to matches of nodes in uSCC only.

Procedure SccProcess. The procedure is given in Fig. 3.
It takes among the input a candidate vc as an “entry”
node. It uses a stack VA to perform propagation, and
a Boolean variable termination to indicate termination
(line 1-2). Utilizing VA, it performs a reversed depth-first
traversal of G starting from v at the top of VA (lines 3-13).
For each v′ ∈ can(u′) encountered (line 5), where u′ is a
query node, SccProcess updates v′.T in the same way as
in TopKDAG (line 6). If v′.bf can be evaluated to be true

(line 7), (1) if v′ is not vc, v′ is pushed onto the stack
to continue the reversed depth-first traversal (line 8). (2)
otherwise (line 9), one can verify that all the nodes in stack
VA are valid matches, since they correspond to query nodes
in uSCC. Hence for each vi ∈ VA, it updates vi.T by letting
vi.R := vi.R ∪ VA and vi.l := |vi.R| (line 10). Furthermore,
if u′ is the output node, it updates S with new matches
(line 11), checks the termination condition (Proposition 3),
and terminates if the condition holds (lines 12-13).

If v.bf is still false after the while loop, v is not a match.
Thus for each node v′ visited in the loop, v′.bf is restored to
its original form saved earlier (line 14). SccProcess returns
the updated vectors and S for further propagation (line 15).

Example 8: Recall graph G and pattern Q from Fig. 1.
TopK finds top-2 matches for PM as follows. It first com-
putes QSCC of Q, which has a nontrivial node DBSCC con-
taining DB and PRG. It starts with e.g., a set of candidates
Sc={ST3, ST4}. When the propagation reaches candidates
of DBSCC, (parts of) their vectors are shown as below.

v v.T = 〈v.bf, v.R, v.l, v.h〉

DB2 〈XDB2
= XPRG2

∧ true, ∅, 0, 6〉
PRG2 〈XPRG2

= XDB3
∧ true, ∅, 0, 6〉

DB3 〈XDB3
= XPRG3

∧ true, ∅, 0, 6〉
PRG3 〈XPRG3

= XDB2
∧ true, ∅, 0, 6〉

PRG4 〈XPRG4
= XDB2

∧ (true ∨ XST2
), ∅, 0, 7〉
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TopK then invokes SccProcess to check the validity of
those candidates for the query nodes in DBSCC. As-
sume that SccProcess first pushes DB3 onto stack VA

(line 2). It then propagates XDB3 = true upwards, up-
dates PRG2.bf to XPRG2 = true and pushes PRG2 onto
VA. Similarly, DB2.bf and PRG3.bf are updated to XDB2 =
true and XPRG3 = true successively. When DB3 is en-
countered, SccProcess updates DB3.T to 〈Xdb3 = true,
{ST3, ST4,DB2,DB3,PRG2,PRG3}, 6, 6〉. It then updates vec-
tor for each node in VA (line 10). After this, the vectors of
the candidates for PMs are as follows (i ∈ [3, 4]):

v v.T = 〈v.bf, v.R, v.l, v.h〉

PM2 〈XPM2
= true, {ST3,ST4,DB2,DB3,PRG2,PRG3}, 6, 7〉

PMi 〈XPMi
= true, {ST3,ST4,DB2,DB3,PRG2,PRG3}, 6, 6〉

Observe that after a single propagation, the termination
condition in Proposition 3 is satisfied: PM2.l = PM3.l = 6,
which are no less than PM1.h, i.e., 4 and PM4.h. Thus TopK
returns PM2 and PM3 as top-2 matches. ✷

Correctness & Complexity. SccProcess always reaches
a fixpoint, at which it correctly finds matches of the query
nodes in SCC nodes. Indeed, (a) SccProcess stops when ei-
ther the termination condition is true (line 12), or Xv is
updated to true (and never changed back to false) for all the
(finitely many) candidates v of u in uSCC (lines 7, 14); and
(b) SccProcess changes Xv to true iff v is a match. The cor-
rectness of propagation and termination condition for TopK
can be verified along the same lines as for TopKDAG. For
the complexity, the initialization is in O(|Q||G|) time, and
propagation is in O(|V |(|V | + |E|)) time. Thus TopK is in
O(|Q||G| + |V |(|V | + |E|)) time. Moreover, along the same
lines as for TopKDAG, one can verify that TopK has the early
termination property, by Proposition 3.
From the analysis above Proposition 2 follows.

