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ABSTRACT
A wealth of information produced by individuals and organi-
zations is expressed in natural language text. This is a prob-
lem since text lacks the explicit structure that is necessary to
support rich querying and analysis. Information extraction
systems are sophisticated software tools to discover struc-
tured information in natural language text. Unfortunately,
information extraction is a challenging and time-consuming
task. In this paper, we address the limitations of state-of-
the-art systems for the optimization of information extrac-
tion programs, with the objective of producing efficient ex-
traction executions. Our solution relies on exploiting a wide
range of optimization opportunities. For efficiency, we con-
sider a wide spectrum of execution plans, including approx-
imate plans whose results differ in their precision and recall.
Our optimizer accounts for these characteristics of the com-
peting execution plans, and uses accurate predictors of their
extraction time, recall, and precision. We demonstrate the
efficiency and effectiveness of our optimizer through a large-
scale experimental evaluation over real-world datasets and
multiple extraction tasks and approaches.

1. INTRODUCTION
Information extraction (IE) systems are sophisticated soft-

ware tools to discover structured information in natural lan-
guage text. For example, we may train an IE system to
extract instances of an Occurs-In(NaturalDisaster, Tempo-
ralExpression) relation. Such a system can extract a tu-
ple <eruption of Gŕımsvötn, 22-25 May 2011> from the
text excerpt “The eruption of Gŕımsvötn during 22-25 May
2011 brought back the memories of the eruptions of Ey-
jafjallajökull in 2010.” By discovering and extracting such
structured information from text, IE systems enable much
richer querying and analysis of the structured information
than would be possible over the natural language text where
the information is expressed. For this reason, IE systems
have attracted substantial academic and commercial inter-
est over the last decade. Despite this surge in interest, IE
remains a challenging, time-consuming task. In this paper,
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Figure 1: Extracting natural disasters from text.

we focus on the optimization of the IE process, with the goal
of producing efficient IE executions.

IE programs aim at extracting structured information from
natural language text. IE programs are generally composed
of smaller IE tasks such as document retrieval, segmenta-
tion, entity extraction, normalization, co-reference resolu-
tion, and relationship extraction [14]. Figure 1 shows an IE
program to extract Occurs-In tuples. It involves IE tasks for
extracting entities (namely, natural disasters and temporal
expressions), filtering temporal expressions not referring to
2011, and finally establishing Occurs-In relationships. Each
IE task is associated with one IE technique that implements
it. These techniques can be based on rules (e.g., dictionaries
[2], patterns [23, 5]) or statistics (e.g., Conditional Random
Fields (CRF) [15], Support Vector Machines (SVM) [6]).

A naive strategy to execute an IE program is to process
all the available documents with some implementation of
the IE tasks involved. This is usually a prohibitively time-
consuming strategy because: (i) some IE techniques need to
extract a large number of textual features (e.g., a CRF de-
pends on features such as words and their lemmas); (ii) IE
techniques may rely on complex text analysis methods (e.g.,
POS tagging, parsing) that are usually time-consuming [8];
and (iii) document collections often consist of a large number
of documents, the vast majority of which are, generally, not
relevant to a specific IE program. For example, a naive ex-
ecution of the IE program at Figure 1 may take one minute
or more to process just 100 news articles, so real-world col-
lections with millions of documents would be unmanageable
for such execution strategy. Furthermore, such inefficient
strategy would be particularly problematic for important
scenarios in which offline, once-and-for-all extraction is not
feasible, including: (i) when a document collection (e.g., the

1462



Web at large) is dynamic; (ii) when the extraction program
itself is subject to tuning and adjustment, as is typically
the case in operational settings; or (iii) when the extraction
tasks are defined dynamically, as their need arises.

The optimization of IE programs is critical to make IE
possible over real-world document collections. This chal-
lenging task has attracted substantial attention over the
last few years. Notably, CIMPLE [19], SystemT [12], and
SQoUT [8, 9, 10] introduce complementary approaches to
optimize parts of the IE process. Specifically, CIMPLE [19]
determines a fast execution order for the IE tasks of an IE
program. By choosing a particular execution order, CIM-
PLE avoids the application of expensive IE techniques to
parts of documents not containing relevant information. In
turn, SystemT [12] determines the best algorithm to imple-
ment the IE technique associated with each IE task. Sys-
temT can also choose the execution order of some IE tasks
but the range of choices is not as wide as in CIMPLE. De-
spite these differences, CIMPLE and SystemT share two
important limitations of their optimization approaches: (i)
all the alternative execution plans for an IE program pro-
duce the same results; and (ii) all the input documents are
used in the IE process. In contrast, SQoUT [8, 9, 10] relaxes
these two constraints and focuses on determining which doc-
uments should be used during the extraction process [8].
Moreover, when several black-box IE systems are available,
SQoUT can choose between them [9] and set parameters, if
supported by the IE systems, to affect their efficiency and
extraction results [10]. Hence, the execution alternatives
that SQoUT considers might produce different extraction
results. In fact, SQoUT considers plans with varying recall
(i.e., the fraction of relevant information extracted) and pre-
cision (i.e., the fraction of the extracted information that is
relevant). Then, SQoUT chooses the fastest execution al-
ternative that produces results above given threshold values
for recall and precision.

Despite the existing work, IE remains a time-consuming
process. As discussed above, CIMPLE and SystemT rely on
conservative optimization techniques that demand that all
their alternative execution plans produce the same extrac-
tion results. Hence, these systems miss optimization oppor-
tunities from allowing for approximate extraction results,
hopefully with only a modest loss in recall and precision.
SQoUT considers execution plans that produce different ex-
traction results. However, it cannot directly perform modi-
fications to the extraction process, namely, the order of exe-
cution of IE tasks and the algorithms used to perform them.
Therefore, even though the optimization techniques used by
CIMPLE, SystemT, and SQoUT are complementary, they
cannot be directly combined to holistically optimize the ex-
ecution of an IE program while exploiting all optimization
opportunities, as we propose in this paper.

This paper presents a holistic approach for IE optimiza-
tion that addresses the above limitations of the state-of-
the-art systems. Our optimization approach focuses on the
following challenges: (i) to optimize all key aspects of the
IE process collectively and in a coordinated manner, rather
than focusing on individual subtasks in isolation; (ii) to ac-
curately predict the execution time, recall, and precision for
each IE execution plan; and (iii) to use these predictions to
choose the best execution plan to execute a given IE pro-
gram. Specifically, the main contributions of this paper are:

• A novel probabilistic prediction model to accurately de-
termine the extraction time, recall, and precision of each

IE execution plan (Section 3.2). This prediction model ac-
counts for plans with approximate results (unlike CIMPLE
and SystemT), so we can holistically optimize the entire IE
execution plan (unlike CIMPLE, SystemT, and SQoUT).

• A solution to efficiently and effectively estimate the pa-
rameters of the predictors for an IE program over a specific
document collection (Section 3.3). Unlike the method used
by SQoUT to predict recall and precision, our estimation
method is efficient even when there is a large number of
plans and is accurate even if only a small percentage of doc-
uments produce extraction results.

• A solution to choose the fastest IE execution plan for
user-specified constraints on the desired recall and precision
(Section 3.4). Our method supports complex constraints
that may involve more than simple threshold conditions on
recall and precision.

We conducted a large-scale experimental evaluation of
our proposed optimization approach against the state-of-
the-art IE optimization systems (Sections 4 and 5). The
results show that our optimizer significantly outperforms
those IE optimization systems, while closely matching the
user-specific constraints on recall and precision.

