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ABSTRACT
A growing number of resources are available for enriching docu-
ments with semantic annotations. While originally focused on a
few standard classes of annotations, the ecosystem of annotators
is now becoming increasingly diverse. Although annotators often
have very different vocabularies, with both high-level and specialist
concepts, they also have many semantic interconnections. We will
show that both the overlap and the diversity in annotator vocabular-
ies motivate the need for semantic annotation integration: middle-
ware that produces a unified annotation on top of diverse semantic
annotators. On the one hand, the diversity of vocabulary allows ap-
plications to benefit from the much richer vocabulary available in
an integrated vocabulary. On the other hand, we present evidence
that the most widely-used annotators on the web suffer from serious
accuracy deficiencies: the overlap in vocabularies from individual
annotators allows an integrated annotator to boost accuracy by ex-
ploiting inter-annotator agreement and disagreement.

The integration of semantic annotations leads to new challenges,
both compared to usual data integration scenarios and to standard
aggregation of machine learning tools. We overview an approach
to these challenges that performs ontology-aware aggregation. We
introduce an approach that requires no training data, making use of
ideas from database repair. We experimentally compare this with a
supervised approach, which adapts maximal entropy Markov mod-
els to the setting of ontology-based annotations. We further experi-
mentally compare both these approaches with respect to ontology-
unaware supervised approaches, and to individual annotators.

1. INTRODUCTION
A growing number of resources are available for enriching doc-

uments with semantic annotations – annotations that label docu-
ment snippets as referring to either certain entities (e.g. Barack
Obama, the King of Spain) or to elements of particular semantic
categories (e.g. actors, governmental organizations). While orig-
inally focused on a few high-level standard classes of annotations
(e.g., people, places, organisations), the annotator ecosystem is be-
coming increasingly diverse. There are high-level and specialist
concepts that are supported by multiple annotators and, although
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Figure 1: Entity Annotations

their vocabularies are often quite distinct, it is possible to recognise
many semantic interconnections among them. There are annotators
that deal with very common entity classes (e.g., Person), and those
that focus on very specialized entities (e.g., Protein) to support ap-
plications domains such as biomedicine [10]. Furthermore, instead
of being custom built “white-boxes” that can be directly tuned by
developers, annotation is often available as a “black-box” service
(e.g. OpenCalais, Zemanta), where the user does not have to imple-
ment his own annotator but, on the other hand, concept classes can
be added or refined by the service host outside the control of clients.

Consider the example displayed in Figure 1, which shows a frag-
ment of text from the Reuters corpus, mentioning a US naval base
in the Philippines and classified by several Web-based annotators.
The results include some high-level concepts (i.e., Location, Person),
as well as some more specific ones (i.e., Facility). Notice that the an-
notation of type City is only returned by Extractiv: indeed, several of
the annotators simply do not have this concept in their vocabulary.
Also note that annotators give differing classifications of the same
snippet – one annotator determining that “Subic Naval Base” is a
Location and others determining that it is a Facility. A second exam-
ple is shown in Figure 2. Here we see several flavors of differences
in annotator opinions. “Nottingham Forest” is labeled as a Natu-
ralFeature by OpenCalais, and as a GeographicFeature by AlchemyAPI
– clearly these outputs are compatible, since these two concepts
represent the same meaning. On the other hand, the annotations
Facility and Sports team are clearly both incompatible with the prior
classifications, as well as with each other.

We will show that both the overlap and the diversity in anno-
tator vocabularies motivate the need for semantic annotation in-
tegration: middleware that produces a unified annotation on top
of diverse semantic annotators. On the one hand, the diversity of
vocabulary allows applications to benefit from the much richer vo-
cabulary available in an integrated vocabulary. For example, recent
work on web-scale wrapper induction (see, e.g., [14, 34]) uses se-
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Figure 2: Conflicting and Re-enforcing Annotations

mantic annotations to lower the need for human supervision. On
the other hand, annotation integration can also have an impact in
terms of quality of the result. We will present experimental evi-
dence (see Section 2) indicating that the most widely-used individ-
ual annotators suffer from serious accuracy deficiencies. The over-
lap in vocabularies from individual annotators could be exploited
to allow an integrated annotator to boost accuracy by exploiting
inter-annotator agreement and disagreement.

Our approach to integration will be influenced by several distinc-
tive aspects of semantic annotation. First, semantic annotations do
not form a flat space of tags for document snippets, but rather as-
sociate snippets with a meaning, with the space of meanings being
highly structured – two annotations with different concepts may
thus still be compatible (e.g. if the concepts are in a subclass re-
lation). In many cases, Web-based annotators provide mappings
of instances and concepts to a publicly-available knowledge base
– for example DBpedia Spotlight links to the well-known DBpedia
ontology. Even in cases where such mappings are not provided,
ontological rules can often be conservatively inferred via common-
sense reasoning (e.g. a Facility is disjoint from an Attorney), and then
utilized as a precise means of capturing compatibility or incom-
patibility of the judgements given by different annotators. We will
look for integration methods that are ontology-aware – making as
much use as possible of semantic relationships that are available.
Another key factor is that many annotators are black-boxes, mak-
ing an approach based on hand-crafted “integration rules” problem-
atic: a particular Web-based annotator may exhibit a certain pattern
of errors at one point, and later change as the underlying rule en-
gine is adapted. We will thus look for aggregation methods that
are as domain-independent as possible, and do not rely on hand-
rolled heuristics, focusing completely on the case of “black-box”
annotator aggregation.

We begin by describing an approach for on-line aggregation in
the absence of training data. We present a weighted repair ag-
gregation algorithm that assigns a score to annotations based on
the explicit opinions of individual aggregators (an annotator tags
a snippet with a class) implicit support (an annotator tags with a
subclass), and implicit opposition (e.g. an annotator tags with a
disjoint class). This method takes into account that annotators have
distinct vocabularies, thus the lack of a certain annotation may not
indicate lack of support. The weighted repair approach looks for an
aggregation which is consistent w.r.t. the ontology. We show that
for basic ontological constraints arising in the setting of concept
reasoning, an optimal solution can be found efficiently.

An obvious comparison point would be a system that can bene-
fit from off-line training in case training data is available. In this
paper, we describe an approach that uses ideas from supervised
learning. It uses a maximal entropy model, adapted to the setting
of semantic annotation. Both our supervised and unsupervised ap-
proaches support overlapping or nested spans, an occurrence that is
not uncommon in Web-based annotators.

We experimentally compare these approaches both with respect
to each other and to a number of external baselines. Our results
show clear benefits for aggregation of annotation, while also giving
new insight into the behavior of Web-based semantic annotators.

Organization. Section 2 gives background on annotators in gen-
eral, then describes the annotators we use in our examples along
with their mapping to a common ontology. It then overviews the
accuracy of the annotators, making use of a scoring model that
is tied to the ontology. Section 3 describes our aggregation algo-
rithms. Section 4 discusses the implementation of the algorithms,
and gives an experimental evaluation. Section 5 overviews related
work, while Section 6 gives conclusions.

2. BENCHMARKING ANNOTATORS
Semantic annotators take as input text documents and produce

semantic annotations in a variety of forms. The most common
ones are concept labels, e.g., for named entity recognition, entity
referencing, e.g., for named-entity disambiguation, and relation (or
role) labels, e.g., for relation extraction. Of these, the first is by far
the most mature, and we focus on it in this work. Such an anno-
tation consists of a contiguous segment of a document – namely, a
span – along with a concept (or class, or entity type: we use these
interchangeably throughout the paper), such as Person, Organization,
or Artist. The example from Figure 1 shows five concept annota-
tions. Three of them (AN1:Facility, AN4:Facility, and AN3:Location)
share the same span, with one of these (AN3:Location) disagreeing
with the other two on the concept name. Two others (AN1:Person
and AN2:City) have different (but overlapping) spans.

The state-of-the-art named entity extractors include software
frameworks such as LINGPIPE [2] and GATE [23], and web ser-
vice APIs such as OPENCALAIS, ALCHEMY, EXTRACTIV, SPOT-
LIGHT and ZEMANTA. The service-based model has particular in-
terest from the perspective of applications which want to exploit a
wide vocabulary. Each annotator may focus on a particular subset
of the concepts. They can make use of their own gazetteers and
hand-tailored concept-specific heuristics, allowing these to remain
proprietary, at the same time freeing applications from having to
constantly upload or update whenever the annotator is tuned. On
the other hand, the service-based model poses specific challenges
to integrators, since the performance of the annotators, and even
the vocabulary, may be highly dynamic.

