
Storing and Processing Temporal Data in a Main Memory
Column Store

Martin Kaufmann
(supervised by Prof. Dr. Donald Kossmann)

SAP AG, Walldorf, Germany and Systems Group, ETH Zürich, Switzerland
martin.kaufmann@inf.ethz.ch

ABSTRACT
Managing and accessing temporal data is of increasing importance
in industry. So far, most companies model the time dimension
on the application layer rather than pushing down the operators
to the database, which leads to a significant performance over-
head. The goal of this PhD thesis is to develop a native support
of temporal features for SAP HANA, which is a commercial in-
memory column store database system. We investigate different
alternatives to store temporal data physically and analyze the trade-
offs arising from different memory layouts which cluster the data
either by time or by space dimension. Taking into account the
underlying physical representation, different temporal operators
such as temporal aggregation, time travel and temporal join have
to be executed efficiently. We present a novel data structure called
Timeline Index and algorithms based on this index, which have a
very competitive performance for all temporal operators beating
existing best-of-breed approaches by factors, sometimes even by
orders of magnitude. The results of this thesis are currently being
integrated into HANA, with the goal of being shipped to the cus-
tomers as a productive release within the next few months.

1. INTRODUCTION
Most data sources in real-life are not static but change their in-

formation in time. This evolution of data in time can give valuable
insights to business analysts. An example is the inventory of a big
distributed mail order business, where bottlenecks in the supplier
chain can be identified easily by computing the aggregated number
of items out of stock per supplier in a time interval. This operator
is referred to as temporal aggregation. Another example is a trader
comparing the value of his investment portfolio with the state AS
OF a year ago. Retrieving an old version of a table is called time
travel.

Companies have a high demand to maintain and query such
temporal data. Yet, only few commercial database systems provide
support for the time dimension in their products. Oracle has been
supporting time travel operators by means of its Flashback feature
for more than 10 years. IBM DB2 [13] and Teradata have only very
recently added temporal features to their products. However, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

supported temporal operators in these products are limited to time
travel. Moreover, all these systems store their data on a disk-based
row-store.

On the academic side, temporal data management has been the
subject of extensive research since the 1990s. Since Snodgrass’
definition of the temporal data model [14], there has been a large
body of work in this area, summarized in [12, 4]. This related
work covers proposals for index structures (e.g., multi-version B-
trees [1]) and algorithms for certain kinds of queries (e.g., temporal
aggregation [10, 2] and temporal joins [4, 15]). In most related
work the focus was on disk based structures, optimizing for I/O
behavior.

Driven by the superior performance of in-memory databases and
the increasing amount of available memory, SAP HANA follows
another approach: We keep all data (both current and temporal) in
main memory. Adding distribution and compression to the picture,
HANA is already able to handle temporal queries on hundreds of
terabytes of data in main memory.

The topic of this PhD thesis is to investigate how support of
temporal features can implemented natively in HANA. The chal-
lenge is to find a unified solution which takes advantage of modern
hardware and provides optimal query execution times for the three
most important temporal operators at the same time: 1) temporal
aggregation 2) time travel and 3) temporal join. In addition,
memory consumption should be minimized as this is an important
cost factor for an in-memory database system. In this context, we
address the following three questions:

(a) How to store temporal data in an in-memory column store?
The first step is to study alternative approaches to represent tem-
poral data in a main memory column store, as published in [7].
Here we focus on the physical storage of temporal data and scan-
based algorithms rather than index data structures. The experi-
ments we run on the different memory layouts give insight into
the fundamental space-time tradeoffs of versioned column stores.
A hybrid approach, which partially clusters the data per time and
space, shows the most balanced performance for our use cases.

(b) How to index temporal data in an in-memory column store?
Whereas in the previous approach we considered scan-based so-
lutions only, we now present a novel index data structure called
Timeline Index [9] and algorithms for processing a large variety
of temporal queries based on this index. Only one instance of a
Timeline Index is required per table, with memory consumption
linear with respect to the table size. The performance results for
the temporal operators are very competitive - up to several orders of
magnitude faster then current results from related work in literature.