Generalized top-k matching. The result below shows
that our techniques can be readily applied to generalized
relevance functions given in Section 3 (see [1] for a proof).

Proposition 4: TopKDAG and TopK can be extended for
generalized topKP, with the early termination property. ✷

The techniques can be easily extended to patterns with
multiple output nodes that are not necessarily “roots” [1].

5. FINDING DIVERSIFIED MATCHES
In this section, we investigate the diversified top-k match-

ing problem (topKDP). In contrast to topKP that is based
on δr() alone, the topKDP problem is intractable. The main
result of this section is as follows.

Theorem 5: The topKDP problem is (1) NP-complete (de-
cision problem); (2) 2-approximable in O(|Q||G|+ |V |(|V |+
|E|)) time, and (3) has a heuristic in O(|Q||G|+ |V |(|V |+
|E|)) time, but with the early termination property. ✷

We prove Theorem 5(1) as follows. The decision problem
of topKDP is in NP, since one can guess a k-element set S
and then check whether S ⊆ Mu(Q,G, uo) and F (S) ≥ B in
PTIME. To show the lower bound, observe that by setting
λ = 1, topKDP includes the K-diverse set problem [35] as
its special case, which is known to be NP-hard [35]; hence
topKDP is NP-hard. Thus, topKDP is NP-complete.

Recent results for the max-sum diversification [4] suggests
that topKDP is, in general, nontrivial to approximate. Given

a set U with a distance function δo over the elements in U ,
the problem is to find a k-element subset S, which maxi-
mizes Fo(S) = f(S) + c

∑
u,v∈S(δo(u, v)), where f(S) is

a submodular function (see Section 3). Our diversification
function F (·) is in the form of Fo(S), if normalized by (1−λ).
It is shown in [4] that no polynomial time algorithm can ap-
proximate Fo(·) within

e
e−1

, assuming P 6= NP. In addition,
it is shown that the diversification problem for submodular
functions is approximable within (1− 1

e
) [17]. However, F (·)

is not submodular, as remarked earlier in Section 3.
Despite the hardness, we provide two algorithms for

topKP. (1) One is an approximation algorithm to compute
diversified matches with approximation ratio 2, hence prov-
ing Theorem 5(2) (Section 5.1). (2) The approximation al-
gorithm may be costly on large graphs, however. Thus we
give a heuristic algorithm for topKDP with the early termi-
nation property (Section 5.2), verifying Theorem 5(3).

5.1 Approximating Diversification
We show Theorem 5 (2) by presenting an approximation

algorithm, denoted by TopKDiv. In a nutshell, TopKDiv it-
eratively chooses a pair of matches that “maximally” intro-
duces diversity and relevance to the selected matches, follow-
ing a greedy strategy. This is done by (1) “rounding down”
the diversification function F (·) with a revised F ′(·), and
(2) finding a solution that maximizes F ′(·), which in turn
guarantees an approximation ratio for F (·). This technique
is commonly used for optimization problems [13,34].

Algorithm. Given Q, G and an integer k, algorithm
TopKDiv identifies a set S′ of k matches of uo, such that

F (S′) ≥ F (S∗)
2

, where S∗ is an optimal set of k matches that
maximizes F (·). That is, TopKDiv approximates topKDP

with approximation ratio 2.

TopKDiv first initializes a min-heap S for top-k matches,
and an integer counter i. It then computes M(Q,G), the
relevance δ′r(uo, v) and diversity δd(v, v

′) for all matches
v, v′ ∈ Mu(Q,G, uo). Next, it iteratively selects two
matches {v1, v2} that maximize F ′(v1, v2) =

1−λ
k−1

(δ′r(uo, v1)

+ δ′r(uo, v2)) +
2λ
k−1

δd(v1, v2); it then adds (resp. removes)

them to S (resp. from Mu(Q,G, uo)). This process repeats
k
2

times. If k is odd, |S| is k − 1; TopKDiv then greedily
selects a match v to maximize F (S∪{v}) Finally, it returns
S We present the details of TopKDiv in [1].