Thus in our work we will target web service-based annotators,
focusing on the task of named entity recognition, which is the
most widely-supported function. OPENCALAIS, EXTRACTIV and
SPOTLIGHT return entities, including their position and entity type,
while ALCHEMY and ZEMANTA simply return text anchors with
their types. More importantly, the taxonomies of named entity
types they exploit are quite distinct. OPENCALAIS deals with 39
types, no pair of which are in a subclass relationship. Most of these
are quite general concepts such as Person and Organization. SPOT-
LIGHT and ZEMANTA adopt existing ontology resources (DBpedia
and Freebase respectively) as the labeling vocabulary. ALCHEMY
and EXTRACTIV have taxonomies in which the deepest subclass
hierarchy is quite short (usually no more than 2), including both
abstract and specialised concepts.

Vocabulary Alignment. As shown in the examples above, the
annotators do not have a flat vocabulary – annotations that are syn-
tactically distinct may have the same meaning, like NaturalFeature
and GeographicFeature in Figure 2. Some annotators, such as OPEN-
CALAIS, have mostly high-level concepts in their vocabulary – e.g.
Organization; others such as EXTRACTIV, have many much finer
classifications – e.g. FinancialOrg, CommercialOrg. Clearly, these
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<Class rdf:about="global:GeographicFeature ">
<owl:equivalentClass rdf:resource="alchemyAPI:GeographicFeature"/>
<owl:equivalentClass rdf:resource="OpenCalais:NaturalFeature"/>
<rdfs:subClassOf rdf:resource="extractiv:LOCATION"/>
<owl:disjointWith rdf:resource="OpenCalais:Facility"/>
…

</Class>

Figure 3: Example Snippet of Merged Ontology

should not be considered as conflicting within aggregation. To cap-
ture the relationships in the vocabulary, we will make use of an
ontology Ω which states the relationships between types of enti-
ties. In this work, an ontology consists of a finite set of concepts
(classes, types), including the special type ⊥ (the empty concept)
and > (the universal concept), along with constraints restricting or
enforcing the co-occurrence of concepts. The most common con-
straints supported for concepts are:
• Subclass (subsumption) constraints CvD, stating that an en-

tity of type C is also an entity of type D.
• Disjointness constraints CuDv⊥, stating that C and D have

an empty intersection.
The above constraints are supported by the major languages for

describing Web semantics, such as the OWL2-QL fragment of
OWL. As mentioned above, SPOTLIGHT and ZEMANTA directly
use an external ontology. The other annotators do not come with
any mapping, and so the meaning of the concepts had to be re-
covered from the documentation. In some cases the concepts of
the other annotators could be mapped into Freebase or DBpedia
concepts, but in other cases new concepts needed to be added.
We believe that as these annotators mature, the use of standard-
ized vocabularies will increase, making the use of rules as “hard
facts”, as we do throughout this work, appropriate. An effort in
this direction is the Schema.org initiative. We are focusing in this
paper on reconciling annotator outputs using schema information,
not on the very different issue of mapping/aligning concepts and
schemas (in other terms, “integrating the ABox”, not “integrating
the TBox”). We have thus created a merged ontology manually,
aligning the relevant fragments of Freebase and DBpedia within
it, focusing on rules that are clear from the documentation and by
validating them against Schema.org knowledge base when applica-
ble. The two external ontologies focus on subsumption relations,
while disjointness relationships are crucial for gauging whether two
annotations are compatible. We thus manually added disjointness
relationships that were obvious from the documentation. Figure
3 gives a snippet of our merged ontology that maps the concepts
GeographicFeature from ALCHEMY and NaturalFeature from OPEN-
CALAIS as equivalent classes of a global concept GeographicFeature,
while the concept Location from EXTRACTIV is mapped as a super-
class, and the concept Facility from OPENCALAIS as disjoint class.
The merged ontology used in this paper is accessible from http:
//diadem.cs.ox.ac.uk/roseann/MergedOntology.owl and can
be queried through a SPARQL endpoint available at URL: http:
//163.1.88.38:8081/openrdf-sesame.

Dataset. In order to assess the performance of those individual
annotators, we conducted experiments over four benchmark cor-
pora: (i) the MUC7 dataset [3], which contains 300 newswire arti-
cles for evaluating Named Entity recognition, annotated with stan-
dard high-level concepts such as Person, Organization, Location and
Money; (ii) the Reuters corpus (RCV1) [5], a general information
retrieval corpus of English newswire documents, subdivided into
topics; (iii) the corpus used by the FOX [1] entity extractor and
consisting of 100 snippets of text from news headlines annotated
with three concept types, namely Person, Location, and Organisation;
(iv) the corpus used by the NETAGGER [31] entity extractor and
consisting of text sourced from 20 web pages mostly about aca-

demics and annotated with the same three concepts above plus a
MISC concept that we excluded from the evaluation due to the ambi-
guity in the annotated instances. E.g., the string Computer Science
is annotated as MISC, but other similar topics e.g., Biomolecular
Computation are not. This corpus also allowed us to see the per-
formance of our own annotators in a very different domain from
Reuters and MUC7. Note that for our supervised approach, MEMM
(described in Section 3) we performed training/testing on represen-
tative samples of the gold-standards provided by the two datasets.
Since the original Reuters corpus is very large (810,000 articles),
we looked at five of the most common Reuters topics – Entertain-
ment&Sports, Financial&Economics, Healthcare&Social, Prod-
ucts and Tourism&Travel – and randomly sampled 250 documents,
distributing evenly over the topics. For this sub-corpus of Reuters,
we manually tagged the texts by using the most specific concepts
from the global vocabulary of the aggregated ontology discussed
above. Details on the coverage of the testset are shown in Table 1.
Our gold standard annotation of the Reuters corpus is available on-
line from [6]. Note that for the other corpora, we directly use the
original gold standard provided by the benchmarks.

Table 1: Description of Testing Corpora
Test Corpus Docs Covered Types Entities (≈)

MUC7 300 7 18,700
Reuters 250 215 51,100

Fox 100 3 395
NETagger 20 3 624

Precision and Recall. We measure PRECISION and RECALL in
a way that is ontology-aware: for example, given an ontology Ω,
if an annotator declares a given span to be a Person while our gold
standard indicates that it is an Artist, then this annotator will be even-
tually penalized in recall for Artist (since it had a miss), but not in
precision for Person (since it can be inferred via Artist). There is no
standard way to do this. Euzenat [18] has defined semantic preci-
sion and recall measures in the context of ontology alignment – but
the goal there is to assign static measures to an alignment, which
approximate the precision and recall one would get from an “ideal”
extension of the concepts via sets of instances. In our case, we can
use concrete cardinality estimates since we are interested only in
the precision and recall for an algorithm on a particular dataset.

More precisely, we define the precision of an annotator AN for a
concept C as:

PRECISIONΩ(C) =
|InstAN(C+)∩ InstGS(C+)|

|InstAN(C+)|

where InstAN(C+) denotes all instances annotated as (a subclass
of) C by AN, and InstGS(C+) denotes all instances determined to
be (a subclass of) C in the gold standard. In computing the in-
tersection, we use a “relaxed” span matching, which requires only
that the spans overlap. Here and throughout the remainder of the
paper, when we say that the concept A is a subclass of a concept B
we mean that the rules of the ontology derive that B is a subclass,
possibly improper (that is, A may be equivalent to B). Similarly,
when we talk about superclasses of a concept A, we include those
derivable via transitivity, and include A as a superclass of itself.

We define the recall of an annotator AN for a concept C in an
analogous way, again using the “relaxed” notion of matching for
the intersection:

RECALLΩ(C) =
|InstAN(C+)∩ InstGS(C+)|

|InstGS(C+)|

Based on the extended definitions of precision and recall, the F-
SCORE for concept C is defined in the standard way:
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F-SCOREΩ(C) =
2×PRECISIONΩ(C)×RECALLΩ(C)

PRECISIONΩ(C)+RECALLΩ(C)

Evaluation Result of Individual Annotators. We tested indi-
vidual annotators over the test datasets using the entire merged on-
tology as a reference schema. We implemented ontology-aware
scorers in order to calculate the precision and recall defined above.
The full list of types with score for each individual annotator, as
well as the source code of the scores are available online from [6].

We present selected results in Table 2, where highlighted val-
ues represent the best performance. For each annotator AN, we
display results for all of the MUC7, FOX, and NETAGGER con-
cepts that are in the vocabulary of AN. For each corpus, we first
mapped the response of individual annotators into the ones with
the entity types in the corpus and then compared the matching. For
the Reuters dataset we give a selection of concepts in the following
manner: (i) filter down to concepts with instances occurring in all
of the testing folders and with at least 10 occurrences; (ii) organize
the concepts by their F-score for AN, restricting to a subset includ-
ing roughly half of the concepts from the top quartile, and half from
the lowest quartile (iii) within the subsets above, select subsets so
as to avoid having more than two subclasses of any given concept.
We thus selected concepts with sufficient support, diversity in per-
formance, and diversity within the ontology.