2. IE OPTIMIZATION: PRELIMINARIES
We now discuss background and terminology (Section 2.1),

as well as the optimization techniques used by state-of-the-
art IE systems and their limitations (Section 2.2). We also
define our problem of focus for this paper (Section 2.3).

2.1 Background and Terminology
Natural language text often contains information that is

structured by nature. Information extraction (IE) programs
extract this structured information from natural language
documents and output tuples, which can then be used by
other applications. This structured information typically
consists of: (i) entities, which correspond to references in
the text to real-world objects with predefined types (e.g.,
person, location, natural disaster); and (ii) relationships,
which correspond to mentions of semantic associations be-
tween multiple entities (e.g., Occurs-In, Works-For). De-
veloping an IE program involves two main activities: (i)
specifying the program and (ii) choosing the best strategy
to execute it. Similarly to SQL query optimization, the
separation between these two activities is the key for the
automatic optimization of IE programs.

IE specification: We can specify an IE program as a
composition of IE tasks such as document retrieval, segmen-
tation, entity extraction (EE), relationship extraction (RE),
normalization, and co-reference resolution [14]. More pre-
cisely, an IE specification corresponds to a directed acyclic
graph. Figure 2(a) shows the specification of the IE program
from Figure 1. The nodes of this graph are operators that
either perform an IE task using a specific IE technique (e.g.,
EECRF performs the Extract Natural Disaster task with a
CRF [15] and RESVM performs the Extract Occurs-In task
with an SVM [6]) or impose conditions on the results of other
operators (e.g., the σcontains(Temporal Expression, ‘2011’) op-
erator performs the Select Temporal Expressions from 2011
task by determining whether the ‘2011’ string is a substring
of the input temporal expression). If two operators are con-
nected with an edge, then the output tuples of the origin
operator are provided as input to the target operator.
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(a) (b)

Figure 2: IE specification (a) and IE execution plan
(b) for the Figure 1 example.

IE execution plans: An IE specification can be imple-
mented by several execution plans. An IE execution plan
is also a directed acyclic graph of operators, each of them
annotated with the algorithm that executes it. Figure 2(b)
shows an example of an IE execution plan for the IE spec-
ification of Figure 2(a). For example, the EECRF opera-
tor, which performs the Extract Natural Disaster task with
a CRF, is executed with the Viterbi algorithm, which we
denote as EEV iterbi

CRF . The operator to Select Temporal Ex-
pressions From 2011, σcontains(x,‘2011’), is executed with the
Knuth-Morris-Pratt (KMP) algorithm [11], and we denote
it as σKMP

contains(x,‘2011’).
We can choose from a wide variety of algorithms to ex-

ecute each operator.1 We can divide these algorithms into
two major categories. An exhaustive algorithm follows ex-
actly the semantics of the IE technique associated with the
operator (e.g., the Viterbi algorithm [22] for the implemen-
tation of a CRF). An approximate algorithm uses simplifica-
tions to speed up the execution of the operator (e.g., Viterbi
Beam Search [13] for the execution of a CRF). Approximate
algorithms may not be able to produce all the tuples an
exhaustive algorithm produces. Moreover, they may pro-
duce some additional and possibly erroneous tuples. The
tuples produced by the operators can then be divided in
two classes: the correct tuples, which are the ones produced
by an exhaustive algorithm, and the incorrect tuples, which
are the ones that are produced by an approximate algorithm
but not by an exhaustive one.2

2.2 IE Optimization and State of the Art
The alternative IE execution plans for an IE program may

differ on the following implementation choices (Figure 3):
(i) the choice of the algorithm to execute each operator; (ii)
the choice of the execution order of operators; and (iii) the
choice of the document retrieval strategy. These choices are
analogous to the decisions that an RDBMS makes when op-
timizing SQL queries, namely, the choice of join algorithms,
the execution order of the operators, and the choice of access
paths. We now describe these IE implementation choices
and how state-of-the-art IE optimization systems use them.

1Our algorithms are black boxes that perform the tasks of
specific operators. Thus, we can plug in new alternative
algorithms for an operator as they become available.
2We do not require any human intervention to determine the
correctness of a tuple. Instead, the correctness of a tuple is
determined from the output of the exhaustive algorithm of
the operator that produced the tuple. Exploring alternative
definitions of tuple correctness, perhaps involving human
input, is the subject of interesting future work.

Figure 3: IE program implementation choices.

Choosing an Algorithm for Each Operator: In gen-
eral, the operators used to perform an IE task with a specific
IE technique can be implemented with different algorithms.
For example, the EECRF operator in Figure 2(a) can be
implemented with the Viterbi algorithm or with the Viterbi
Beam Search algorithm. The choice of the algorithm has
a significant impact on the execution time of the IE pro-
gram since the computational complexity of alternative al-
gorithms may vary greatly. When we consider approximate
algorithms to execute an operator, the difference between
the complexity of alternative algorithms tends to be even
greater since they use simplifications to speed up the execu-
tion of operators with a small impact on recall and precision.

Choosing the Operator Execution Order: Imposing
an execution order to the operators may significantly speed
up an IE program. In fact, by executing some operators first,
it is possible to use their results to filter the input tuples
provided to later operators, thus avoiding the application of
expensive IE techniques to some parts of the documents. We
consider two key techniques to impose an execution order to
the operators. First, pushing-down text properties [19] aims
at evaluating properties of the text imposed by operators as
early as possible in the IE execution plan. Second, narrowing
the region of crawled text [19, 16] (called scoping in [19]) uses
the fact that some RE operators may impose conditions on
the location, in the text, of the input entities that can be
related. We can thus extract some entities first and use their
location to narrow the document region for the extraction
of the other entities. We can also extend these solutions
and define execution orders based on approximations. For
example, we can greedily prune the input of an operator
based on the results of the previous ones.

Choosing the Document Retrieval Strategy: Typi-
cally, only a small subset of a document collection produces
extraction results. Thus, we can speed up IE programs by
choosing a retrieval strategy that tries to obtain only doc-
uments that contribute to the IE task at hand. Three ex-
amples of document retrieval strategies are: (i) scanning
through the whole collection; (ii) using queries [1]; or (iii)
using classifiers [3, 7] to find documents that are likely to
produce extraction results. Retrieval strategies based on
queries and classifiers are good at finding documents that
contain correct extraction results, but they might miss some
of these documents, unlike the exhaustive scanning strategy.

State-of-the-Art IE Optimization Systems: State-
of-the-art IE systems exploit some, but not all, of the above
implementation choices to optimize IE programs (Table 1).
CIMPLE [19] uses a cost-based optimizer to choose the ex-
ecution order of the operators, namely, pushing-down text
properties and narrowing the region of crawled text. Sys-
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Exhaustive Plans
Only

Exhaustive and
Approximate Plans

Choice
CIMPLE

[19]
SystemT
[12, 16]

SQoUT
[8, 9, 10]

This
paper

Algorithm 7
Heuristic

choice
7

Execution
Order

Cost-based
optimizer

Cost-based
optimizer

7
Holistic

cost-based
optimizer

Retrieval
Strategy

7 7
Cost-based
optimizer

Table 1: Summary of state-of-the-art IE systems
and the implementation choices that they make.