Example 9: Given graph G and pattern Q of Fig. 1, and
assuming λ = 0.5, TopKDiv finds top-2 diversified matches
for PM as follows. (1) It first computes Mu(Q,G, uo)
= {PMi | i ∈ [1, 4]}, and the relevance and diversity
of those PM nodes (lines 1-2). (2) It then greedily se-
lects a pair (v1, v2) of matches that maximizes F ′(v1, v2)
= 0.5(δ′r(uo, v1) + δ′r(uo, v2))+δd(v1, v2) (lines 3-9). Then
{PM1, PM3} is selected, since F ′(PM1,PM3) = 1.45 is maxi-
mum. Thus TopKDiv returns this pair. When λ = 0.5, this
pair is a top-2 match based on F (·) (see Example 6). ✷

Correctness & Complexity. TopKDiv returns S, which
consists of k matches for uo if uo has at least k matches, and
all matches of uo otherwise. We next show that TopKDiv

approximates topKDP with ratio 2. To see this, note that
an instance of TopKDiv can be transformed to an instance
of the Maximum Dispersion problem (MAXDISP) [16]. The
problem MAXDISP is to find a subgraph G′

c induced by a
k-node set Vc from a weighted complete graph Gc, with
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the maximum sum of node and edge weights. Given a
match set Mu(Q,G, uo), we construct a complete graph
Gc in which each node (simply denoted as v) represents a
match v ∈ Mu(Q,G, uo) with a weight δr(uo, v), and each
edge (v1, v2) carries a weight δd(v1, v2). Given a set of k
matches S ⊆ Mu(Q,G, uo) and the corresponding k node
set Vc in Gc, we define cost F

′(Vc) =
∑

vi,vj∈S,i<j F
′(vi, vj),

where F ′(vi, vj) is given in TopKDiv (line 4). One may ver-
ify that F ′(Vc) = (k − 1) · 1−λ

k−1

∑
vi∈S δ′r(uo, vi) + 2λ

k−1∑
v1,v2∈S δd(vi, vj) = F (S), where F (·) is the diversifica-

tion function (Section 3). Thus, S contains top-k matches if
and only if Vc maximizes F ′(Vc). Note that TopKDiv simu-
lates a greedy 2-approximation algorithm for MAXDISP [16].
Hence, it returns a set S of k matches such that F (S) ≥
1
2
· F (S∗), where S∗ refers to the optimal top-k matches,

i.e.,TopKDiv approximates topKDP with ratio 2.

For the complexity, it takes O((|Q|+ |V |)(|V |+ |E|)) time
to compute Mu(Q,G, uo), and the relevance and distance
values (line 1). It takes in total O( k

2
|V |2) time to update

S with the greedy strategy (lines 3-9). Thus, TopKDiv is
in O(|Q||G| + |V |(|V | + |E|)) time in the worst case, since
k is typically treated a small constant. Hence, despite the
necessary computation for diversifying the ranks, TopKDiv
does not incur substantially extra cost compared to the al-
gorithms for computing top-k matches based on δr() alone.
This analysis above completes the proof of Theorem 5(2).

5.2 Early Termination Heuristics
Algorithm TopKDiv requires all the matches in M(Q,G)

to be computed, which may not be efficient for large graphs.
To rectify this we present a heuristic algorithm for topKDP,
denoted as TopKDH, with the early termination property.

Algorithm. Similar to TopK (Section 4), TopKDH (not
shown) uses a min-heap S to maintain top-k matches; and
initializes the same vector for each candidate. It updates
the vectors via propagation to check the termination condi-
tion (Proposition 3). In contrast to TopK, TopKDH utilizes
a greedy strategy to choose matches for uo. In each prop-
agation, it collects a set S′ of matches of uo with updated
vectors. It then updates S as follows: (a) if |S|+ |S′| ≤ k, S
= S ∪ S′; (b) otherwise, TopKDH iteratively replaces v ∈ S

with v′ to maximize F ′′(S\{v}∪{v′}) - F ′′(S); here F ′′() re-
vises F (·) by replacing δr(uo, v) with v.l/Cuo , and δd(vi, vj)

with 1-
|vi.R∩vj .R|

|vi.R∪vj .R|
; it then removes v′ from S′. Intuitively,

TopKDH always selects matches that “maximally” diversifies
S. These steps repeat until S′ is ∅ or |S| =k.