We see from the table that each annotator varied greatly in per-
formance, ranging from below 10% in F-score to above 90%. If
we focus on concepts that occur in the list for multiple annotators,
we also see tremendous variation in performance, with no single
annotator having a clear advantage. OpenCalais has a higher perfor-
mance on most of the concepts that are within its vocabulary, but
it has a deficit on a few shared concepts, and on many important
classes, such as Date, it can identify only small subclasses. The
performance differences within an annotator are quite dramatic,
and surprisingly many of the concepts which exhibit the worst per-
formance are not obviously the most semantically complex. For
example, Movie would seem like something straightforward to han-
dle by referencing an online database such as IMDB, but the recall
numbers for ALCHEMY, SPOTLIGHT, and ZEMANTA were 20%,
28%, and 17% respectively. Also, the performance of annotators
on very high-level concepts, such as those in MUC7, was generally
higher than the performance on more specific concepts. However
the example of ZEMANTA shows that this is not universally true.

Another interesting observation is that all annotators contribute
to recall, i.e., each annotator contributes some annotations that are
not produced by any of the others.

Conflicts of Individual Annotators. Given that annotators can
vary radically in accuracy and that we have to consider all of them,
a question is to what extent the semantics of the annotations can
be useful to determine errors in the annotations. We analyzed one
coarse measure of this, based on the amount of annotator conflicts.

We measure two kinds of annotation conflicts: a basic conflict
occurs when one annotator annotates the span with a concept C,
and another annotator which has (a superclass of) C in its vocabu-
lary fails to annotate the same span with it. Clearly, this represents
a situation where the annotators have “differing opinions”. For an-
notators with low recall, a basic conflict may be a weak indicator of
a problematic annotation. Thus we also track strong conflicts, de-
noting situations when two annotators annotate the same span with
disjoint concepts C and C′. Table 3 shows the number of basic and
strong conflicts in each datasets – both the number of annotated
spans in which a given type of conflict (basic and strong) occurred,

and the total number of conflicts of each type. An annotated span
is a span which contained at least one annotation.

Table 3: Conflicts Statistic of Individual Annotators

Test Corpus Annot.
Span

Basic
Confl.

Basic
Span

Strong
Confl.

Strong
Span

MUC7 30,689 36,756 26,174 3,501 2,483
Reuters 29,162 21,639 15,654 2,937 1,981

Fox 798 943 605 185 68
NETagger 1,493 1,486 1,195 179 83

We have also tracked conflicts in spans, e.g. annotators agree-
ing on a concept, but disagreeing on the span. Table 4 reports, for
each corpus, on the number and type of span conflicts, in partic-
ular: (i) the total number of annotations, (ii) the number of anno-
tations with same span, (iii) the number of annotations having one
span strictly contained into the other, (iv) the number of annotations
having overlapping spans, and (v) the total number of annotations
having conflicting spans (i.e., either contained or overlapping).

Table 4: Span conflicts.

Test Corpus Tot. Annot. Same Span Containment Overlap Conflicts
MUC7 96,111 205,289 43,262 958 44,220
Reuters 87,666 198,745 37,743 898 38,641

Fox 2,730 8,107 2,012 38 2,050
NETagger 5,430 7,029 4,719 263 4,982

Although one might expect that conflicts are rare, the results
show that they are extremely frequent. A chief source of conflict is
that annotators have very limited capability of using context to dis-
tinguish ambiguity in meaning. Bloomberg sometimes refers to a
company, and sometimes to a person; Jaguar can refer to an animal
or to a car; Chelsea can refer to a place, a person, or a sports team;
Notting Hill can refer to a place or a movie. Different annotators
tend to favor particular solutions to these ambiguities. Note that
the number of conflicts is restricted by the limited overlap in the
vocabularies and limited recall of the annotators. For example, it is
very rare for three annotators to be mutually strongly conflicting on
the same span, since it is unlikely that all three will simultaneously
annotate the span.

Overall, the results show both the need for annotator integration
and the possibility of using conflict and agreement signals in con-
structing superior aggregate annotations. The results are not meant
to indicate an intrinsic pattern of who is correct on which concepts.
Results can vary as different datasets are used; further, these an-
notators are frequently modified, with the modifications impacting
both their vocabularies and their scope. Thus our goal in the rest
of the paper will not be to tune an aggregation algorithm to this
particular dataset (e.g. by hard-coded rules capturing which anno-
tator is seen to be reliable), but to come up with a general domain-
independent methodology for aggregating annotator values, not re-
lying on hand-tuned rules or weights.

3. AGGREGATION ALGORITHMS
Unsupervised aggregation via weighted repair. We introduce

an aggregation approach that requires no supervision and no infor-
mation on the reliability of aggregators.

Aggregation of conflicting data in the presence of integrity con-
straints is a long-standing topic in AI, semantic web, and database
research. In the case where the input consists of a set of opinions
from multiple “experts”, there are a number of judgement aggrega-
tion methods that have been studied – for example, based on vari-
ations of voting [24]. These algorithms have been examined not
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Table 2: Performance of individual annotators.
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ALCHEMY
Prec. .50 .88 .80 .90 - - - .81 .63 .74 1 .89 .79 .75 .92 .80 .68 .42
Rec. - .49 .55 .69 - - - .75 .52 .45 .92 .89 .62 .55 .70 .47 - .20
F1 - .49 .65 .78 - - - .78 .57 .56 .96 .89 .70 .64 .64 .60 .02 .27

SPOTLIGHT
Prec. - .63 .70 .76 - - - .58 .30 .66 1 .75 .65 .71 .81 .58 - .12
Rec. - .40 .22 .46 - - - .14 .40 .14 .40 .44 .33 .31 .57 .38 - .29
F1 - .49 .34 .57 - - - .23 .34 .23 .57 .56 .43 .42 .67 .46 - .17

EXTRACTIV
Prec. .91 .89 .87 .80 .98 1 .95 .82 .46 .50 .80 .72 .69 .81 .75 .76 .85 .54
Rec. .59 .72 .71 .78 .68 .89 .11 .44 .48 .34 .73 .95 .65 .70 .76 .60 .84 .42
F1 .71 .80 .78 .79 .80 .94 .21 .57 .47 .41 .76 .82 .67 .75 .76 .67 .85 .47

OPENCALAIS
Prec. .60 .85 .97 .94 .93 - - .83 .64 .69 .80 .87 .69 .95 .92 .85 .68 .51
Rec. - .73 .88 .71 .92 - - .52 .33 .69 .87 .90 .67 .87 .76 .69 .01 .53
F1 .01 .79 .92 .81 .93 - - .64 .44 .69 .83 .89 .68 .91 .83 .76 .02 .52

ZEMANTA
Prec. - .70 .89 .72 - - - .92 .36 .52 .62 .76 .67 .64 .83 .70 - .45
Rec. - .28 .07 .17 - - - .10 .38 .07 .58 .75 .54 .16 .40 .23 - .17
F1 - .40 .13 .28 - - - .17 .37 .13 .60 .76 .60 .26 .54 .35 - .25

only from the point of view of guaranteeing consistency, but from
the perspective of social choice theory – e.g. can they be considered
to be fair to the parties involved ([22]). When, on the contrary, the
input is seen as a single inconsistent dataset, a common approach
in the database and semantic web community is based on repair:
finding a “minimal” (in some metric) set of update operations to
the initial data so that the updated data is consistent [33].

Our solution in the unsupervised setting will use ideas from both
voting and repair. Assume for the moment a single span ŝ that is
tagged by several annotators. In this case, concepts can be iden-
tified with atomic propositions, and the ontology relationships can
be considered as propositional constraints – e.g. if concepts C and
D are disjoint, our logical theory includes the constraint C→¬D.
Thus we can translate the ontology Ω to a propositional theory TΩ.
One component of our solution is a voting-based AtomicScore func-
tion AtomicScore(C), assigning an integer to each concept C. This
represents the degree of support for or opposition to C by annota-
tors. We will always consider an annotator to support a concept C
if it tags the span ŝ with a subclass of C – each such supporter will
add to AtomicScore(C). AtomicScore(C) will drop for each annota-
tor that tags ŝ with a class disjoint from C. We allow in addition
the possibility of “opposition by omission” – AtomicScore(C) drops
when an annotator fails to tag ŝ with a superclass of C that is in its
vocabulary. Such a penalty is justified under the assumption that
annotators have high recall. The general form of our scoring func-
tion allows the possibility of tuning the assumptions about both
precision and recall, as well as support for more general concept
constraints than simply subsumption and disjointness:

AtomicScore(C) = ΣA∈Anns( ΣDvC∈ΩSupportWeightA,D ·Support(A,D)

−ΣDuC=⊥∈ΩSupportWeightA,D ·Support(A,D)

−ΣCvD∈ΩOmitWeightA,D ·Omit(A,D) )

Above, Anns denotes the set of annotations, D v C ∈ Ω indicates
that from the rules of ontology Ω one can prove D is a subclass
of C, and DuC = ⊥ ∈ Ω indicates that Ω implies disjointness of
D and C. Support(A,D) is 1 if annotator A tags the span s with
D, and is 0 otherwise. Omit(A,D) is 1 iff A has D in its vocabu-
lary, but failed to tag span s with D. Lastly SupportWeightA,D and
OmitWeightA,D are non-negative [0,1]-valued weights that indicate
how much weight the tagging of A with D or the omission of D

by A should have. Note that a term in the sum above will only be
present if the corresponding type of axiom is asserted (or inferred)
in the ontology. The above sum considers two ways for an anno-
tator can “oppose” a concept C, by tagging with a concept disjoint
from C or by omitting to tag with (a superclass of) C in its vocabu-
lary. If our ontology language was rich enough to have (e.g.) rules
saying that C and D partition all entities, we would also have an
additional term representing “support by omission”: an annotator
omitting D is supporting C. Since we have no such rules in our
example ontology, we do not examine this setting.