temT [16] also uses a cost-based optimizer to choose the
execution order of some operators. SystemT’s space of exe-
cution plans is not as vast as CIMPLE’s (e.g., SystemT does
not push down text properties; additionally, SystemT’s so-
lution for narrowing the region of crawled text is not as gen-
eral as that of CIMPLE); unlike CIMPLE, though, SystemT
chooses among different algorithms for operators. (SystemT
uses heuristics for this choice.) Both CIMPLE and SystemT
are conservative in that they guarantee that the results pro-
duced by all the alternative execution plans are the same.
Thus, these systems miss promising optimization opportu-
nities that speed up the execution of the IE program signif-
icantly with a minimum impact on recall and precision. In
contrast, SQoUT [8, 9, 10] considers execution plans with
varying values of recall and precision, by choosing the docu-
ment retrieval strategy and a black-box IE system to execute
the IE program, including setting parameters that affect ef-
ficiency, recall, and precision [10]. However, SQoUT cannot
directly optimize the internals of the IE systems, namely,
their algorithms for operators and the operator execution
order. SQoUT uses a cost model that estimates the extrac-
tion time, recall, and precision of each IE execution plan.
Then, SQoUT chooses the fastest plan with recall and pre-
cision above a user-provided threshold. In this paper, as
hinted in Table 1, we address the limitations of the state-
of-the-art IE optimization systems and exploit, collectively,
all three optimization opportunities, namely, the choice of
algorithms for operators, the choice of operator execution
order, and the choice of document retrieval strategy. As we
will see later, in Section 5, our approach produces holistic
IE execution plans that are significantly faster than the ones
produced by state-of-the-art IE optimization systems, with
a minimum impact on recall and precision.

2.3 Problem Definition
The problem we address in this paper is to optimize the

execution of IE programs by fully and collectively exploit-
ing the implementation choices discussed in Section 2.2. Our
approach considers a rich selection of execution plans that
vary on the execution time and extraction results (i.e., lead-
ing to output with different recall and precision). There is
usually a tension between execution time and output qual-
ity. In fact, execution plans that produce high-recall and
high-precision output tend to do so at the expense of effi-
ciency. Interestingly, the choice of a plan for an IE program
is user-dependent: some users may be interested in high-
recall and/or high-precision executions, for which they are
willing to wait as long as needed; in contrast, other users
may prefer to receive extraction results as fast as possible,
even if their quality is less than perfect [10].

To express different user needs, we rely on and-or trees.
The leaves of an and-or tree specify constraints on the de-
sired recall and precision. Internal nodes represent conjunc-
tions or disjunctions of constraints. The optimization pro-
cess will then consider user-specified constraints on recall
and precision as input, as shown in our problem definition:

Problem 1.: Consider a relation to be extracted from a doc-
ument collection D using an IE program P . We can execute
P using alternative IE execution plans p1, p2,. . ., pn. These
IE execution plans vary in their choice of the exhaustive or
approximate algorithms used to execute the operators, the
execution order of the operators, and the document retrieval
strategy. Additionally, let C be a tree with user-specified
constraints on precision and recall. Then, our objective is
to estimate if any of the p1, p2,. . ., pn IE execution plans
for the IE program P satisfies C over D and, if so, to select
the plan that is expected to be the fastest among such plans.

3. HOLISTIC IE OPTIMIZATION
We now describe our IE optimization approach. First,

in Section 3.1, we provide a high-level description of the
optimization process. Then, in the remaining subsections,
we provide details about each key optimization step.

3.1 Optimization Process: Outline
As discussed above, we consider three major implementa-

tion choices for an IE program: (i) choosing an algorithm to
execute each operator; (ii) choosing the execution order of
operators; and (iii) choosing the document retrieval strat-
egy. We argue that making these choices collectively has a
significantly positive impact on the optimization process.

To see why, consider a simple IE program that extracts
conference names and their dates. This program takes a sub-
stantial time to execute by processing all documents with
exhaustive algorithms and no regard for the execution or-
der of the operators. Current state-of-the-art IE systems
could speed up this program somewhat by making indepen-
dent implementation choices. For example, choosing a good
execution order of the operators or retrieval strategy could
cut the extraction time by more than half, while consider-
ing approximate algorithms for the operators might speed
up the execution further. We can obtain even more gains by
putting these individual implementation choices together.
Unfortunately, the choices that we make individually may
not necessarily result in the best solution when we combine
them. For example, when using a selective document re-
trieval strategy, which focuses on just a few documents, we
may be able to afford expensive and exhaustive algorithms
for the IE operators and still execute the program fast, with
a negligible penalty on recall or precision. Hence, we should
not make these optimization choices in isolation, but rather
as part of a holistic effort, as we argue in this paper.

To perform this holistic optimization, our approach re-
ceives three inputs (see Figure 4): (i) an IE specification;
(ii) a collection of documents; and (iii) an and-or tree rep-
resenting the user-specified extraction constraints (see the
problem definition in Section 2.3). Then, our approach con-
sists of four main steps. The first step is Plan Enumeration,
which produces the alternative IE execution plans to con-
sider in the optimization process. These plans differ in the
implementation choices described in Section 2.2. To reduce
the number of IE execution plans that we consider, for effi-
ciency, we only explore an IE execution plan if new operators
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Figure 4: Holistic IE optimization process.

that check text properties and narrow the region of crawled
text are executed as early as possible in the plan.

Next is Predictor Parameter Estimation (Section 3.3). To
predict the extraction time, recall, and precision of the IE
execution plans, we rely on parameters that depend on the
IE specification and document collection. The objective of
this step is to estimate these parameters. We divide this step
into three phases: (i) sampling, to select the subset of input
documents to use in the estimations; (ii) extraction, to re-
trieve information from the sample using the plans produced
during plan enumeration; and (iii) estimation, to determine
the optimizer parameters using the results extracted in (ii).
The major challenge is the fact that the majority of the IE
programs produce sparse results (i.e., most of the input doc-
uments do not contain tuples). In this case, the quality of
the estimations tends to be quite low. Thus, we need to rely
on clever solutions to sample the documents and to estimate
the parameters, as we will discuss.

After estimating the parameters of the predictors, we use
them in the Extraction Time and Quality Prediction step
(Section 3.2), where we predict the extraction time and qual-
ity (i.e., recall and precision) of each IE execution plan. The
number of tuples produced by a plan is difficult to anticipate
because it largely depends on the dataset and the semantics
of the IE program. For this reason, predicting recall and
precision is challenging. Furthermore, we need to perform
this step for a wide range of IE execution plans, which can
be time consuming. We propose a novel approach to pre-
dict the recall and precision for each IE execution plan in
an accurate and efficient way (Section 3.2.2).

Finally, the Best Plan Selection step (Section 3.4) re-
ceives as input the alternative IE execution plans, annotated
with their corresponding predicted recall, precision, and ex-
traction time per document. This step relies on the user-

specified constraints on recall and precision (see Section 2.3).
During this step, we need to: (i) find the IE execution plans
that are able to fulfill the user-specified constraints; (ii) for
these plans, determine the minimum number of documents
that they must process in order to satisfy the constraints;
and (iii) select the fastest IE execution plan based on the
minimum number of documents that it needs to process.
The key challenge is to effectively and efficiently use the in-
formation provided by the predictors to determine whether
the plans can fulfill the user-specified constraints.

3.2 Extraction Time and Quality Prediction
To compare the IE execution plans produced during the

Plan Enumeration step, we must predict their extraction
time and quality, which we discuss next.

3.2.1 Extraction Time Prediction
To predict extraction time, we adapt CIMPLE’s approach

for this task [19]. Specifically, we predict the extraction time
of an IE execution plan by summing the extraction time of
all the operators in the plan. Thus, we need to determine
the extraction time of each operator O when it is executed
with a specific algorithm Oi. For this, our predictor re-
lies on the following parameters: (i) T ime(Oi), the average
extraction time of the algorithm Oi per input tuple; (ii)
SpanLength(Oi), the average input text span length of al-
gorithm Oi; and (iii) the number of input tuples provided to
the operator O. We can compute the first two parameters
easily by using CIMPLE’s prediction adapted to work on
each algorithm rather than on the (coarser) operators.