Example 10: Consider graph G and pattern Q from Fig. 1.
Let λ = 0.1, TopKDH finds top-2 diversified matches for PM

as follows. It first selects Sc = {ST3, ST4}, and adjusts the
vectors of the candidates. After the propagation, it selects
{PM2, PM3} as top-2 matches, which maximizes F ′′() as
0.9 ∗ 13

11
+ 0.2 ∗ 1

7
= 1.1. Now the condition of Proposition 3

is satisfied. Hence, TopKDH returns {PM2, PM3}, which is
indeed a top-2 pair when λ = 0.1 (see Example 6). ✷

Correctness & Complexity. Algorithm TopKDH differs
from TopK only in that it does extra computation to select
the matches. One may verify its correctness along the same
lines as the argument for TopK given earlier. For the com-
plexity, the extra computation takes O(k|V |2) time in total.
Thus TopKDH is still in O(|Q||G|+ |V |(|V |+ |E|)) time.

TopKDH terminates early: it processes as many matches
as TopK does in propagation, and it stops as soon as the
termination condition of Proposition 3 is satisfied.

The analysis completes the proof of Theorem 5(3).

Generalized diversified top-k matching. Our diversi-
fied matching algorithms can be easily extended for general-
ized diversified function F ∗(·) (Section 3.4), preserving the
nice properties, e.g., early termination and approximation
ratio. We defer the detailed algorithms and proofs to [1].

Proposition 6: Algorithm TopKDH (resp. TopKDiv) can be
extended for generalized topKDP, with the early termination
property (resp. preserving approximation ratio 2). ✷

6. EXPERIMENTAL EVALUATION
We next experimentally verify the effectiveness and ef-

ficiency of our top-k graph pattern matching algorithms,
using real-life and synthetic data (see [1] for more results).

Experimental setting. We used the following datasets.

(1) Real-life graphs. We used three real-life graphs.

(a) Amazon (http://snap.stanford.edu/data/index.
html) is a product co-purchasing network with 548, 552
nodes and 1, 788, 725 edges. Each node has attributes such
as title, group and sales rank. An edge from product x to y
indicates that people who buy x also buy y.

(b) Citation (http://www.arnetminer.org/citation/)
contains 1, 397, 240 nodes and 3, 021, 489 edges, in which
nodes represent papers with attributes (e.g., title, authors,
year and publication venue), and edges denote citations.

(c) YouTube (http://netsg.cs.sfu.ca/youtubedata/) is a
network with 1, 609, 969 nodes and 4, 509, 826 edges. Each
node is a video with attributes (e.g., (A)ge, (C)ategory,
(V)iews, (R)ate). An edge (x, y) indicates that the pub-
lisher of video x recommends a related video y.

(2) Synthetic data. We designed a generator to produce

synthetic graphs G = (V,E, L), controlled by the number
of nodes |V | and edges |E|, where L are assigned from a
set of 15 labels. We generated synthetic graphs following
the linkage generation models [12]: an edge was attached
to the high degree nodes with higher probability (see [1] for
details). We use (|V |, |E|) to denote the size of G.

(3) Pattern generator. We also implemented a generator for

graph patterns Q = (Vp, Ep, fv, uo), controlled by four pa-
rameters: |Vp|, |Ep|, label fv from the same Σ, and the
output node uo. We denote as (|Vp|, |Ep|) the size |Q| of
Q. For synthetic graphs, we manually constructed a set of
9 patterns including 4 DAG patterns and 5 cyclic patterns.

For Amazon, we identified 10 cyclic patterns to search
products with conditions specified on attributes (e.g., title,
category) and their connections with other products. Ci-
tation is a DAG, and we designed 14 DAG patterns to find
papers and authors in computer science. For Youtube, we
found 10 cyclic patterns, where each node carried search
conditions for finding videos, e.g., category is “music”.

Two such patterns on Youtube are shown in Figures 4(a)
and 4(b). (a) The cyclic pattern Q1 in Fig. 4(a) is to find
top-2 videos in category “music” (marked with “∗” as the
output node) with rating R > 2 (out of 5), which are re-
lated to “entertainment” videos with R > 2 and have been
watched more than 5000 times (V > 5000). (b) Similarly,
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Figure 4: Case study

the DAG pattern Q2 in Fig. 4(b) is to identify top-2 “com-
edy” videos with recommendation requirements.