We will discuss ways of setting the weights further below. A
straightforward approach is to assume annotators have low recall,
and thus annotator A failing to tag with a concept D gives no sig-
nal that the entity is not in class D – this corresponds to setting
each OmitWeightA,D to 0, eliminating two of the terms above. In
our experiments with wide-spectrum web-based annotators we find
that recall is indeed low, and hence we utilize this approach in our
implementation (see Section 4 for details). However, for domain-
specific annotators, other approaches, such as those described be-
low based on bootstrapping, may be appropriate.

Another assumption would be that the precision does not vary ei-
ther across annotators or across concepts – hence SupportWeightA,D
can be set uniformly to 1. We will refer to this as simple atomic
scoring, and under this policy AtomicScore(C) simplifies to:

ΣDvC∈Ω{A | A annotates with D} −
ΣDuC=⊥∈Ω{A | A annotates with D}

EXAMPLE 1. Assume the simple atomic scoring model, and
consider a span annotated by annotator A1 with City, annotator A2
with Country, and annotator A3 with NaturalFeature. Since these con-
cepts are disjoint in the ontology, under the simple scoring model
each of City, Country, and NaturalFeature will have AtomicScore −1,
since each is supported by one annotator and opposed by 2. The
least common ancestor of these three concepts, namely Location,
will have AtomicScore 3.

Given the atomic scores, a score combination function is respon-
sible for calculating a boolean combination of concepts that is con-
sistent with the ontology, based on the scores of constituent literals.
For the combination function we propose a declarative approach,
denoted as weighted repair (WR). We begin with the union of all
concepts returned by any annotator, which can be considered as a
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conjunction of concepts σInit. A repair operation Op is either a dele-
tion of a concept occurring as a conjunct within σInit or an insertion
of a concept that is absent from σInit. The application of Op to σInit

is a new formula. For a deletion of class C, it is formed by remov-
ing every conjunct corresponding to a subclass of C while adding
the negation of C, while for an insertion it is formed by conjoin-
ing with a proposition corresponding to C (the superclasses could
also be inserted, but this will have no impact on the calculation be-
low). A set of repairs is internally-consistent if no two operations
conflict: we do not delete a class C and also insert a subclass of
C. For an internally-consistent set of repairs S = {Op1 . . .Opn}, the
application on σInit, denoted S(σInit) is defined to be the result of
applying the Opi in any order – one can easily check that this gives
a unique result. A repair set is non-redundant if we do not delete
or insert two concepts in a subclass relation. We call an internally-
consistent, non-redundant repair set S such that S(σInit) is consistent
with TΩ a solution.

EXAMPLE 2. Let us return to Example 1. σInit is City∧Country∧
NaturalFeature. The repair set {Del(City),Del(Country)} is internally-
consistent and non-redundant, and its application to σInit gives
the formula NaturalFeature ∧ ¬Country ∧ ¬City. Since this is con-
sistent with the ontology, the repair set is a solution. The repair
set {Del(City),Del(Country),Del(NaturalFeature)} is another solution,
yielding the formula ¬NaturalFeature∧¬Country∧¬City.

Our goal is to find a solution S such that its aggregate score is
maximal among all solutions, where the aggregate score of S is:

ΣIns(C)∈SAtomicScore(C)−ΣDel(C)∈SAtomicScore(C)

That is, an operation that deletes a concept C incurs the penalty
AtomicScore(C), while an insertion of a concept C incurs the nega-
tive of AtomicScore(C) as a penalty.

There can be many repairs that achieve the maximal score, and
it is natural to impose other criteria to prune them: 1. Given two
solutions with the same score and different numbers of repairs, we
prefer the smaller one. 2. Given solution S1 = S′ ∪{Ins(C1)} S2 =
S′ ∪{Ins(C2)}, with C2 a subclass of C1, we prefer S2 – that is we
prefer those that insert deeper (that is, more specific) classes. Note
that, unlike in other database repair contexts, repair operations can
have positive score (net benefit), negative score (net penalty), or
zero score (cost neutral, but perhaps needed to gain consistency).

We can solve this optimization problem by a reduction to integer
linear programming (ILP). We have variables XDel,C for each con-
cept C that can be deleted, with a value of 1 denoting deletion and
0 denoting no deletion. Similarly we have variables XIns,C for each
concept that can be inserted. Each disjointness or subsumption re-
lation in the ontology corresponds to an integer constraint; e.g. for
concepts B,C ∈ Ω with B ∈ σInit and C 6∈ σInit, a disjointness con-
straint BuC =⊥ implies an integer inequality XIns,C ≥ ΣB′�BXDel,B′

– that is, if we insert C we must delete a subclass of B. The scoring
policy described above is easily translation to maximization of a
corresponding linear objective function.

EXAMPLE 3. Consider an annotated span with 5 differ-
ent concepts C = {Commercial Org,Financial Org,Educational Org,
Government Org,Organization Other}, where all the concepts are mu-
tually disjoint and in subclass relationship with the concept
Organization. Moreover Organization is the disjoint union of all
the concepts in C. The set of concepts involved is L = C ∪
{Organization}. For each concept l involved we have two variables,
XDel,l and XIns,l to determine whether a concept must be deleted or
inserted in the final solution. Since each concept in C is already
in the initial solution and cannot be inserted, we have XIns,l = 0

∀l ∈C. On the other hand, Organization can only be inserted, there-
fore XDel,organization = 0. Note that Organization is the only concept in
the example eligible to be inserted in the final solution. For each
pair of disjoint concepts in the initial solution we add an integer
constraint to ensure that at least one of them will be deleted, that is
XDel,l +XDel,h ≥ 1 ∀l,h ∈C | luhv⊥. Then we add a constraint to
ensure that Organization is the disjoint union of classes in C, that is
|C|−Σl∈CXDel,l = XIns,organization. Eventually we try to maximize

k ∗ (Σl∈LAtomicScore(l)∗XIns,l−Σl∈LAtomicScore(l)∗XDel,l)

−(Σl∈LXDel,l +XIns,l)

where k is the total number of concepts involved + 1.

This optimization problem requires (in particular) checking con-
sistency of various boolean combinations with respect to the propo-
sitional theory TΩ. For rich enough ontological rules (enough to
give an arbitrary propositional theory), is NP-hard, and the use of
a robust ILP solver is needed. In our implementation of the ILP-
based approach, we used IBM’s ILOG CPLEX as a solver, coupled
with OWLIM-Lite to query the ontology. For each span a collection
of a few hundred constraints is produced. We can prune these by
considering only super-classes of concepts that are returned by one
of the annotators on the span; given that the depth of the concept
hierarchy is in single digits, this results in a drastic reduction in the
number of variables. We also generate constraints corresponding to
disjointness axioms from the top of the ontology hierarchy down-
ward, allowing us to suppress redundant disjointness constraints,
further reducing the constraint set. Note that the ILP reduction also
gives an NP upper bound for the decision problem corresponding
to finding an optimal repair (checking the existence of a repair with
a given score).

However, in the special case of disjointness and subsumption
constraints only, we can find at least one optimal solution tractably,
without appeal to ILP:

THEOREM 1. Assuming only disjointness and subsumption
constraints, an annotation set corresponding to some optimal re-
pair set can be achieved by inserting every non-annotated con-
cept of positive AtomicScore, deleting every concept of negative
AtomicScore and deleting some concepts with score 0.

The proof relies on the following simple observation about the
AtomicScore function, which can be proven simply by unwinding
the definitions:

CLAIM 2. Given two disjoint concepts C1 and C2 at most one
can have a positive AtomicScore, and if one does, the other must
have negative AtomicScore.