The third parameter of the extraction time predictor is
the number of input tuples of an operator. Our optimiza-
tion approach needs to compute the number of correct and
incorrect input and output tuples of each operator to predict
the recall and precision of the operators (see Section 3.2.2).
Thus, we can use these predictions directly to also estimate
the extraction time. This is a key difference with CIMPLE’s
extraction time prediction, which relies on (coarser) output
size estimates based on the selectivity of the operators (CIM-
PLE does not predict extraction quality because it can only
produce exhaustive executions).

A second difference between our extraction time predictor
and CIMPLE’s is that the number of documents processed
by our IE execution plans may vary from plan to plan. Since
the extraction time grows linearly with the number of pro-
cessed documents, we estimate the extraction time for a plan
by predicting the extraction time per document of the plan
and then linearly extrapolating that value for different num-
bers of documents.

3.2.2 Extraction Quality Prediction
Predicting the recall and precision values of each IE exe-

cution plan is significantly more challenging than predicting
the extraction time, because these values highly depend on
the IE specification and document collection. As discussed
above, SQoUT predicts the precision and recall of its execu-
tion plans [8, 9, 10]. However, this prediction approach falls
short for our holistic optimization approach. Specifically,
SQoUT predicts the recall and precision for each document
retrieval strategy, while treating the IE systems as black
boxes. In contrast, we need to consider the impact of each
internal operator in an IE program on precision and recall,
which is a key contribution of our approach.
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(a) (b)

Figure 5: (a) Input tuples for an operator O; (b)
operator RESVM and its input paths, P [1] and P [2].

Another contribution of our precision and recall predictor
is its efficiency: we decompose the prediction of recall and
precision for a full plan into several small tasks that deter-
mine the number of correct and incorrect tuples produced
by each operator in the IE execution plan. Different IE exe-
cution plans may have some operators in common. So, when
computing the number of correct and incorrect tuples at the
operator level, we can reuse these results across different IE
execution plans using a dynamic programming approach.

By definition, the values of precision and recall of an IE
execution plan depend on the number of correct and incor-
rect tuples that it produces. (Recall is the fraction of correct
tuples that the plan produces while precision is the fraction
of produced tuples that are correct.) To predict the number
of correct and incorrect tuples produced by each operator,
we must estimate, in turn: (i) the number of input tuples of
the operator and (ii) the number of output tuples produced
by the operator when it receives a given input tuple. We
now discuss how to compute these two estimates.

Operator Input Tuples: The set of input tuples of an
operator O depends on the IE execution plan where it is
included. There are several alternative sub-plans that may
precede O in the execution plan. Each of these plans may
produce very different output tuples that are then provided
as input to O. Figure 5(a) shows an example of an operator
O that, according to the sub-plan that precedes it (i.e., one
of the execution plans P1, ..., Pm), can receive a different set
of input tuples. Some tuples, marked with a check sign in
the figure, are correct tuples, and others, marked with a
cross sign, are incorrect. If sub-plan P2 precedes O, this
operator will receive as input tuples t1, t3 and t4, but not
t2. We denote the set of output tuples of each sub-plan P as
TP . We also denote the set of correct and incorrect output
tuples of P as Cor(TP ) and Inc(TP ), respectively.

Each possible sub-plan P that precedes an operator O in
the execution plan may be composed of multiple paths, de-
noted P [1], P [2], ..., P [n]. For example, in Figure 5(b), we
show the operator RESVM from the motivating example and
the two paths that provide its input tuples. We denote the
path that ends with EEV iterbi

CRF as P [1] and the path that
ends with σKMP

contains(x,‘2011’) as P [2]. The set of input tuples
of O is, then, obtained by combining the individual tuples
produced by each of the paths, TP [1], TP [2], ..., TP [n]. How-
ever, the output tuples in TP do not necessarily include all
the tuples in the Cartesian product TP [1]×TP [2]× ...×TP [n].
In fact, IE programs usually process each document individ-
ually, so two tuples from different documents will never be
combined and given as input to O.

To predict the number of correct input tuples of O, we
compute, for each path P [k], the average number of cor-
rect tuples generated by combining a correct output tuple

of P [k] with the output tuples of the other paths. We
denote these values as aCor(P [k]). Using the values of
aCor(P [k]), we can compute n different predictions (one
per path) of the number of correct input tuples |Cor(TP )|
given by aCor(P [k]) · E[|Cor(TP [k])|]. While these predic-
tions tend to be similar, they may differ. Thus, to make the
final prediction as precise as possible, we need to compute
the geometric mean of aCor(P [k]) ·E[|Cor(TP [k])|]. We rely
on the geometric mean for two reasons. First, it tends to be
close to the minimum value of the input estimates, which
is the behavior we desire for our application. Second, when
one of the individual path estimates corresponds to 0, the
geometric mean is also 0. This behavior is particularly im-
portant as estimating 0 for an individual path indicates that
it is likely that the corresponding operator will not receive
any tuples. Thus, if we define ACor(P ) as the geometric
mean of aCor(P [k]) for all paths in P , we can compute
E[|Cor(TP )|] with Equation 1, as follows:

E[|Cor(TP )|] = ACor(P ) · n

√√√√ n∏
k=1

E[|Cor(TP [k])|] (1)

We predict the number of incorrect input tuples for O
analogously, by adapting our approach to match the defini-
tion of incorrect tuples. Specifically, an input tuple is incor-
rect if at least one of the individual tuples that are combined
to produce it is incorrect. Thus, the set of incorrect tuples
given as input to O can be generated by any combination of
tuples produced by the paths that precede O in the graph
except those that only involve correct tuples. Like in the
correct-tuple case, we rely on the parameters aInc(P [k]),
which are the average number of incorrect tuples generated
by combining an output tuple of P [k] with the output tu-
ples of the other paths. We define AInc(P ) as the geometric
mean of aInc(P [k]) for all paths in P . Equation 2 shows how
to predict E[|Inc(TP )|] using these parameters:

E[|Inc(TP )|] = AInc(P ) · n

√√√√ n∏
k=1

E[|TP [k]|]−
n∏

k=1

E[|Cor(TP [k])|] (2)

Operator Output Tuples: To estimate the number of
output tuples of an operator when it receives an input tu-
ple, we need to consider two factors: (i) the input tuple itself
and (ii) the algorithm that executes the operator. The char-
acteristics of the input tuple of an operator determine how
much, or how little, the operator can extract. For example,
consider an entity extraction operator that extracts natural
disasters from sentences. Most sentences contain no refer-
ences to natural disasters; a few sentences might contain one
or two references; and very few sentences discuss more than
two natural disasters. Therefore, when predicting the num-
ber of output tuples of an operator, we need to consider the
distribution of input tuples and the number of tuples they
are bound to produce.

To account for these distributions, we consider two ran-
dom variables, Cor(NO) and Inc(NO), which correspond to
the number of correct and incorrect tuples produced by an
operator O when it receives an input tuple. The distribu-
tion of these random variables depends on: (i) the sub-plan
that precedes O in the execution plan (e.g., some plans may
be able to filter input sentences that are less likely to con-
tain natural disasters, thus decreasing the probability that
no tuple is produced when a tuple is given as input); and
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Figure 6: Tuples produced by alternative algorithms
that execute operator EECRF .