(4) Implementation. We implemented the following algo-

rithms, all in Java: (1) our top-k algorithms TopKDAG

for DAG patterns and TopK for cyclic patterns; (2) algo-
rithm TopKnopt (resp. TopKDAGnopt), a naive version of TopK
(resp. TopKDAG) that randomly selects Sc to start propaga-
tion, rather than choosing a minimal set Sc that covers those
candidates of query nodes of rank 1 (see Section 4); (3) algo-
rithm Match for top-k matching, to compare with TopKDAG

and TopK; (4) the approximation algorithm TopKDiv and
heuristic algorithm TopKDH (resp. TopKDAGDH) to find di-
versified top-k matches for general (resp. DAG) patterns.
All the experiments were repeated 5 times on a 64bit

Linux Amazon EC2 Instance with 3.75 GB of memory and
2 EC2 Compute Unit, and the average is reported here.

Experimental results. We next present our findings.

Exp-1: Effectiveness of top-k matching. We first
evaluated the effectiveness of our top-k matching algo-
rithms, i.e.,TopKDAG (resp. TopK) and its naive version
TopKDAGnopt (resp. TopKnopt), compared to Match. We mea-
sured their effectiveness by (1) counting the number of the
matches |M t

u(Q,G, uo)| of uo inspected by them, and (2)

computing a match ratio MR =
|Mt

u(Q,G,uo)|

|Mu(Q,G,uo)|
.

We compared MR of these algorithms over the three real
life datasets: (1) TopK, TopKnopt and Match on Youtube
by varying |Q| (Fig. 5(a)), (2) TopKDAG, TopKDAGnopt

and Match on Citation by varying |Q| (Fig. 5(b)), and
(3) TopK, TopKnopt and Match on Amazon by varying k
(Fig. 5(c)). The algorithms performed consistently on
different datasets, and hence we do not show all the results
here. Moreover, (a) Match always finds all the matches,
i.e., its MR = 1, and is thus not shown; and (b) Citation is
a DAG, and thus only TopKDAG, TopKDAGnopt and Match

were tested on Citation for DAG patterns.

Performance for cyclic patterns. Fixing k = 10, we varied
|Q| from (4, 8) to (8, 16) for Youtube. The results are re-
ported in Fig. 5(a). Observe the following: (1) TopK and
TopKnopt effectively reduce excessive matches. For instance,
when |Q| = (4, 8), while Match had to compute all the
matches (≥ 180), TopK only inspected 88, i.e., MR = 47%.
On average, MR for TopK is 45%, and is 54% for TopKnopt.
Indeed, TopK terminates early: it finds top-k matches with-
out computing all the matches. (2) TopK (on average) in-
spects 16% less matches than TopKnopt due to the greedy
selection heuristics: more relevant matches are likely to be
identified earlier in the propagation process (Section 4).

Performance for DAG patterns. Fixing k = 10, we varied
DAG pattern size |Q| from (4, 6) to (10, 15) on Citation.
As shown in Fig. 5(b), (1) TopKDAG inspects much less
matches than Match. For example, its MR is only 34%
when |Q| = (8, 12), and is 40% on average. (2) On average,
TopKDAG examined 18% less matches than TopKDAGnopt.
The reduction in MR is more evident for DAG patterns than
for cyclic patterns because DAG patterns are less restrictive
and hence, M(Q,G) tends to be larger.

Varying k. Fixing pattern size |Q| = (4, 8), we varied k
from 5 to 30 in 5 increments, and reported MR for TopK and
TopKnopt on Amazon. As shown in Fig. 5(c), the match ratio
MR of TopK (rsep. TopKnopt) increased from 42% (resp. 46%)
to 69% (resp. 77%) when k was increased from 5 to 30.
Indeed, when k becomes larger, more matches have to be
identified and examined, for both TopK and TopKnopt.

Case study. We manually inspected top-k matches returned
by our algorithms on the real-life data, and confirmed that
the matches were indeed sensible in terms of their rele-
vance. For instance, Figures 4(a) and 4(b) depict the top-2
matches (circle nodes) and graphs induced by their relevant
sets w.r.t. patterns Q1 and Q2 given earlier, respectively, on
Youtube. These were confirmed to be the top-2 matches.

Exp-2: Efficiency and scalability of top-k matching.