The proof of Theorem 1 now follows easily: it suffices to con-
sider any repair set S0 that yields a boolean combination containing
all concepts with positive AtomicScore, and which deletes all con-
cepts with AtomicScore ≤ 0. Using the claim above we see that S0
leaves the database consistent. Now consider S an arbitrary non-
redundant repair set of maximal score, whose application yields a
consistent formula. First, suppose the application of S deletes a
concept C of positive AtomicScore. Thus S contains Del(C′) for C′ a
superclass of C. Consider the repair S′ formed by removing Del(C′)
from S. It is easy to see, using the definition of AtomicScore, that
AtomicScore(C′) must also be positive. If S′ were inconsistent, this
means that C′ was disjoint from some class D either inserted or left
intact by S′. But using the claim we see that any such D that was
inserted must have had negative AtomicScore, as would any D left
intact. Thus a modification to S by deleting or not inserting any
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such D, as appropriate, would result in a repair set that yields con-
sistency and has higher score. Now suppose that the application
of S fails to insert a C of positive AtomicScore. We can argue, as
above, that the application S∪{Ins(C)} gives a consistent formula.
Finally, we consider a concept C of negative AtomicScore. Clearly
adding Del(C) to S does not lose consistency, and S∪{Del(C)} will
have higher score than S; thus if S has optimal score its application
must already delete C.

Theorem 1 gives a simple algorithm for finding an annotation
that results from an optimal repair set: start with inserting every
non-annotated concept of positive AtomicScore, deleting all concepts
that are disjoint from such concepts, and deleting all concepts with
score ≤ 0. Applying this to the initial formula, one gets a for-
mula that is consistent, since it cannot contain disjoint concepts
with AtomicScore 0, and also cannot contain disjoint concepts where
one has positive AtomicScore. By the theorem above, this gives an
optimal result.

EXAMPLE 4. Returning to Example 1, an optimal score can be
obtained by a repair set that deletes all 3 base annotations and in-
serts Location. This matches the intuition that the preponderance
of the evidence points against each specific annotation, while sup-
porting their common superclass Location.

We return to the question of the settings for SupportWeightA,D
and OmitWeightA,D, beyond that given in the simple atomic scoring
model. We have also experimented with a bootstrapping approach
setting all the weights to be initially uniform at 1, and then iterating:

SupportWeightk+1
A,D = AV GSupport(A,D,s) NormAtomicScorek(D)

OmitWeightk+1
A,D = AV GOmit(A,D,s) (1−NormAtomicScorek(D))

where Support(A,D,s) indicates that s is a span which A tags with
D, Omit(A,D,s) indicates that A has D in its vocabulary but omitted
it on s, and NormAtomicScorek(D) is a version of the AtomicScore(D)
calculated based on SupportWeightk and OmitWeightk, but normalized
to be in [0,1] (e.g. by shifting the scores and dividing by their max-
imum). The intuition is that if A has high precision for D, spans
that it annotates with D should get high support in round k, and
hence NormAtomicScorek(D) should be be close to 1, making its
SupportWeight high in round k + 1. Similarly, if A has high recall
for D, spans for which it omits D should get low support in round
k, which will make OmitWeightk+1 high.

The set of documents over which the spans are calculated obvi-
ously will have a large impact on the results. We have tested the
bootstrapping approach using the entire test corpus from Section 2.
We have found that it works well for very general concepts, such
as Person, Place, and Organization, where examples are plentiful, but
hurts on a more specific (and less frequent) classes – increasing the
Micro-average F-score but decreasing the Macro-average F-score
(see Section 4 for the definitions of these).

Dealing with overlapping spans. The procedure described
above assumes that annotations are related only if they have the
same span, i.e., they insist on the same tokens of text. The repair
is therefore computed one span at a time. On the other hand, anno-
tations often have nested or overlapping spans, as in Figure 1. We
therefore consider a more careful definition of annotation span that
takes into account overlaps.

Overlaps: Let T be a document represented as a sequence of
tokens T = 〈t1, . . . , tn〉 and a an annotation of a sequence 〈ti, . . . , t j〉,
1 ≤ i < j ≤ n, of tokens of T provided by an annotator ANi using
a label lωi from its local vocabulary Lωi . We denote by type(a) the

label lΩ from the vocabulary LΩ of the global ontology to which
lωi is mapped.

We also denote by intv(a) the interval [i, j) of tokens covered by
a in D. Given two annotations a1, a2 we say that they are disjoint
iff intv(a1)∩ intv(a2) = /0, they overlap iff intv(a1)∩ intv(a2) 6= /0, in
particular they coincide iff intv(a1) = intv(a2). Moreover, we say
that a1 is contained in a2 iff intv(a1)⊆ intv(a2).

Orthogonal spans. A way of dealing with overlapping spans
is to consider distinct spans as mutually independent, i.e., anno-
tations conflict or support one another only if their spans coincide.
This obviously leads to a loss of precision in the aggregation, since
overlapping spans do often refer to the same entity.

Coalesced spans. A completely opposite strategy is to take the
connected component of spans under the overlap relation, consider-
ing each component as a span having all of the annotations associ-
ated with its component. We found that in practice these connected
components are quite small – at most four tokens. But consider-
ing a disjoint pair of annotations connected in this way as being in
conflict can lower the recall: e.g. in the case of nested annotations
such as “Sweden Central Bank” where the whole string is anno-
tated as Organization, e.g., by OpenCalais, and the string “Sweden”
is annotated as Country, e.g., by AlchemyAPI.

Hybrid spans. To circumvent the above problem, we introduce
a hybrid annotation span defined as follows. Given an ontology Ω,
we define two annotations a1, a2 (with a1 6= a2) as belonging to the
same annotation span if either:

1. a1 is contained into a2 (resp. a2 is contained into a1) and it
is not the case that Ω |= type(a1)u type(a2)v⊥.

2. a1 overlaps with a2 and neither a1 nor a2 is contained into
the other.

3. a1 coincides with a2.
Condition 1 relates overlapping annotations that are possibly re-

dundant. This is the case, e.g., when one annotation is contained in
another with types in superclass relationship. Condition 2 captures
the case of annotations with ambiguous spans, i.e., they overlap on
one or more tokens but neither contains the other. Note that we
purposely excluded those cases of (strictly) contained annotations
with logically conflicting types.

Consider again the annotations in the example of Figure 1.
According to the definition of hybrid spans, AN1:Facility and
AN4:Facility belong to the same annotation span, due to Condition 1.
The same applies to AN2:City and AN3:Location, since City v Loca-
tion. On the other hand, AN1:Person and AN3:Location do not belong
to the same annotation span, because Ω |= Person u City v ⊥. The
same applies to AN1:City and AN2:Facility. Therefore, for this exam-
ple, the repair procedure will operate on AN1:Facility, AN4:Facility,
AN3:Location, and AN2:City, leaving out AN1:Person. Notice that,
for the example of Figure 2, the repair procedure will operate on all
annotations due to Condition 3.

Our experiments have shown that the use of hybrid spans in-
creases the recall but lowers the precision w.r.t. coalesced spans.
However, the change in performance is below 1% and the over-
all F-score remains practically unchanged (±0.1%) on all datasets.
In the following we will stick to hybrid spans since containment
among annotations is very frequent in practice.

Comparison with supervised aggregation. In Section 4 we
benchmark our repair-based approach against several baselines, in-
cluding all freely-available annotation aggregators. But a second
natural comparison point is against what can be accomplished with
supervision. Currently we know of only two approaches (i.e., FOX
and NERD) to supervised aggregation of Web-based annotators. In
FOX a single web annotator is considered together with standalone
annotators and aggregated via neural networks, while in NERD the
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details of the machine learning technique used for aggregation is
not explicitly stated. We have thus implemented our own super-
vised approach to see to what extent one can leverage the existence
of training data to find patterns that indicate (in)correctness of an-
notations. Can supervision be used not just to look for patterns in
reliability of annotators (e.g. from tracking the recall or precision
of annotators on concepts), but to detect and exploit more complex
patterns in the behaviour of annotators?

We build on maximal entropy models, which have gained wide
popularity for a variety of individual extraction tasks in recent
years [8]. In our case, we wish to use a sequential model, which
will allow us to reconcile span boundaries jointly with concept
names, which also allows span boundary differences to serve as
clues. Also, this model is general enough to detect a wide class
of behavioural patterns within annotators. When non-sequential
approaches have been applied to aggregation of annotations (e.g.
the neural networks used in [1]) they have ignored span boundary
issues. We thus use a Maximal Entropy Markov Model (MEMM)
[29], which combines features of maximal entropy models with
the sequential approach of a Markov model. A MEMM has a set
of states, an input and output alphabet, and a probabilistic transi-
tion and emission functions that capture the system dynamics when
a new input item is consumed. The inputs consist of sets of features
token by token. As with other maximal entropy models, they allow
for feature functions that overlap, without requiring strong inde-
pendence assumptions.