(ii) the correctness of the input tuple (i.e., when an oper-
ator receives a correct input tuple it may produce correct
or incorrect tuples with different probabilities). To account
for these factors, we consider two Boolean random variables:
(i) RP , which indicates whether an input tuple of operator
O is an output tuple of the sub-plan P ; and (ii) C, which
indicates whether the tuple given as input to O is correct.

The algorithm that executes the operator also influences
the tuples that it produces. Some algorithms rely on approx-
imations, so not all algorithms for a given operator produce
the same set of tuples. Figure 6 shows the EECRF operator
from the motivating example. This operator can be exe-
cuted with multiple algorithms, including EEV iterbi

CRF , which
uses the Viterbi algorithm, or EEV BS k=i

CRF , which uses the
Viterbi Beam Search algorithm with parameter i. Some cor-
rect output tuples may be missing from the result of EECRF

(e.g., EEV BS k=5
CRF produces t1 but not t2) and some incor-

rect tuples may be produced (e.g., EEV BS k=1
CRF produces t3).

If we assume that an operator O is bound to produce a set
of tuples TO when it receives an input tuple, then, by using
a specific algorithm, Oi, the operator produces TOi , which
is a subset of TO. We can model the production of tuples
in TOi as a set of Bernoulli trials over the elements of TO.
Thus, the number of correct and incorrect tuples produced
by a specific algorithm Oi, Cor(NOi) and Inc(NOi), respec-
tively, follow Binomial distributions parameterized with the
probability that a tuple of TO belongs to TOi .

We can use the previously defined random variables to
predict the number of correct and incorrect tuples produced
by an operator O when it receives a correct or incorrect
input tuple: E[Cor(NOi)|RP , C], E[Inc(NOi)|RP , C], and
E[Inc(NOi)|RP ,¬C].3 Although these expected values are
very different from each other, we can compute them anal-
ogously. Hence, we omit the information about the correct-
ness of the tuples from now on. With this in mind, the
general solution to compute these expected values is:

E[NOi |RP ] = pOi (P )

∑∞
kl=0 kl · P (RP |NO = kl) · P (NO = kl)∑∞

k=0 P (RP |NO = k) · P (NO = k)
(3)

where pOi(P ) is the parameter of the Binomial distribution
that gives the probability that an output tuple of operator
O is produced when using algorithm Oi. For more details,
please refer to Appendix A.

Putting All Predictions Together: So far, we de-
scribed how to determine: (i) E[|Cor(TP )|] and E[|Inc(TP )|],
the predicted number of correct and incorrect input tu-
ples received by an operator O when the sub-plan P pre-
cedes it in the execution plan; and (ii) E[Cor(NOi)|RP , C],

3Any tuple that results from an incorrect input is also incor-
rect. Thus, we do not need to compute E[Cor(NOi)|RP ,¬C]
because its value is always 0.

E[Inc(NOi)|RP , C], and E[Inc(NOi)|RP ,¬C], the predicted
number of output tuples that the operator is expected to
produce when it receives a random tuple as input and is
executed by algorithm Oi. However, we still need to under-
stand how to put these values together to predict the total
number of correct and incorrect tuples produced by each op-
erator of the plan. All we need to do is to combine these
values according to the correctness of the input and output
tuples. Thus, we predict the number of correct and incor-
rect tuples produced by algorithm Oi when the sub-plan P
precedes it in the execution plan, as follows:

E[|Cor(TOi (TP ))|] = E[|Cor(TP )|] · E[Cor(NOi )|RP , C] (4)

E[|Inc(TOi (TP ))|] =E[|Cor(TP )|] · E[Inc(NOi )|RP , C]

+E[|Inc(TP )|] · E[Inc(NOi )|RP ,¬C]
(5)

We explain next how to compute the parameters required
in Equations 4 and 5.

3.3 Predictor Parameter Estimation
The time and quality predictors presented in Section 3.2

rely on several parameters, namely: (i) P (NO = kl), the
probability distribution for the number of tuples produced
by O when it receives a random input tuple; (ii) P (RP |NO =
kl), the parameter of the Bernoulli distribution for the pres-
ence of an input tuple of operator O that produces kl out-
put tuples, when P precedes O in the IE execution plan;
(iii) pOi(P ), the parameter of the Binomial distribution that
gives the probability that an output tuple of an operator O
is produced when using the algorithm Oi; (iv) aCor(P [k])
and aInc(P [k]), which correspond to the average number
of correct and incorrect tuples provided to an operator O
when combining output tuples of the path P [k] with tuples
produced by the other paths; and (v) T ime(Oi), the aver-
age extraction time per input tuple for each operator, and
SpanLength(Oi), which is the average text span length used
in the prediction of the Oi execution time.

Determining the values of the predictor parameters is a
challenging task that we perform in three phases: (i) sam-
pling, (ii) extraction, and (iii) estimation. In the sampling
phase, we find a sample of the input document collection.
Most document collections for IE are sparse (i.e., only a few
documents contain results). For these collections, it is likely
that no document in the sample produces results, leading
to low quality estimations. We apply stratified sampling
[17] to increase the probability of including in the sample
documents containing results. We partition the document
collection according to the retrieval strategies that are able
to retrieve the documents. We chose this partition method
because retrieval strategies are strongly related to the prob-
ability that a document produces extraction results (e.g., a
document retrieved by a query-based strategy is more likely
to be useful than a document that only scan can find).

During the extraction phase, we provide the document
sample as input to the IE execution plans in order to pro-
duce the tuples used to estimate the predictor parameters.
Executing the entire set of IE execution plans with all the
documents in the sample would be a time-consuming task.
Since different IE execution plans have common operators
that are executed with the same algorithms, we rely on dy-
namic programming to make sure that no operator is exe-
cuted twice with the same algorithm and input tuple, even
if it is present in several IE execution plans.
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In the estimation phase, we use the tuples produced dur-
ing the extraction phase to estimate the parameters of the
predictors. One possible estimation method would be max-
imum likelihood (ML) [21], which chooses the parameter
values that maximize the probability of observing the sam-
ple data. Unfortunately, ML performs poorly on small and
sparse samples. To account for such cases, we use maximum
a-posteriori (MAP) estimation [21]. MAP assumes we have
additional knowledge about the parameter to estimate, θ, in
the form of a probability distribution P (θ), called the prior
distribution. For the MAP estimations to be effective, we
must properly model the prior distribution for our specific
estimation. We rely on the conjugate priors of the proba-
bility distributions we use in our prediction model [21] and
adapt their parameters to make them interpretable in the
context of our estimation. These parameters are: (i) Str,
the strength of the prior relative to the likelihood of the
sample data; and (ii) E, the expected value of the probabil-
ity distribution when we estimate its parameter only with
information from the prior (i.e., without sample data). The
value of E is dependent on the probability distribution, so
we rely on two variants: (i) ENO ∈ R0, which we use for
estimating P (NO = kl); and (ii) EBer ∈ [0, 1], which we
use for estimating parameters of any Bernoulli distribution.
Due to space constraints, we omit the details for computing
the MAP estimations for each parameter of the predictors.
For further details, please refer to [20].

Since we use stratified sampling, our document sample
may not constitute a good representation of the document
collection. (The sampling is biased to increase the prob-
ability of selecting documents containing tuples.) Thus, a
predictor based directly on the observations of the document
sample may be biased. To avoid this problem, we start by
predicting the values of recall, precision, and extraction time
for each sample stratum. Then, we compute the weighted
sum of these values according to the proportion of each stra-
tum in the entire input document collection. This approach
produces an unbiased predictor [17].