1444

Data

Version
R

ow
-ID

(a) Whole Database
Version

R
ow

-ID

(b) Slice at a Certain Point in Time
Version

R
ow

-ID

(c) Evolution of a Certain Row

Figure 1: Different Dimensions of a Relation with Temporal Data

(c) How to measure performance? During our work, the perfor-
mance evaluation of our operators turned out to be a problem as
no standard benchmarks for temporal databases are available. We
therefore propose a new Benchmarking Service [5], which provides
an abstract and generic model of benchmarks. This service supports
consolidating and unifying various benchmarks. Furthermore, it
simplifies the development of new benchmarks. We use this system
to micro-benchmark different implementations of temporal opera-
tors and for the development of new benchmarks such as [6].

The rest of this paper is organized as follows: We first give an
overview about HANA, which is our target database system. Sec-
tion 3 describes different memory layouts to store temporal data.
In Section 4 the Timeline Index is introduced. The Benchmarking
Service is sketched in Section 5. We give some avenues for future
research in Section 6 and conclude the paper in Section 7.

2. THE SAP HANA DATABASE SYSTEM
SAP HANA [3] is a commercial database system, which consists

of a combination of a main memory column store and a main
memory row store. In this paper we focus on the column store
engine.

2.1 Architecture of SAP HANA
SAP HANA was designed for supporting modern hardware such

as multi-core systems and large main memories. Especially fast
full column scans and adopted operators as well as massive intra-
and inter-operator parallelism contribute to the performance char-
acteristics. Column stores are well suited for analytic queries on
big amounts of data, which originally was the core business of
HANA. Currently, HANA is being extended to be able to handle
both OLAP and OLTP workloads efficiently in one system.

Multiple compression schemes are applied to reduce the main
memory consumption and improve query execution times. In order
to achieve good insert/update performance, one or multiple non-
compressed delta stores receive the incoming data and later merge
them to the compressed format. For consistency, all operations take
all stores into account.

SAP HANA is a distributed database system which allows for
the usage of multiple servers for one installation. The biggest
installation (in our lab) so far consists of 250 nodes with 1 TB
each, which sums up to 250 TB of main memory. With an average
compression ratio of 5, this installation can load up to 1.25 PB of
raw data. HANA includes multiple engine types such as a text
engine, a graph engine, an OLTP engine, and others. The OLTP
engine is based on Snapshot Isolation for concurrency control;
Snapshot Isolation is an important prerequisite to implement clear
semantics for temporal data management.

2.2 Support of Temporal Data
Temporal data (transaction time) is already available natively

in HANA, but only the time travel operator is supported at the
moment. Transactional and analytic operations on temporal data
are available in the same database system by separating current
from temporal data. Current and temporal data are separated in
different structures, but both are kept in main memory. The most
prominent examples for temporal data structures are the data store
objects in the SAP Business Warehouse product (BW, DSO) and
the so-called “change documents” in the SAP ERP system, where
applications store the history of business objects. Both can be
implemented by temporal data structures.

3. STORING THE TIME DIMENSION
In this section, different layouts for storing temporal data in an

in-memory database system such as SAP HANA are compared.

3.1 Memory Layouts
As shown in Figure 1, there are two dimensions relevant to a

relation that contains historical data: the time dimension (i.e., slice
the relation to show the state at a given point in time) and the row
dimension (i.e., slice the relation to show the changes made to a
certain row). Data can be clustered along no more than one of
these two dimensions at the same time. Depending on this decision,
different costs have to be paid for the temporal operators. In this
section, we focus on temporal aggregation and time travel.

Clustering by Row. In the clustering by row approach shown in
Figure 2, space for a fixed number of versions is reserved for each
row. The memory layout contains a base array of segments. Each
position in the base array corresponds to a row in the table. A
segment contains widthrow pairs of (valim, verm) as a payload
rather than an atomic value as in the case of a traditional column
store. valim is the value of row i which was valid since version
verm. If the number of updates of one row in the base array
exceeds widthrow, the data of the segment is copied to the next
available position in an overflow array and a reference is stored.
Within this overflow array, the segments of each row are chained
and referenced by their array position.

In the example given in Figure 2 we consider a versioned cus-
tomer table with two attributes. If the account balance of customer
s decreases to ’$3.00’ at version number ’9’ a new (valsm, verm)
pair with valsm=’3.00’ and verm=’9’ is prepended to the segment
of this customer. The former value is moved to the next available
position in this segment.

Clustering by Version. In the clustering by version approach,
for each version of a row four values are stored in an array: The

1445

CUSTKEY NAME ACCTBAL

Customer

. . .