We next evaluated the efficiency of the algorithms. In the
same settings as in Exp-1, we report the performance of
(1) TopK, TopKnopt and Match on Youtube by varying |Q|
(Fig. 5(d)), (2) TopKDAG, TopKDAGnopt and Match on Ci-
tation by varying |Q| (Fig. 5(e)), and (3) TopK, TopKnopt

and Match on Amazon by varying k (Fig. 5(f)). We also
evaluated their scalability with synthetic data.

Efficiency for cyclic patterns. The results for cyclic patterns
on Youtube are shown in Fig. 5(d), which are consistent with
Fig. 5(a): (1) TopK and TopKnopt always outperform Match:
TopK (resp. TopKnopt) takes 52% (resp. 64%) of the time of
Match on average. (2) On average, TopK improves TopKnopt

by 18%. (3) While all the algorithms take more time for
larger patterns, Match is more sensitive to |Q| than TopK,
because Match spends 98% of its time on computing all the
matches and their relevance, which heavily depend on |Q|.

Efficiency for acyclic patterns. As shown in Fig. 5(e), the
results for DAG patterns on Citation are consistent with
Fig. 5(d). (1) TopKDAG (resp. TopKDAGnopt) outperforms
Match by 64% (resp. 56%) on average, and (2) TopKDAG im-
proves TopKDAGnopt by 16%. The improvement over Match

is more evident for DAG patterns than for cyclic patterns
(Fig. 5(d)) because (a) MR is smaller for DAG patterns, and
(b) TopKDAG does not need fixpoint computation.

Varying k. On Amazon, Figure 5(f) reports the efficiency
results in the same setting as in Fig. 5(c): (1) Match is
insensitive to k, as it computes the entire Mu(Q,G, uo). (2)
TopK and TopKnopt outperform Match, but are sensitive to
the change of k. Indeed, the benefit of early termination
degrades when k gets larger and more matches need to be
identified. Nonetheless, k is small in practice, and TopK is
less sensitive than TopKnopt, as its selection strategy allows
early discovery of top matches, reducing the impact of k.

In addition, we found that TopK and TopKDAG perform
better for patterns with (a) smaller “height” (i.e., the largest
rank of the pattern node), (b) output nodes with smaller
ranks, and (c) less candidates. We present the details in [1].
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Figure 5: Performance evaluation

Scalability. We also evaluated the scalability of these algo-
rithms using large synthetic datasets. Fixing |Q| = (4, 6)
for DAG patterns and k = 10, we varied |G| from (1M, 2M)
to (2.8M, 5.6M), and tested TopKDAG, TopKDAGnopt and
Match. As shown in Fig. 5(g), the results tell us the fol-
lowing: (a) TopKDAG and TopKDAGnopt scale well with |G|,
and better than Match; they account for only 38.1% and
43.2% of the running time of Match, respectively; and (b)
TopKDAG takes 87% of the running time of TopKDAGnopt.
These are consistent with the results on real-life graphs.
Fixing k=10, we used cyclic patterns with size |Q|= (4, 8),

and tested the scalability of TopK, TopKnopt and Match. As
shown in Fig. 5(h), the results are consistent with Fig. 5(g):
TopK (resp. TopKnopt) accounts for 49% (resp. 56%) of the
cost ofMatch for cyclic patterns. A closer examination of the
above results also tells us that our algorithms do much better
than their worst-case complexity, due to early termination.

Exp-3: Diversified top-k matching. Finally we evalu-
ated (1) the effectiveness of TopKDiv and TopKDH, (2) the
efficiency of TopKDiv, TopKDH and TopKDAGDH, as well as
(3) their scalability using large synthetic data.