Applied to this setting, we let AN = {AN1,AN2, · · ·} be the
collection of base annotators, Classes(Ω) be the concept classes in
ontology Ω, and D be a document represented as a sequence of
tokens D = 〈t1, . . . , tn〉. By adopting the standard begin/in/out (B-I-
O) encoding scheme, let L(Ω) = {B , I }×Con(Classes(Ω)), where
Con(Classes(Ω)) is the set of collections of concepts that are con-
sistent with ontology Ω. A symbol (B,S), where S is a consistent
collection of concepts, indicates a position that is the beginning of
a snippet for an entity that is a member of each element of S, while
(I,S) indicates that the position is inside of such a snippet. We let
States(Ω) be the power set of L(Ω). Elements of States(Ω) can be
mapped to a boolean combination in the obvious way: conjoining
all the concepts in the list and dropping the set of decorations. We
identify the empty subset as “Other” meaning that a token is out of
any of the classes in Ω.

The input alphabet for observations about tokens, denoted O,
consists of the evidence vectors, that correspond to a token t –
the labelings of the different base annotators. We denote an ev-
idence vector w.r.t. token t as ~Evt = {lt

AN|AN ∈ AN}, where
lt
AN ∈ States(Ω). Note that we do not assume that the individual

annotator opinions are consistent. In our prototype, the output al-
phabet was identical to the state space, and we denote both by S
below. We can easily extend to finer-grained state spaces (e.g. dis-
tinguishing between sections of an annotation).

As in any Markov model, the key problem is to define the transi-
tion probabilities: given two states l, l′ along with an input symbol
o, define the probability of transiting from l to l′ when traversing
o. In the maximal entropy approach, this conditional probability is
set to be the one which maximizes the entropy among those distri-
butions in which the expectation of a distinguished set of feature
functions agree with their expectation over a sample distribution.
Such a conditional probability must have the form:

Pl(l
′|o) = 1

Z(l,o)
exp(∑λ

l
i fi(l′,o))

Above F = { f1, f2, · · · , fm} is a finite set of feature functions, that
take as input the target states along with the input symbol. λ l =

{λ1,λ2, · · · ,λm} are the corresponding weight parameters learned
in a training phase of source state l, and Z(l,o) is a normalization
factor for the weights, which is calculated using the formula:

Z(l,o) = ∑
l′∈S

exp(∑λ
l
i fi(l′,o))

The weight parameters are set so as to make the expectation of
the feature functions match their empirical expectation. There are
standard methods to calculate the weights by training that achieve
this. In particular, we can use the generalized iterative scaling
(GIS) [29] algorithm that iteratively updates the parameters based
on expectations defined over their current values.

Thus the transition probability calculation is straightforward
once the feature functions are defined and the corresponding
weights are trained. Our most fundamental features are based on
annotator opinions. In order to deal with data sparsity issues,
we construct features based on decomposed evidence on token t,
which focuses on the individual opinions of the annotators ANi, as
πANi(

~Ev
t
) and the co-occurrence of pairwise opinions between dif-

ferent annotators ANi and AN j, as πANi,AN j (
~Ev

t
). Here πA is the

projection on a set of annotators A. So that we can capture very
fine-grained patterns, we allow these features to be specific to a
particular piece of evidence and target state. For example, the fol-
lowing feature function corresponds to the event where one anno-
tator annotates a token as the beginning of a Facility and the token
is actually the beginning of a Person:

f1(l′,o)=

 1, if lOpenCalais = B Facility, lAlchemyAPI = B Person
and l′= B Person ;

0, otherwise.

We train separate Maximum Entropy models via the GIS algo-
rithm for each source state l with its corresponding training set T l .
T l consists of token events, of which the previous token label is
l, as T l = {〈πANi(

~Ev
tk
),πANi,AN j (

~Ev
tk
), labeltk 〉|labeltk−1 = l and

ANi,AN j ∈AN and ANi 6= AN j}.
We then process the input evidence sequence by constructing a

Markov sequence, after which we decode using the standard Viterbi
algorithm, calculating the most likely annotation sequence accord-
ing to the model and returning the output annotations. More details
on the implementation of MEMM are deferred to [6].

Note that the Markov model resulting from this training pro-
cesses the document per-token, not per-span, and makes no as-
sumptions about the way annotator spans intersect. Thus nested
or overlapping spans of base annotators do not require any special
pre-processing. The model will enforce that an output annotation
is always well-formed (e.g. that is does not begin a new span be-
fore closing an old one), and thus that the token-string produced by
MEMM will correspond to an annotation of the document, which can
be returned as the final output.

We utilize the library OpenNLP-MAXENT-3.0.0 as the core solution
for the Maximum Entropy framework. This is a mature JAVA pack-
age for training and running maximum entropy models. The toolkit
OpenNLP Tools [4] is used to deal with common NLP tasks such
as tokenization and sentence segmentation.

As the performance of predicting the most likely annotation se-
quence is highly sensitive to the state space of the MEMM, we per-
form some post-processing on the Markov sequence resulting from
the product of the Maximum Entropy model with the input se-
quence, removing transitions that are (heuristically) unlikely to be
relevant. For example, if there is an outgoing transition from a state
having probability over a given threshold (currently set to 0.6), we
will remove all other outgoing transitions from the representation.
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We use a map to index only the transitions with nonzero probabil-
ity, taking advantage of the sparsity of the transition matrix. We
further exploit the fact that our Markov model does not consider
interactions across sentences; thus we can run Viterbi in parallel
over each sentence.

4. EXPERIMENTS
We carried out an extensive experimental evaluation of our ag-

gregation methods. A first set of experiments has been devoted to
demonstrate and quantify the benefit of aggregation over individual
annotators. A second set of experiments compares the various ag-
gregation techniques, including those provided by state-of-the art
aggregators such as FOX [1] and NERD [32].

Individual vs aggregated. We evaluated our aggregation meth-
ods using the same datasets and experimental setting which have
been described in Section 2. We compared the performance of both
WR and MEMM against individual annotators and against a naı̈ve
Baseline aggregation that simply collects all annotations from indi-
vidual annotators and, after mapping the returned concepts to the
global ontology, returns the union of all annotations regardless of
consistency. Table 5 reports the 10-fold cross-validation perfor-
mance of each aggregation approach against each of the individ-
ual annotators, where highlighted values represent the best perfor-
mance. Since the focus is on accuracy (and not, e.g., vocabulary
coverage), the comparison for each annotator is made only w.r.t.
the concepts that are in the annotator’s vocabulary – thus a differ-
ent set of key concepts for each annotator. We give averages of the
precision, recall, and F-score, measured in the ontology-aware way
given in Section 2. We provide: a macro-average that first averages
over each concept, and then over concepts, and a micro-average
that averages over each annotation (thus giving more weight to the
concepts that are more highly represented in the testset).

Our first observation is that all three aggregation methods con-
sistently outperform individual annotators in F-score except for
OPENCALAIS and ALCHEMY. OPENCALAIS and ALCHEMY have
a slightly higher F-score (i.e., 3% better on average) than any of
the aggregators on the NETagger and Reuters corpus respectively.
However, it is worth noting that their vocabularies represent only
18% of all concepts in the gold standard. On average, aggrega-
tion via WR results in a 15% increase in performance, while MEMM
produces an average of 22% increase with a peak of 66% improve-
ment over ZEMANTA. As expected, the Baseline aggregation deliv-
ers worse overall performance than our aggregation methods, with
a relatively high recall but a drastically lower precision, worse than
any of the individual annotators.

Supervised vs unsupervised. MEMM delivers the best perfor-
mance among the aggregators. We see from the figures that for
MUC7, with rich training examples over a small number of target
concepts, MEMM delivers high micro-average and macro-average
F-scores (mostly above 90%). There is a degradation in macro-
average scores in the case of concepts recognised by OPENCALAIS
and EXTRACTIV. The decrease is caused by some key concepts
which have limited training data support in our corpus. For ex-
ample, PhoneNumber has very few instances in the news-oriented
Reuters corpus (a total of 36 occurrences). Since the examples are
extremely sparse in a training set, MEMM has only 5% in F-score
over PhoneNumber, while the other annotators are able to achieve
around 80%. It is unsurprising that individual annotators can do
well on phone numbers, given that they can be mostly recognised
via regular expressions.

In general, MEMM learns which annotator to trust at a concept-
level through global training. Consider, e.g., the key concept Per-
son: the performance of individual annotators varies within a wide

range in terms of F-score – that is from 14% to 93% on MUC7
(see Table 2); 26% for ZEMANTA, 43% for SPOTLIGHT, 63% for
ALCHEMY, 75% for EXTRACTIV and 91% for OPENCALAIS on
Reuters. MEMM learns to trust the one with more reliable behaviour
over Person – namely, OPENCALAIS– and thus achieves a compar-
atively high accuracy (94% and 89% on two dataset respectively).
There are extreme cases where MEMM does better than all annota-
tors put together: for example, MEMM, on CommercialOrg improves
the accuracy by more than 20% against individual annotators and
more than 10% against the other two aggregators that are aware of
the concept. This is possible because the annotators often correctly
annotate Organisations, and the probability of an Organization being
a CommercialOrg is high; by detecting this pattern, MEMM can notice
many CommercialOrg instances. Obviously, this kind of pattern is
highly data-dependent, and in scaling the dataset out this particu-
lar inference may not longer hold (and hence would not be applied
by MEMM given sufficient training). But the result does show that
when patterns within the data or the annotators do exist, they can
be detected by our aggregator.