With the above estimation methodology, we can find the
parameters of the predictors of our optimizer for particular
IE specifications and document collections. Thus, we can
use the predictors to estimate the recall, precision, and ex-
traction time of alternative IE execution plans and, in turn,
choose the best plan, as discussed next.

3.4 Best Plan Selection
The last optimization step consists of choosing the fastest

IE execution plan and the minimum number of documents
it needs to process while satisfying the user-specified con-
straints. For this task, we must perform three steps: (i)
determining the minimum number of documents that each
IE execution plan must process to satisfy the constraints;
(ii) predicting the extraction time of each IE execution plan
when processing the number of documents determined in (i);
and (iii) choosing the fastest IE execution plan.

In step (i), we execute the findNumbOfDocsRange algo-
rithm (see Algorithm 1) for finding the range of the possible
numbers of documents that can be processed by each IE ex-
ecution plan P while still satisfying the constraints. This
algorithm starts at the root of the and-or tree, denoted T .
If the root is an and node (respectively, an or node), the
result of the algorithm corresponds to the intersection (re-
spectively, union) of the ranges of numbers we obtain from
recursively invoking the algorithm giving T ’s child nodes as

Algorithm 1: findNumbOfDocsRange(P , E, T , n)
Input: IE execution plan P

Extraction time and quality predictions E
And-or tree T representing recall/precision constraints
Number of documents n in the collection

Output: Number of document range R satisfying the conditions
of T when executing P

1 if isAndNode(root(T )) then
2 R = [0, n];
3 foreach Tc ∈ children(T ) do
4 R = R ∩ findNumbOfDocsRange(P,E, Tc, n);

5 else if isOrNode(root(T )) then
6 R = ∅;
7 foreach Tc ∈ children(T ) do
8 R = R ∪ findNumbOfDocsRange(P,E, Tc, n);

9 else
10 R = T.getConditionRange(P,E, n);

11 return R;

input. Finally, if the root is a leaf node that imposes a condi-
tion on the recall or precision of the IE execution plan, then,
the result depends on the getConditionRange method. This
method returns a set containing the numbers of documents
for which the specified condition is satisfied.

After executing the findNumbOfDocsRange algorithm, we
need to determine the exact number of documents that each
IE execution plan must process. First, we discard any IE
execution plan for which findNumbOfDocsRange returns an
empty range, since such plan could never satisfy the imposed
constraints. Second, for the remaining plans, we choose
the minimum number of documents that satisfies the con-
straints. This corresponds to the lowest integer in the range
returned by findNumbOfDocsRange for each execution plan.

In step (ii), we predict the extraction time for each IE ex-
ecution plan that processes the number of documents com-
puted in step (i). We obtain this value by extrapolating
the extraction time values provided by the extraction time
predictor. For instance, if the predictor determines that an
execution plan takes one second per document, then we as-
sume it takes 500 seconds to process 500 documents. Finally,
in step (iii) we choose the fastest IE execution plan.

4. EXPERIMENTAL SETTINGS
In this section, we describe the experimental settings for

the evaluation of our IE optimization approach.
Datasets: We used two real-world document collections

in our experiments (Table 2): (i) the Homepages dataset,
which consists mostly of Web pages of Computer Science
researchers; and (ii) the NYT Annotated Corpus [18], which
consists of New York Times articles from 1987 to 2007. We
divided both datasets into disjoint training, development,
and test sets. We used the training sets to train retrieval
strategies (e.g., Qxtract [1] or PRDualRank [5]) and IE tech-
niques (e.g., SVM for relationship extraction [6]) that IE
programs rely on. We used the development sets in initial
experiments to select the values for the parameters of the
optimizer and show experimental evidence about implemen-
tation decisions. Finally, we used the test sets to compare
our optimizer with state-of-the-art IE systems using the pa-
rameters we selected with the development sets.

IE Programs: We designed four diverse IE programs
that extract the following relationships (Table 3): (i) Con-
ferencesDates, (ii) Advises, (iii) DiseasesOutbreaks, and (iv)
OrganizationAffiliation. The first two programs extract in-
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Dataset Training Development Test
Homepages 3,301 3,146 3,248

NYT 97,258 671,457 1,086,944

Table 2: Characteristics of our datasets.

IE Programs Semantics
Number

of Plans

ConferencesDates Conferences and their dates. 90
Advises Students and their academic

advisors.
2,160

DiseasesOutbreaks Disease outbreaks and their
time.

3,240

OrganizationAffiliation Organizations and people
that are affiliated with them.

324

Table 3: IE programs used in our experiments.

formation from the Homepages dataset while the others do
so from the NYT dataset. These IE programs cover the
most important families of IE techniques, and use them in
workflows with different complexities (to see their IE speci-
fications, please refer to [20]). The first three programs are
rule-based, using dictionaries and regular expressions to ex-
tract entities, and using the distance between entities or the
HTML structure to determine if the entities are related. Or-
ganizationAffiliation is based on machine learning, relying
on Hidden Markov Models [4] and automatically generated
patterns [23] to extract entities, and on SVM [6] to extract
relationships between the entities. ConferencesDates and
OrganizationAffiliation are dense relationships that occur
often in the datasets, while Advises and DiseasesOutbreaks
are sparse relationships that occur rarely. To implement
the operators of these IE programs, we relied on two off-
the-shelf libraries: Lingpipe4 and OpenNLP5. We also used
two tools developed in our research groups to train machine
learning models for IE, namely, E-txt2db6 and REEL7. Fi-
nally, we implemented our query-based retrieval strategies
using Lucene8 as a search interface for the text collections.

Techniques for Comparison: We compare our approach
against the following state-of-the-art IE systems:

CIMPLE is our implementation of CIMPLE, based on the
description provided in [19]. The original CIMPLE does
not support IE execution plans that produce different recall
values. Thus, for fairness in the comparison, we added a
parameter to control the percentage of processed documents.
Given a desired recall value, our implementation of CIMPLE
processes that same percentage of documents.

SystemT corresponds to the IBM implementation of Sys-
temT [16, 12] in Java. Similarly to our implementation of
CIMPLE, we added an extra parameter that lets a user im-
pose recall constraints.

SQoUT is a modification of the original SQoUT9 code to
support specifications of IE programs as graphs of operators.

SQoUT-Boosted is a variation of the SQoUT baseline that
not only optimizes the document retrieval strategy, but also
chooses between the execution plans produced by CIMPLE
and SystemT to perform the extraction. Thus, this ver-
sion of SQoUT corresponds to a direct combination of the

4http://alias-i.com/lingpipe/
5http://opennlp.apache.org/
6http://web.ist.utl.pt/ist155840/etxt2db/
7http://reel.cs.columbia.edu/
8http://lucene.apache.org/core/
9http://sqout.stern.nyu.edu/

SQoUT retrieval strategies with the CIMPLE and SystemT
optimization techniques, without our holistic optimization
of all aspects of the process.

The second set of IE optimization techniques we compared
consists of variants of our optimizer (Section 3):

Optimized-Ret considers only IE execution plans based on
the choice of the document retrieval strategy.

Optimized-Alg considers only IE execution plans based on
the choice of the algorithms for each operator.

Optimized-Order considers only IE execution plans based
on the choice of the operator execution order.

Holistic-MAP corresponds to our optimization solution
exactly as described in Section 3.

Holistic-ML uses maximum likelihood estimation to deter-
mine the optimizer parameters (Section 3.3).