Effectiveness. Observe that (a) the MR of TopKDiv is al-
ways 1, as it requires Mu(Q,G, uo) to be computed, and (2)
the MR of TopKDH (resp. TopKDAGDH) is the same as that
of TopK (resp. TopKDAG), since they only differ in match
selection strategy (see Section 5). Thus, the comparison of
MR’s for TopKDiv, TopKDH and TopKDAGDH is consistent
with the results in Figures 5(a) and 5(b). Instead, we are
interested in how well TopKDH and TopKDAGDH, as heuris-
tics, “approximate” the optimal diversified matches.
Fixing λ = 0.5 and k = 10, we tested F (S) and F (S′) on

Amazon by varying |Q|, where S (resp. S′) is the set of top-k
diversified matches found by TopKDiv (resp. TopKDH), and
F (·) is the diversification function given in Section 3. As

shown in Fig. 5(i), (1) F (S) ≥ F (S′), as expected since
TopKDiv has approximation ratio 2, while TopKDH is a
heuristic. (2) However, TopKDH is not bad: F (S′) is 77%
of F (S) in the worst case. Thus TopKDH, on average, “ap-
proximately” finds a set S′ with F (S′) ≥ 1

2.6
of the optimal

value, which is comparable to the performance of TopKDiv.

Case study. We also manually checked the top-2 diversified
matches found by TopKDH for Q1 and Q2 of Figures 4(a)
and 4(b), respectively. As also shown in Fig. 4, TopKDH

correctly replaced one of the top-2 relevant matches with
another (shadowed node) that made the match set diverse.

Efficiency. On Citation, we tested the efficiency of TopKDiv
and TopKDAGDH, by fixing k = 10 and varying |Q| from
(3, 2) to (7, 6). As shown in Fig. 5(j), (1) TopKDAGDH

takes only 42% of the time of TopKDiv on average, but (2)
TopKDiv is less sensitive to |Q| than TopKDAGDH, due to
the tradeoff between the extra time incurred by larger Q
for TopKDiv to compute M(Q,G) and the reduced time for
selecting diversified matches from smaller M(Q,G).

Fixing k = 10, we evaluated the efficiency of TopKDiv vs.
TopKDH on Youtube by using the same patterns as for TopK
in Exp-2 (Fig. 5(d)). Figure 5(k) shows the results, which
are consistent with Fig. 5(j) for DAG patterns on Citation.

We also found that both algorithms are not sensitive to
the change of λ. Specifically, TopKDiv takes slightly less time
when λ = 0, as it degrades to Match (see [1] for details).

Scalability. We also evaluated the scalability of TopKDiv and
TopKDH, in the same setting as in Fig. 5(h). As shown in
Fig. 5(l), (1) both algorithms scale well with |G|, and (2)
The running time of TopKDH is less sensitive than that of
TopKDiv. Indeed, TopKDiv spends more time on computing
M(Q,G) for larger G, and its running time grows faster
than that of TopKDH. TopKDH seldom demonstrates its
worst case complexity, due to early termination.
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Summary. (1) The revised graph pattern matching effec-
tively reduces excessive matches: TopKDAG (resp. TopK,
TopKDH) only examines 40% (resp. 45%) of matches in
M(Q,G) on average. (2) Our early-termination algorithms
outperform Match, which is based on traditional matching.
Indeed, TopKDAG (resp. TopK) takes on average 36% (resp.
52%) of the time of Match for DAG (resp. cyclic) patterns.
(3) Our algorithms effectively identify most relevant and di-
versified matches for output nodes, and scale well with k
and the sizes of Q and G. (5) Our optimization technique
improves the efficiency of the top-k matching algorithms by
16% (resp. 18%) for DAG (resp. cyclic) patterns.

7. CONCLUSION
We have introduced and studied the (diversified) top-k

graph pattern matching problems. We have revised graph
patterns by supporting a designated output node, and de-
fined functions to measure match relevance and diversity,
as well as a bi-criteria objective function based on both.
We have established the complexity for these problems. In
addition, we have provided algorithms for computing top-k
matches based on relevance alone, and for finding diversified
top-k matches, with properties such as constant approxima-
tion ratios and early termination. As verified analytically
and experimentally, our methods indeed remedy the limi-
tations of prior matching algorithms, by eliminating exces-
sive matches and improving efficiency on big real-life social
graphs. Better still, they can be employed to support a wide
range of ranking functions commonly used in practice.
The work is a first step toward effective top-k matching on

big social data. We are currently experimenting with var-
ious real-life graphs, ranking functions, and patterns (with
multiple output nodes [1]), to fine-tune our diversification
objective function. We are also exploring optimization tech-
niques to further reduce the number of matches examined by
our algorithms. The ultimate goal is to make graph pattern
matching feasible on big social data. To this end, we are de-
veloping distributed top-k matching algorithms on graphs
that are partitioned, distributed and possibly compressed.
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