WR has precision competitive with MEMM. This is because it be-
lieves in a concept C only if the majority of the “judges” who know
about C labelled the span with C or one of its subclasses – indeed,
such a signal turns out to be strongly correlated with correctness.
When all the annotators are competent over a certain concept, the
recall is also comparable with individual annotators, and in some
cases is superior. For example, the majority of the annotators are
competent on concept Country, with F-score above 75%, with only
ZEMANTA being significantly lower. For this concept WR achieves
a precision of 90% while still having recall comparable with the
best annotator, OPENCALAIS. However a more common situation
is when the recall of individual annotator is really low. In this sce-
nario WR has much lower recall, since most of the instances are
considered to lack support. For the concept Person discussed above,
only OPENCALAIS and EXTRACTIV have good recall, which low-
ers the recall, and hence the F-score, of WR.

The key advantage of WR is its resilience to sparsity in the
dataset. We see from the example of PhoneNumber discussed above
that MEMM performs quite poorly when training data is sparse,
while WR has score comparable with individual annotators.

Comparative evaluation. We compared the performance of our
aggregation methods against the FOX [1] and NERD [32] NER ag-
gregators (discussed in Section 5) on all datasets.

Although our focus is on Web-based annotators, the comparative
evaluation required the use of non web annotators used by FOX,
namely the STANFORDNER and Illinois NETAGGER, as well as
other web-based annotators such as SAPLO, WIKIMETA, LUPE-
DIA, and YQL. Individual results about these annotators have not
been included in this paper due to space reasons but can be ex-
amined online at [6]. Figure 4 summarizes the results and clearly
shows that our aggregation techniques are at worst comparable with
FOX and NERD and in average outperform the competitor aggrega-
tors of more than 15% in F-score on the MUC7, NETagger, and
Reuters datasets. An interesting case is the NETagger corpus that
suffers from high data sparsity. In fact, not only does NERD show
a better behavior, but also MEMM is often outperformed by WR on
this dataset. On the other hand, the difference in performance is
less evident on the Fox corpus where FOX and MEMM behave very
similarly, but they are often outperformed by WR due again to data-
sparsity issues in the dataset.

The full suite of test results, together with all the text resources
and annotated gold standards is available online at [6].

Performance and Scalability. The last set of experiments stud-
ies the amount of resources required to compute a solution for the
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Table 5: Individual annotators vs aggregators.
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ALCHEMY .86 .45 .59 .76 .44 .55 .78 .60 .67 .73 .57 .64 .90 .81 .85 .89 .81 .85 .80 .59 .68 .62 .44 .51
Baseline .44 .84 .57 .55 .84 .66 .40 .79 .53 .41 .75 .53 .35 .90 .50 .36 .91 .51 .43 .89 .58 .43 .75 .54

WR .73 .84 .78 .77 .83 .80 .51 .78 .61 .53 .72 .60 .71 .88 .79 .72 .89 .79 .68 .82 .75 .61 .64 .63
MEMM .95 .88 .92 .95 .87 .91 .77 .55 .64 .74 .52 .60 .89 .88 .88 .89 .88 .88 .83 .79 .81 .70 .60 .64

SPOTLIGHT .69 .37 .49 .70 .36 .48 .30 .15 .19 .30 .17 .20 .77 .38 .50 .77 .38 .50 .66 .45 .53 .45 .32 .37
Baseline .40 .91 .56 .43 .91 .59 .40 .79 .53 .41 .75 .53 .35 .90 .50 .36 .91 .51 .36 .88 .52 .38 .66 .48

WR .70 .91 .79 .73 .91 .81 .51 .78 .61 .53 .72 .60 .71 .88 .79 .72 .89 .79 .64 .83 .72 .54 .56 .55
MEMM .96 .94 .95 .96 .94 .95 .77 .55 .64 .74 .52 .60 .89 .88 .88 .89 .88 .88 .84 .78 .81 .61 .52 .56

EXTRACTIV .87 .68 .76 .92 .64 .75 .56 .35 .40 .50 .35 .41 .73 .79 .76 .74 .78 .76 .71 .69 .70 .65 .62 .63
Baseline .45 .82 .58 .73 .75 .74 .40 .79 .53 .41 .75 .53 .35 .90 .50 .36 .92 .51 .52 .81 .63 .62 .72 .67

WR .73 .82 .77 .86 .75 .80 .51 .78 .61 .53 .72 .60 .71 .88 .79 .72 .89 .79 .72 .76 .74 .69 .65 .67
MEMM .95 .85 .90 .94 .76 .85 .77 .55 .64 .74 .52 .60 .89 .88 .88 .89 .88 .88 .83 .79 .81 .70 .63 .66

OPENCALAIS .91 .61 .73 .85 .65 .73 .73 .51 .60 .60 .45 .51 .80 .82 .81 .79 .82 .80 .80 .72 .76 .69 .59 .64
Baseline .45 .85 .58 .62 .85 .72 .40 .79 .53 .41 .75 .53 .35 .90 .50 .36 .91 .51 .49 .86 .62 .48 .77 .59

WR .73 .84 .78 .81 .85 .83 .51 .78 .61 .53 .72 .60 .71 .88 .79 72 .89 .80 .66 .79 .72 .60 .67 .63
MEMM .95 .88 .92 .95 .88 .92 .77 .55 .64 .74 .52 .60 .89 .88 .88 .89 .88 .88 .80 .72 .76 .69 .55 .61

ZEMANTA .72 .20 .31 .76 .18 .29 .47 .14 .20 .37 .15 .19 .71 .64 .67 .69 .63 .65 .69 .29 .41 .51 .21 .29
Baseline .41 .91 .56 .43 .91 .59 .40 .79 .53 .41 .75 .53 .35 .90 .50 .36 .91 .51 .42 .87 .56 .40 .60 .48

WR .70 .91 .79 .73 .91 .81 .51 .78 .61 .53 .72 .60 .71 .88 .78 .72 .89 .79 .67 .80 .73 .53 .53 .49
MEMM .96 .93 .95 .96 .94 .95 .77 .55 .64 .74 .51 .60 .89 .88 .88 .89 .88 .88 .83 .76 .79 .59 .49 .54
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Figure 4: Comparative Evaluation.
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Figure 5: Aggregation Performance.

integration. Figure 5 plots the (per-document) average computation
time for both WR and MEMM w.r.t. an increasing number of anno-
tators (2 to 11) and for different corpora. WR is substantially more
performant than MEMM. An optimal solution for a single document
can be produced on the order of 300 milliseconds in the worst-case.
In addition, WR’s performance is directly correlated with the num-
ber of annotated spans to be processed, and that is considerably
higher in the MUC7, NETagger and Reuters corpora than in the
Fox corpus. This is different from MEMM, where the time to com-
pute an optimal solution is affected by the number of concepts to
be taken into account and on which MEMM has been trained. On the
Reuters corpus, solutions can be computed on the order of 1-2 sec-
onds while on the other corpora, when fewer concepts are involved,
is much lower and MEMM’s performance is comparable with WR.

Training MEMM takes between 68 msec (2 annotators and 3 con-
cepts on the Fox corpus) and 2 mins (11 annotators and 215 con-
cepts on the Reuters corpus). Overall, the time required to produce
an optimal solution with both MEMM (resp. WR) is dominated by
at least one (resp. two) orders of magnitude by the time required
to send the various requests to the online annotation services and
collect the results. As an example, EXTRACTIV takes about 60 sec-
onds to annotate a medium-sized (i.e., 3-4 Kb) document. Also,
both MEMM and WR have negligible memory consumption when
compared with the size of the raw annotations.

Summary. The finding of our experimental evaluations can be
summarized as follows:

1. Aggregating opinions of individual annotators is always ben-
eficial in terms of recall. In terms of overall accuracy, aggre-
gation shows consistent benefit except few cases where the
majority of annotators contribute wrong annotations.

2. Although supervised aggregation delivers overall higher ac-
curacy, unsupervised aggregation is to be preferred when no
or sparse training data is available.

3. Both our aggregation techniques consistently outperform ex-
isting annotation aggregation approaches.

4. Aggregation does not impact the scalability of the perfor-
mance of annotation tasks, since it is always dominated by
the annotation time of the individual annotators.