#123 Alice 1.13

SURNAME

Overflow Array

#r

Temporal Table A – Custered by Row

#n

#1

from 3: Cox|from 1: Adamfrom 11: Fox | from 7: Adam

row BALANCE

#r

#n

#1

from 12: 1.13

row

#s from 6: Smith from 9: 3.00 | from 6: 8.00#s

NAME

Temporal Table A – Cluster by Version

mname

1
...

...

... ...

...

row value from to

...

...

#r Dave 1 3

#r Eve 3 7

#s Max 6 ∞

#r Bob 7 11

#r Alice 11 ∞

ACCTBAL

macctbal

1
...

row value from

2

to

...
#r 3.14 5

#r 9.93 5 7

#r

#n

#1

row

#321 Max 3.00#s

NAME

Temporal Table A – Hybrid Clustering

mname

1
...

row value from to

...

...

#r Dave 1 3

#r Eve 3 7

#s Max 6 ∞

#r Bob 7 11

#r Alice 11 ∞

ACCTBAL

macctbal

1
...

row value from

2

to

...
#r 3.14 5

#r 9.93 5 7

row

Checkpoints:

value from

Eve 3

row

#r

version 5

value from

Bob 7#r

version 10

Max 6#s

Checkpoints:Delta: Delta:

Base Array Base Array Overflow Array

from 8: 5.89 | from 7: 8.13

...

#s 8.00 6 9

#r 8.13 7 8

#r 5.89 8 12

#s 3.00 9 ∞

#r 1.13 12 ∞

...

#s 8.00 6 9

#r 8.13 7 8

#r 5.89 8 12

#s 3.00 9 ∞

#r 1.13 12 ∞
row

#r

value from

9.93 5

row

value from

5.89 8#r

version 10

3.00 9#s

from 5: 9.93 | from 2: 3.14

version 5

Figure 2: Physical Representation of Temporal Data Clustered by Row

0

0,5

1

1,5

2

0 50 100 150 200

Q
u
e
ry
 E
xe
cu
ti
o
n
 T
im

e
 (
s)

Inserted Versions (Million)

By Row

By Version

Hybrid

Row Store

(a) Temporal Aggregation: SUM

0

0,5

1

1,5

2

0 50 100 150 200

Q
u
e
ry
 E
xe
cu
ti
o
n
 T
im

e
 (
s)

Selected Version (Million)

By Row

By Version

Hybrid

Row Store

(b) Time Travel

Figure 3: Temporal Operators Executed for Different Memory Layouts

Row-ID i, the value val and a half-closed version interval given
by the version verfrom for which this value becomes valid and the
version verto when it is invalidated. The version interval simplifies
determining if a value is valid for a given version without having to
scan all data to check if it was invalidated within another update.

For example, the fact that the customer with Row-ID #r had a
balance of ’$8.13’ from ’7’ to ’8’ can be represented by (#r, ’8.13’,
’7’, ’8’).

Hybrid Clustering. The layout of the hybrid approach is similar
to the clustering by version layout, but it includes additional check-
points, each containing the latest version for all rows at the time
that the checkpoint was computed.

Again, if a row with ID i is inserted or updated at version ver,
the tuple (i, val, ver,∞) is appended to a data structure called delta
array according to the clustering by version approach. The tuples
are therefore clustered by version. After a fixed number of updates
(defined by the checkpoint interval parameter) a consistent view of
the entire column for the current version is serialized and stored
in a checkpoint. In such a checkpoint, the value val and the latest
version ver are stored for each row. The ID of a row is represented
implicitly by the position in the checkpoint. Hence, the data within
a checkpoint is clustered by row. For keeping track of the versions
for which a checkpoint is available, an index is introduced.

3.2 Measurements
For the evaluation of the memory layouts we use a data gener-

ator based on TPC-H with additional update scenarios to create a
realistic workload containing a history of data as described in [6].

Temporal Aggregation. Figure 3a shows the results for computing
a temporal aggregation for different memory layouts. A row store
is shown as a baseline. Figure 3a shows the execution time of a
query calculating the aggregated sum of l extendedprice grouped
by time within the version interval [60 M, 90 M].