We ran our experiments on a grid of 12 computers with
a uniform configuration: Intel Core2 Quad (Q6600) proces-
sors, with 8 GB of RAM, and OS Linux openSUSE 11.4
“Celadon.” We implemented all the techniques in Java and
ran them on a Sun Java 1.6.0 26 64-bit virtual machine. To
account for the randomness introduced by the document
sampling process, we repeated each experiment 10 times
over independent samples. We report the average value of
the metrics over the 10 executions.

Parameter Settings: Our optimizer relies on two types
of parameters: (i) the document sample size and (ii) the pa-
rameters of the prior distribution (i.e., Str , ENO , and EBer ;
see Section 3.3). We tested multiple combinations of these
parameters over the development sets to understand their
impact on the average estimation error of precision and re-
call, as well as on the optimization process itself (see [20] for
details). In Section 5, we report on the impact of the sam-
ple size on prediction quality. Overall, we concluded that
the optimizer decisions tend to become stable with a sample
of 2,000 documents. However, to handle both large (e.g.,
our NYT dataset) and small collections (e.g., our Home-
pages dataset), we set the sample size as the minimum of
2,000 and 1% of the collection. Regarding the prior parame-
ters, we concluded that there are particular values for these
parameters that lead to good estimations. From the combi-
nations that we tested, we chose: Str = 0.05, ENO = 0.5,
and EBer = 0.5.

5. EXPERIMENTAL RESULTS
Sample Size and Prediction Quality: To understand

the impact of the sample size on the quality of the recall
and precision predictions, we executed the first three steps
of the optimization process described in Figure 4 for the
two large-scale programs from Section 4.10 In each execu-
tion, we varied the sample size from 200 to 4,000 documents
from the development set, with steps of 200 documents, and
measured: (i) the time needed to execute the optimization
process; and (ii) the predicted recall and precision for each
IE execution plan. Figure 7 reports the optimization time
and prediction errors, averaged over the alternative IE ex-
ecution plans. For OrganizationAffiliation, the prediction
error is low, below 2%, even for small sample sizes. For

10We also performed a similar experiment for the small-scale
programs; see [20] for details.
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Figure 7: Optimization time, and recall and preci-
sion prediction error, as a function of sample size.

DiseasesOutbreaks, the errors are higher than for Organi-
zationAffiliation11. DiseasesOutbreaks is a sparse relation-
ship extracted from a large dataset: for small sample sizes,
the sample is unlikely to contain any document that pro-
duces results, which, in turn, leads to predictions with lower
quality than for OrganizationAffiliation. Nevertheless, our
optimizer still identifies a fast IE execution plan for Dis-
easesOutbreaks with recall and precision close to the user-
defined constraints. Finally, the optimization time for all
the IE programs is approximately linear in the sample size.
Fortunately, small samples are sufficient for our approach,
as prediction errors stabilize after seeing a relatively small
number of documents.

Comparison of ML and MAP-based Optimizers:
In Section 3.3, we claimed that maximum likelihood (ML)
estimation is not a good solution for our optimizer. Instead,
we proposed the use of maximum a posteriori (MAP) es-
timators. We now report experimental evidence over the
test sets for this claim. (From now on, all results are over
the test sets.) We compare the extraction results of the IE
execution plans chosen by Holistic-ML and Holistic-MAP.
In each execution, we varied the value of the desired recall
between 10% and 100%. For each optimization alternative,
we measured the total CPU time for the optimization and
extraction with the chosen plan, as well as the recall and
precision of the results. Our experiments showed that the
“sparse” IE programs (i.e., Advises and DiseasesOutbreaks)
are most affected by the choice between MAP and ML. Thus,
we present the results for Advises in Figure 8 (the results
are similar for DiseasesOutbreaks). Despite being efficient in
all cases, Holistic-ML is not able to fulfill the constraints for
high recall values. Starting at 80%, the extraction times of
Holistic-MAP and Holistic-ML are equivalent. However, for
higher recall values, Holistic-MAP becomes slower since it
changes the IE execution plan to be able to comply with the
high recall demands. Holistic-ML keeps the same plan used
for lower values of recall, just by processing more documents.
Even though this plan ends up being significantly faster, it
does not satisfy the high recall demands. Holistic-ML chose
this plan because, during the Predictor Parameter Estima-
tion step of the optimization process, all the documents of
the sample that produced tuples could be retrieved by a
query-based strategy. This led to the wrong conclusion that
a query-based strategy was enough to obtain 100% recall,

11There is generally no significant difference between the
number of times the predictions are smaller or larger than
the real recall and precision values. However, for small sam-
ple sizes, over 80% of the precision errors correspond to un-
derestimations due to the smoothed predictions of MAP es-
timators (i.e., some plans produce no incorrect tuples yet
their estimated precision is below 100%).

Figure 8: Total time, recall, and precision for Ad-
vises, for Holistic-MAP and Holistic-ML.

Figure 9: Total time, recall, and precision for Con-
ferencesDates, for individual implementation choices
as well as the full set of plans (Holistic-MAP).

when, in fact, there were some tuples that only a scan-based
strategy could retrieve.

Impact of Individual Implementation Choices: We
now compare the optimizers that consider only the indi-
vidual implementation choices presented in Section 2.2 (i.e.,
Optimized-Ret, Optimized-Alg, and Optimized-Order) with
Holistic-MAP. Due to space constraints, we focus on Con-
ferencesDates (see Figure 9) as its results show most of the
characteristics that we observed for other programs. As
expected, Holistic-MAP obtains the fastest plan in every
case.12 This plan obtains recall values that are close to the
desired levels. Optimized-Ret is almost as fast as Holistic-
MAP when the desired recall is low. However, as the tar-
get recall increases, Optimized-Ret selects plans that are
slower than those from other approaches, because it relies
on scan retrieval strategies without any additional optimiza-
tion. Optimized-Alg and Optimized-Order consistently pro-
duce costly plans, because their plans process the entire doc-
ument collection, even for low values of desired recall.

Impact of Precision Constraints: Our optimizer han-
dles both recall and precision user constraints (see Section
2.3). So far, we have focused on recall. We now consider
precision constraints in conjunction with recall constraints.
Figure 10 shows the results of this experiment for the Or-
ganizationAffiliation program where each curve represents
Holistic-MAP with a specific precision constraint, as a func-
tion of the value for the recall constraint. As expected,
the more demanding we are with the desired precision, the
slower the resulting IE execution plan is. However, we do
not need to significantly lower the desired precision value
to obtain significant efficiency gains. For instance, if we
request 99% precision, the resulting IE execution plan is

12When we consider optimization and extraction times com-
bined, Holistic-MAP is also the fastest, with one exception:
for Advises, Optimized-Ret is faster than Holistic-MAP for
low recall values because the optimization time is shorter for
Optimized-Ret and both extraction times are close to zero.
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Figure 10: Total time, recall, and precision for Orga-
nizationAffiliation, for Holistic-MAP, with different
values of desired precision, and as a function of de-
sired recall.

already much faster than when we request 100% precision:
MAP estimators produce smoothed precision predictions for
plans with approximate operators or imposing a particular
execution order. Hence, the probability of these plans pro-
ducing incorrect tuples will always be non-zero, which in
turn makes their expected precision below 100%. There-
fore, with a 100% precision constraint, Holistic-MAP dis-
cards these plans in favor of a slower plan that cannot pro-
duce incorrect tuples. Also, for any value of desired pre-
cision below 90%, the extraction time, recall, and precision
results are the same as when we do not impose any precision
constraint: when an operator produces too many incorrect
tuples, the execution time of the operators that follow it in
the IE execution plan tends to increase. Thus, the optimizer
discards plans with low precision since they tend to be slow.