5. RELATED WORK
Our work is rooted in information extraction, but uses techniques

from data integration, inconsistency-tolerant reasoning, and truth-
finding: we review a few of the most-related works below.

Named Entity Recognition. Research on Named Entity Recog-
nition (NER) systems can be currently grouped into three strands,
according to the sources of information that are leveraged in order
to produce textual annotations. Language-driven approaches (e.g.
KnowItAll [17]) represent the tradition in NER and exploit knowledge
about the natural language to derive linguistic patterns – typically in
the form of rules – that, once applied to the text, extract instances
of the entities of interest. Knowledge-driven systems (e.g. Learn-
ingPinocchio [13], PANKOW [12], KIM [27]) use unstructured, i.e.,
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gazetted, or structured, i.e., ontological, background knowledge to
locate the entities of interest in a text document.

Combining annotators. Many previous approaches addressing
the integration of multiple NER systems have been based on varia-
tions of voting mechanisms [28]. As also noticed in [35], the reli-
ability of voting-based aggregation is strictly connected to the type
and the number of the annotators. In particular, annotators have of-
ten a very limited coverage of concepts that are claimed to be recog-
nised and this affects the performance of voting mechanisms that do
not assume prior-knowledge about single annotators. An obvious
way of overcoming this problem is biasing the voting mechanism
by assigning different weights to the annotators that somehow re-
flect the confidence in its annotations. In [35] the weights are de-
termined using an exponential model borrowed from meta infor-
mation retrieval systems [7]. A major problem with this model is
that weights are determined on a per-annotator basis without con-
sidering that an annotator might have very different performance
on different concepts, as also proven by our experimental evalua-
tion. Our unsupervised approach makes use of the ontology in vot-
ing, thus distinguishing the annotator-concept pairs. Our bootstrap-
ping procedure described in Section 3 also works at a fine granu-
larity, producing weights for each annotator-concept pair, ensuring
that these peculiarities are considered in the computation. Biasing
is also often complemented with thresholding [26], that considers
only annotations with a minimum of support. As shown by our ex-
perimental evaluation, there are entities that can be correctly typed
by a single annotator and thresholding can lead to a noticeable drop
in recall. An example of this is the concept CommercialOrg that can
only be recognised by Extractiv. Our repair-based approach, in con-
trast, does not need to consider any arbitrary threshold.

A different way of combining annotators is to use machine learn-
ing techniques to determine the optimal combination of annotators.
The most popular techniques are neural networks [1], support vec-
tor machines [16], classifier stacking [38, 39, 20], and conditional
random fields (CRFs) [35]. The underlying idea of all these ap-
proaches is to combine classifiers in a meaningful way to obtain
a composite model. Being generic, these techniques often fail to
take into account specific information about the semantics of the
text. None of the approaches above uses ontological knowledge
to determine logical conflicts caused by the aggregation. A recent
approach, part of the NERD project, proved that background knowl-
edge [32] – that already proved beneficial for generating the anno-
tations – can also help in the integration of multiple extractors by
locating conflicting and logically incoherent annotations. However,
the NERD ontology does not contain disjointness constraints and
therefore these conflicts cannot be automatically detected. More-
over, we are aware that NERD uses machine learning techniques
for annotation integration as reported in [37], but we do not know
which technique is applied when invoking the NERD web service.
Our approach explicitly uses ontological knowledge to locate and
discard logically inconsistent opinions from the individual annota-
tors. To the best of our knowledge, our approach is also the first
one considering MEMM for semantic annotator aggregation. In fu-
ture work we are considering how other machine learning meth-
ods, such as CRFs, can be adapted to take into account ontological
rules. There is a wide range of variants for both CRFs and Max-
imal Entropy Markov models (e.g. in the objective function used
in training [25]), and so the trade-off between them, even in the
absence of semantic considerations, is quite complex. In Section
4, we compared our approach experimentally to the main learning-
based approach which was freely available, FOX [1]. We could not
find an implementation of [20], which won a CoNLL competition,
but we note that it performed experiments on a Reuters corpus sim-

ilar to the one we tested on, reporting F-scores that are very similar
to the macro- and micro- F-scores for both of our approaches.

In either the unsupervised or supervised setting, it is possible to
adopt more sophisticated techniques when deep knowledge about
the annotators is available. On the learning side, Michelakis et.
al. [30] look at the combination of the annotation rules adopted
by each annotator. As in MEMM, it makes use of a maximal en-
tropy classifier, but with “evidence vectors” being the output of
rule-based annotators. Unlike either of our approaches, semantic
relationships within the vocabulary of annotations are not consid-
ered. Our unsupervised method is close in spirit to classic judge-
ment aggregation techniques [24], where the final solution captures
judgements that are at a minimum aggregate-distance from those of
individual experts. However, the traditional judgement aggregation
setting assumes a “white-box” model where the methods used by
individual experts are transparent to the aggregator.

Relation to other areas. In a different context – that of web-
pages asserting facts about entities – work has been done on trying
to judge the trust and dependence of sources [15, 21] and produce
a truth-finding model. For example, iterative algorithms within the
PageRank/Hits family are applied in Galland et. al. [21] to de-
termine trustworthiness. Here trust/reliability/dependence is natu-
rally attributed globally to a web source, since the assertions being
judged are not assumed to belong to a hierarchy of types. We see
all these techniques as complementary to our aggregation methods
since they exploit redundancy across different web sources to de-
termine true assertions. It is possible, in principle, to apply these
techniques on top of our aggregation algorithm to further validate
the annotations across documents deemed to refer to the same facts,
e.g., news from different websites describing the same event.

Another interesting setting is the one of SOFIE [36] where
common-knowledge rules are applied on top of automatically-
generated ontological assertions to determine, discard or repair log-
ically inconsistent facts in the ontology. Again, these techniques
are complementary to aggregation when additional knowledge is
available from the annotation sources. In particular, common-
knowledge rules can be used to improve the recognition of nested
annotations, like those in Figure 1, by restricting the valid combi-
nations of concepts that can appear in a containment relationship,
e.g., the name of a university usually contains also the name of the
city in which it is located, while illness names can embed the name
of the scientist discovering them.

Our repair-based aggregation is close in spirit to consistent rea-
soning for inconsistent ontologies [33]. However, such techniques
cannot be straightforwardly applied to our setting where inconsis-
tent assertions can be stated multiple times and the logical consis-
tency also relates to the way annotations are contained into each
other. We consider scoring of repairs due to the support of the facts
they remove. Scoring of repairs also arises for numerical integrity
constraints [9, 19]. Unlike in our case repairs can only have non-
negative scores, and this impacts the technical development of the
solution dramatically.

6. CONCLUSIONS & FUTURE WORK
We have presented a set of approaches for knowledge-aware in-

tegration of entity extractors that consider each entity extractor as
a black box and do not assume any prior knowledge about their
performance or competence w.r.t. a certain set of entities.

These approaches have been proposed as alternatives, depend-
ing on the application scenario. But of course it will often occur
that one approach or the other is more appropriate on a per-concept
basis. Thus we are currently investigating how to combine these
methods. We currently produce an aggregate annotation without
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distinguishing whether an annotation has strong or weak support
for correctness, but each of our aggregators can be adapted to give
a measure of confidence. For example, for MEMM we can return
the probability of the given annotation at each span. This is con-
ceptually straightforward, since it is a particular kind of query on
the probabilistic annotation generated by the Markov sequence. We
are currently investigating a general approach to efficiently query-
ing Markov sequences, tuned to the case of annotations. We are
also preparing a study of the adaptation of other supervised learn-
ing methods, such as conditional random fields, for the annota-
tion reconciliation setting, along with a comparison of the resulting
adapted method to MEMM.

Another interesting direction is to progressively reduce the de-
pendency on the annotator’s documentation when creating the map-
ping between the recognized concept classes and the merged ontol-
ogy. This can be addressed either by schema/ontology matching
techniques or by ontology learning approaches. For now, the refer-
ence implementation of WR and MEMM called ROSeAnn [11] simply
reports newly discovered classes, leaving to the programmer the
task of updating the mapping to the merged ontology.

We have focused on concept annotation here, since it is the most
widely-supported function. Our methods can be extended to do
entity reconciliation jointly with reconciliation of entity instance
disambiguation – e.g. by considering instances as bottom-level el-
ements of an ontology. Again, ROSeAnn simply reports the disam-
biguation information provided by the annotators. A more difficult
task is relation extraction, which is also emerging in service-based
annotators: it currently has some support from OpenCalais and Ex-
tractiv. This is important from the point of view of information ex-
traction, since it identifies part-whole relationships that are needed
to piece together a tuple or object. Our focus on concept annotation
allowed us to use a very simple kind of reasoning – based on sub-
sumption and disjointness. More costly reasoning would be needed
for relations, since the ontology may have richer constraints (e.g.
foreign keys, uniqueness constraints) available at the relationship
level.
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