The execution time of the clustering by row layout increases
linearly with the number of versions because all versions of a

0 10 20 30 40

Row Store

Hybrid

By Version

By Row

Memory Consumption (GB)

Figure 4: Memory Consumption of the Lineitem Table

row are clustered together and can be read sequentially. For the
clustering by version approach, a full table scan is required to
retrieve all versions of a row. The hybrid approach benefits from the
checkpoint at version 50 M, which results in a linear scan within the
interval [50 M, 90 M] only. The query execution time for the row
store is the worst because of the pointer chasing for each version.

Time Travel. In the next experiment shown in Figure 3b we
measure the performance of a time travel operation in which the
maximum value of the l quantity attribute for all rows at a given
version is calculated. For the clustering by row layout, the query
execution time decreases for higher versions. This is due to the fact
that the newest versions are stored in the leftmost segment. The
execution time increases for later versions in the clustering by ver-
sion approach because more tuples have to be scanned for a higher
version. The sawtooth shape of the hybrid approach is caused by
the execution time increasing linearly with respect to the distance to
the nearest checkpoint. In addition, the latest version can always be
retrieved in constant time from the current checkpoint. For a better
visualization of the effects, only one intermediate checkpoint was
created for the measurements. The performance of the row store
decreases significantly for lower versions because a pointer has to
be followed for each version.

Memory Consumption. Figure 4 shows the total memory con-
sumption of the lineitem table for different layouts. The clustering

1446

Martin Kaufmann – ETH Zürich Systems Group 2Aug 20th, 2012

Skizzen für Paper – Invalidation Index

Version Acc.Pos.
103 1
106 3
107 4

Delete List

Invalidation Index

Version Map

Name Balance
Carl $100
Ellen $700

ROW_ID
1
2
3
4
5
6

Name Balance Start End
Alice $200 101 103
Bob $300 102 107
Carl $100 103 ∞
Alice $500 103 106
Ellen $700 105 ∞
John $400 105 106
Temporal Table Customer*

Current Table Customer

1
4
6
2

R
O

W
_ID

(a) Current Table

Martin Kaufmann – ETH Zürich Systems Group 2Aug 20th, 2012

Skizzen für Paper – Invalidation Index

Version Acc.Pos.
103 1
106 3
107 4

Delete List

Invalidation Index

Version Map

Name Balance
Carl $100
Ellen $700

Row-ID
1
2
3
4
5
6

Name Balance Start End
Alice $200 101 103
Bob $300 102 107
Carl $100 103 ∞
Alice $500 103 106
Ellen $700 105 ∞
John $400 105 106
Temporal Table Customer*

Current Table Customer

1
4
6
2

R
O

W
_ID

(b) Temporal Table

Figure 5: Example Current and Temporal Tables

Martin Kaufmann – ETH Zürich Systems Group 5Aug 20th, 2012

Timeline Index
Skizzen für Paper

Version Event-ID
101 1
102 2
103 5
105 7
106 9
107 10

Event List

Row-ID +
1 1
2 1
1 0
3 1
4 1
5 1
6 1
4 0
6 0
2 0

Version Map

Timeline Index

Visible Rows

1

1, 2

2, 3, 4

2, 3, 4, 5, 6

2, 3, 5

3, 5

Figure 6: Timeline Index for the Temporal Table in Figure 5b

by row approach is more memory-efficient than clustering by ver-
sion because the primary key has to be stored for each row only
once. The memory consumption of the hybrid approach is higher
than clustering by version and depends on the number of check-
points. For our experiments, only one intermediate checkpoint was
created. The memory consumption of the row store is similar to the
clustering by version approach.

From the experiments we can derive that the hybrid approach has
the best and most balanced execution times for different operators.
Yet, the memory consumption is too high due to the full materi-
alization of the data for each checkpoint. Therefore, in the next
section we follow another approach and represent the checkpoints
as a bitmap which references the temporal table. Another disadvan-
tage is that the operators only work if the table is sorted physically
by version. We therefore introduce an index data structure which
1) restores the temporal order for a temporal table with arbitrary
physical order and 2) implements checkpoints more efficiently.

4. THE TIMELINE INDEX
This section describes the data structures and basic principles of

the Timeline Index [9].

4.1 Fundamentals and Architecture
Figure 5 shows an example of how HANA manages temporal

data. A similar architecture has been adopted by DB2 [13]. For
every table, HANA keeps the current version of the table and the
whole history of all versions of the table in a separate structure. For
simplification we assume in this paper, that the current version is
always replicated to the temporal table. The current table provides

Martin Kaufmann – ETH Zürich Systems Group 12Aug 20th, 2012

Row-ID

1
2
3
4

Name Balance …
Alice $200 …
Bob $300
Carl $100
Alice $500 …

Temporal Table

1.) Time-Slider (temporal aggregation)
 sum(value)  linear scan of Timeline Index!