Comparison With the State-of-the-Art Techniques:
We now compare our Holistic-MAP optimizer with the state-
of-the-art approaches discussed in Section 4, as a function
of target recall and without precision constraints.13 For
brevity, Figures 11 and 12 focus on the IE programs that
run on the (larger) NYT dataset, namely, OrganizationAf-
filiation — as an example of a dense relationship — and
DiseasesOutbreaks — as an example of a sparse relation-
ship. (The results for the other relations are analogous; see
[20].) Overall, Holistic-MAP is faster than CIMPLE and
SystemT. For DiseasesOutbreaks, when the desired recall is
below 90%, this difference is substantial, as Holistic-MAP
can rely on query-based retrieval strategies to process fewer
documents than CIMPLE and SystemT. As expected, CIM-
PLE and SystemT tend to obtain recall that is close to the
desired levels: in our versions of CIMPLE and SystemT (see
Section 4), the recall constraints only influence the percent-
age of documents that the IE execution plan uses, and these
documents are chosen randomly. Interestingly, for dense re-
lationships, Holistic-MAP is also able to closely match the
desired recall, despite the fact that the Holistic-MAP IE
execution plans may exploit approximations, for efficiency.
In contrast, for a sparse relationship like DiseasesOutbreaks,
Holistic-MAP does not match the recall constraints closely.
However, as we increase the desired recall values, Holistic-

13CIMPLE, SystemT, and the SQoUT baselines do not ex-
ploit optimization opportunities from using approximate al-
gorithms or execution orders. Hence, their execution plans
remain unchanged even in the presence of precision con-
straints. Our techniques adapt to the precision constraints.
However, as shown above (Figure 10), the efficiency of our
techniques is not substantially affected as long as the re-
quested precision is below 90%.

Figure 11: Total time, recall, and precision for Orga-
nizationAffiliation, for CIMPLE, SQoUT, SQoUT-
Boosted, and Holistic-MAP.

Figure 12: Total time, recall, and precision for
DiseasesOutbreaks, for CIMPLE, SystemT, SQoUT,
SQoUT-Boosted, and Holistic-MAP.

MAP progressively corrects this behavior and, for example,
obtains a perfect recall of 100% when we request it.

Our experiments also show the superiority of Holistic-
MAP over the SQoUT baselines. To see why, note first
that SQoUT is substantially slower than SQoUT-Boosted
in most cases,14 as expected: SQoUT-Boosted optimizes
both the document retrieval strategy and the IE plan it-
self (as discussed in Section 4, SQoUT-Boosted is a strong
baseline that optimizes all components of the IE process
separately, combining state-of-the-art strategies but with-
out our holistic approach); in contrast, SQoUT optimizes
only the retrieval strategy. But SQoUT-Boosted has limita-
tions relative to Holistic-MAP. For DiseasesOutbreaks (Fig-
ure 12), SQoUT-Boosted finds a fast execution plan but its
recall is low: SQoUT-Boosted uses ML estimations, so it
suffers from the limitations of ML discussed above. The
results for OrganizationAffiliation (Figure 11) also reveal
that SQoUT-Boosted is less efficient than Holistic-MAP for
most values of desired recall: the queries on which SQoUT-
Boosted relies for document retrieval, which are trained with
automatic query generation [1, 5], could not select appro-
priate documents from this large dataset even for a 10%
target recall. Thus, SQoUT-Boosted relies on an exhaustive
scan retrieval strategy for every case, with a negative impact
on extraction time. In contrast, Holistic-MAP exploits the
semantics of the IE program and finds effective queries—
based on resources from rule-based operators like dictio-
naries and patterns—that are better than those from au-
tomatic query generation. Furthermore, the Organization-
Affiliation results highlight the importance of our holistic
optimization approach: for high target recall values, starting
at 40%, Holistic-MAP holistically determines that it could
match the recall constraints by using, for efficiency, either
a query-based document retrieval strategy or approximate

14The only exception is OrganizationAffiliation, in which
SQoUT and SQoUT-Boosted are equivalent.
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algorithms for IE operators, but not both; using both would
result in query plans not matching the recall constraints, a
conclusion that could not be derived by optimizing each im-
plementation choice independently. In summary, these ex-
periments highlight the merits of our holistic optimization
approach over the (strong) baseline approach of simply com-
bining the existing optimization components from the state-
of-the-art approaches, as embodied in SQoUT-Boosted.

6. RELATED WORK
In this paper, we presented an approach for the automatic

optimization of IE programs. Our work is closest to CIM-
PLE [19], SystemT [12, 16], and SQoUT [8, 10]. Through-
out this paper, we extensively compared our approach with
these systems, both conceptually and experimentally. So,
we do not repeat this discussion here. Instead, we briefly
discuss document retrieval strategies for IE, since they can
serve as an important optimization building block for IE pro-
grams. Specifically, early work on IE [3, 7] already relied on
classifiers to filter unnecessary documents. Qxtract [1] and
PRDualRank [5] automatically produce queries to find the
promising documents for extraction. In our experiments, we
used Qxtract and PRDualRank to enrich the set of alterna-
tives for document retrieval that our approach and SQoUT
use. As new approaches for document retrieval arise, they
can easily be integrated in our optimization approach, mak-
ing it possible to improve the results even further.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a holistic approach for IE

optimization that addresses the limitations of the state-of-
the-art systems. Our approach exploits, collectively, three
optimization opportunities, namely, the choices of: (i) algo-
rithms for IE operators; (ii) operator execution order; and
(iii) document retrieval strategy. Our experiments show the
gains of our approach in comparison to the state-of-the-art
IE optimization systems, and against an optimization ap-
proach that combines the existing strategies without our
holistic view. Our work can be extended in multiple direc-
tions. First, we consider using multi-objective optimization
techniques instead of relying on user-imposed constraints
on recall and precision. Second, we plan to adapt our op-
timization approach for modern parallel computation envi-
ronments (e.g., Map-Reduce).
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A. PREDICTING OPERATOR OUTPUT
A key point in our optimization approach (Section 3.2.2)

is the estimation of the number of correct and incorrect tu-
ples produced by each algorithm Oi when it receives an
input tuple: E[Cor(NOi)|RP , C], E[Inc(NOi)|RP , C], and
E[Inc(NOi)|RP ,¬C]. We now provide a general explana-
tion of our estimation, which can be easily instantiated for
Cor(NOi), Inc(NOi), C, and ¬C. Specifically, using the
definition of expected value, we start with E[NOi |RP ] =∑∞

ko=0 ko P (NOi = ko|RP ). Since the number of Oi out-
put tuples depends on the distribution of tuples produced
by the operator O, we can use marginalization to make our
estimation dependent on NO (i.e., E[NOi |RP ] =

∑∞
ko=0 ko∑∞

kl=ko
P (NOi = ko|NO = kl, RP )P (NO = kl|RP )). Then,

we algebraically change the order of the sums, E[NOi |RP ] =∑∞
kl=0 P (NO = kl|RP ) E[NOi |NO = kl, RP ]. Since NOi fol-

lows a Binomial distribution with parameters kl and pOi(P ),
E[NOi |NO = kl, RP ] = kl ·pOi(P ). Finally, we use the Bayes

rule, P (NO = kl|RP ) = P (RP |NO=kl)P (NO=kl)∑∞
k=0

P (RP |NO=k)P (NO=k)
, leading

to: E[NOi |RP ] = pOi(P )·
∑∞

kl=0 kl·P (RP |NO=kl)·P (NO=kl)∑∞
k=0

P (RP |NO=k)·P (NO=k)
.

For further details on the intermediate steps that lead to
these equations, please refer to [20].
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