+$200
+$300
-$200+$100+$500

Applying the Timeline Index

Timeline Index

Version
101
102
103

Li
ne

ar
 s

ca
n

Lo
ok

up
B

al
an

ce

Version Events
101 +1
102 +2
103 -1 +3 +4

sum
$200
$500
$900

Figure 7: Temporal Aggregation: SUM

efficient access to the current state of the database as such accesses
are the most common use cases for HANA. Temporal features (e.g.,
time travel) are implemented using the temporal table, and that is
where the Timeline Index takes effect: It is an index that accelerates
various temporal operators carried out on different columns of a
temporal table. Yet, only one Timeline Index is required per table.
Temporal tables and Timeline Indexes are the focus of this work.

4.2 Index Data Structure
Figure 6 shows the Timeline Index for the temporal table of

Figure 5b. The idea of the Timeline Index is keeping track of all the
visible rows of the temporal table at every point of time. To this end,
the Timeline Index returns all rows that are activated or invalidated
at each point in time. For instance, Row-ID 1 of the temporal table
of Figure 5b is activated at Version 101 and invalidated at Version
103 of the database. More concretely, a Timeline Index consists of
two data structures which are scanned concurrently to implement
any kind of temporal operation: Event List and Version Map. In
addition, checkpoints are used to put an upper bound to the time
needed to access a certain version in the table.

Event List. The Event List keeps track of each invalidation and
activation event. Activation events are marked with a “1” and
invalidation events are marked with a “0”. For instance, the first
entry of the Event List indicates the activation of Row 1. The
second event indicates the activation of Row 2, and so on.

Version Map. The second data structure of the Timeline Index is
the Version Map, which keeps track of the sequence of events that
are seen by each version of the database; i.e., by each commit of
a transaction. For instance, the Version Map of Figure 6 indicates
that Version 101 of the database sees only the first event of the
Event List; Version 103 of the database sees the first five events of
the Event List. By concurrently scanning and merging the Version
Map and Event List, it is possible to reconstruct all the visible rows
of the temporal table. All algorithms for temporal operators exploit
this feature. Figure 6 shows the visible rows for each version of the
database in red.

Checkpoints. Reconstructing all tuples visible at a single version
requires the complete traversal of the index, leading to linearly in-
creasing cost to access (later) versions. To overcome this problem,
we augment the difference-based Timeline Index with a number of
complete version representations at particular points in the history.
We call such a full view a checkpoint. A checkpoint is a bit vector
which represents the visible rows of the temporal table at the time
the checkpoint was taken.

4.3 Index Construction
Based on the design of the Timeline Index, we can now describe

how to efficiently create and incrementally update the data struc-
ture, even when the underlying data is not in start time order.
The maintenance algorithms follow an approach which is based
on Counting Sort. The overall cost of this algorithm is linear with
respect to the size of the table since it needs to touch each tuple
only twice – once for counting the number of events per version
and once for writing the values to the Event List. Furthermore,
the index can be updated incrementally by just appending the new
versions and the corresponding events to the Timeline Index.

4.4 Temporal Operators
In this section, we describe the basic ideas of how the Timeline

Index supports efficient processing of temporal queries for the com-

1447

0

1

2

3

4

5

0 5 10 15 20

Q
u
e
ry
 E
xe
cu
ti
o
n
 T
im

e
 (
s)

Inserted Versions (Million)

Snodgrass 1995

Timeline

(a) Temporal Aggregation: SUM

0,0

0,5

1,0

1,5

2,0

0 50 100 150 200

Q
u
e
ry
 E
xe
cu
ti
o
n
 T
im

e
 (
s)

Selected Version (Million)

SAP HANA

Full Scan

Timeline

(b) Time Travel

0

1

2

3

4

5

0 5 10 15 20

Q
u
e
ry
 E
xe
cu
ti
o
n
 T
im

e
 (
s)

Inserted Versions (Million)

Hash Join

Timeline

(c) Time Selective Join Query

Figure 8: Temporal Operators based on Timeline Compared to Alternative Approaches

mon temporal operator classes we found in the use cases provided
by SAP customers.

Temporal Aggregation. A temporal aggregation operator (first
defined in [10]) computes an aggregated value for each temporal
range. For this paper, we explain temporal aggregation using a
point-in-time range and a SUM function, which is a cumulative
aggregate. For this combination, a new aggregated value can be
computed directly by knowing the previous aggregated value and
the change. As shown in Figure 7, we perform a linear scan of
the Timeline Index using a single variable, sum, that keeps track of
the aggregated value. By scanning the index, we determine the new
tuples that were activated and invalidated for each version. We look
up the balance values for all of these tuples and adjust the value of
the sum variable accordingly for each version. Thus, the aggregated
value is computed incrementally. As a result, the execution of this
operator is very efficient.

The cost for temporal aggregation based on the Timeline Index is
linear with respect to the size of the respective temporal range.

Time Travel. The time travel operator retrieves the tuples that were
visible for a given version VS. This set of visible tuples can be
computed by going back to the nearest previous checkpoint (if it
exists) or otherwise the beginning of the index. Next, the active set
of this checkpoint is copied to an intermediate data structure. We
then perform a linear traversal of the Timeline Index and stop when
the version considered becomes greater than VS.

The cost for time travel is linear with respect to the distance to
the nearest previous checkpoint or the size of the temporal table.

Temporal Join. The temporal join on two tables returns all tuples
which satisfy a spatial predicate and whose time intervals overlap
(i.e., which are valid at the same points in time). For each input
table a Timeline Index has to be available. The output of the
join operator again is a slightly extended Timeline Index where the
entries in the Event List are not individual Row-IDs for one table,
but pairs of Row-IDs, one for each partner in the respective table.
To execute the join of two tables, we do a merge-join style linear
scan of both Timeline Indexes (both ordered by version). The result
can either be materialized or taken as an input for other temporal
operators (late materialization).

As the temporal join can be computed by two parallel index
scans, the execution time is linear with the sizes of the input tables.

4.5 Measurements
Temporal Aggregation. Figure 8a shows the computation of
temporal aggregation with a SUM, using the Timeline Index and an
implementation of an algorithm published by Snodgrass in 1995

[10]. Timeline Index clearly outperforms Snodgrass 1995. The gap
becomes larger when the duration of the temporal aggregation gets
longer (i.e., as more tuples need to be aggregated).

Time Travel. Figure 8b shows the performance of the Timeline
Index for time travel queries for varying points in time at which
the query is supposed to be executed: At the very left, the query is
executed AS OF Version 1 of the database, the oldest version. At
the very right, the query is executed against the current version of
the database. We measured the Timeline Index using 100 check-
points compared to the current release version of SAP HANA.
As an additional baseline, we studied a table scan to process this
query. The clear winner in this experiment is the Timeline Index: It
performs well throughout the spectrum.

Temporal Join. In this experiment, we studied the performance
of the Timeline Index to process a temporal join of the orders and
lineitem tables from the TPC-H schema. As a baseline, we use
a regular (and highly-tuned) hash join. As shown by the mea-
surements in Figure 8c, the query execution time for the Timeline
Index scales linearly with the size of the temporal table. Again, the
Timeline Index is a great way to carry out any kind of selection in
the temporal dimension.

4.6 Integrating Timeline Index into HANA
The Timeline Index has been implemented as a prototype based

on the architecture of HANA. Data structures and algorithms are
designed to fit the properties of modern hardware with the goal to
be integrated into the SAP HANA product. Given this perspective
of a deployment in a real system, all aspects of productive software
like performance, memory consumption, parallelism, and complex-
ity of algorithms had to be taken into account. Therefore, the data
structures have to be kept simple, memory overhead must be low,
incremental updates have to be supported, delta structures as well
as fast index reconstruction must be available. The Timeline Index
is general and can be applied to both the HANA column and row
stores. As temporal queries are often part of OLAP workloads,
however, we envision that Timeline Indexes are mostly used with a
columnar table layout.

5. GENERIC BENCHMARKING
In this section we introduce the Benchmarking Service [5] moti-

vated by our experiments in the context of temporal databases.

5.1 Modeling a Benchmark
Since the Benchmarking Service aims to combine flexibility with

rich data operations and user guidance, a comprehensive and ex-
pressive model is required as shown in Figure 9. The key benefit of

1448

Sercice Controller

Execution Node

Database Instance

System Architecture

Execution Order

Measurements

Benchmark Definition

Parameter Definition

Generator
Instance

Generator
Type

DB Server
Instance

DB Server
Type

Query
Instance

Query
Type

Parameter
Binding

f

e

d

c

b

Versioned Results

Service Controller

Schema
Instance

Schema
Type

DDL
Instance

DDL
Type

a

Figure 9: Data Model of the Benchmarking Service

this meta model is that artifacts (i.e., components of a benchmark)
can be parameterized, stored and reused. The intuitive definition of
these artifacts is achieved by a web-based UI, which also supports
archiving and comparing results. Generally speaking, a benchmark
can be seen as a subset of the cross-product of all the artifact types
and parameters.

5.2 System Architecture
A distributed architecture was chosen for the service: A central

Service Controller keeps track of the meta model instances, which
includes both the actual artifacts and the results. The process of
running an experiment is controlled by a Coordinator Node, which
contains a queue of benchmarks that are about to be executed,
distributes jobs and detects node failures. The benchmarks are
run on several Execution Nodes in parallel to simulate a multi-
user workload or speed up measurements. Each Execution Node in
turn may distribute the measurements over several database servers.
Database servers can be accessed at different levels, mainly using
call-level interfaces such as JDBC with queries and statements
derived from workloads and DBMS metadata. Besides, when
necessary, scripts can be used at the OS level to start/stop databases
and perform external tuning.

6. RESEARCH DIRECTIONS
There are many interesting avenues for future work in the context

of temporal data in main memory column-stores. In this section we
give two topics of additional projects.

6.1 Bitemporal Data
We plan to apply the Timeline Index also to application time in

addition to system time. Supporting both time dimensions would
make the Timeline Index suitable for the bitemporal data model,
which is now part of the SQL:2011 standard [11]. The challenge
is that the assumption of static data for previous versions does not
hold any more for application time. For this reason, the append-
only approach for index maintenance is not feasible in this case.
An idea to tackle this problem is to employ the delta-main approach
chosen for HANA also for index maintenance.

6.2 Compound Temporal Queries
Up to now we have investigated various temporal operators inde-

pendently of each other. A further research direction is to consider
more complex query plans including several different temporal

operators per query using a Timeline Index also as a difference-
based representation of an intermediate result rather than fully
materializing tables, e.g., in the case of a temporal join.

7. CONCLUSION
This paper presented our current and on-going research in the

context of providing native support for various temporal operators
in a commercial in-memory column store database system.

We compared three alternative memory layouts to store temporal
data physically in a column store and evaluated the tradeoffs for
each temporal operator. We achieved the most balanced results for
a hybrid approach, which combines both segments of data clustered
by time and by space.

Yet, the requirement to physically reorganize data in favor of
compression and to further improve performance was the moti-
vation for developing a novel, universal index structure which
supports a large variety of temporal operators. This Timeline Index
is space-efficient, typically only a small percentage of the size of a
temporal table and only a single instance of this index per temporal
table is sufficient. Furthermore, it integrates naturally into an exist-
ing database system such as SAP HANA, thereby taking advantage
of highly optimized code paths to scan data, parallelize queries,
and utilize modern (NUMA) hardware. Query execution time is
predictable and very fast: It beats all best-of-breed approaches in
all our performance experiments with an in-memory column store;
in some cases by orders of magnitudes.

A prototype with an implementation of various temporal oper-
ators based on the Timeline Index has already been implemented
and a demo [8] has been published. We are currently working on
a productive release of SAP HANA having all temporal operators
(i.e., time travel, temporal aggregation and temporal join) based on
the Timeline Index.

8. REFERENCES
[1] B. Becker et al. An asymptotically optimal multiversion b-tree.

VLDB J., 5(4), 1996.
[2] M. H. Böhlen, J. Gamper, and C. S. Jensen. Multi-dimensional

Aggregation for Temporal Data. In EDBT, 2006.
[3] F. Färber et al. The SAP HANA Database – an architecture overview.

IEEE Data Eng. Bull., 35(1), 2012.
[4] D. Gao, C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Join

Operations in Temporal Databases. VLDB Journal, 14(1), 2005.
[5] M. Kaufmann, P. M. Fischer, D. Kossmann, and N. May. A Generic

Database Benchmarking Service. In ICDE, 2013.
[6] M. Kaufmann, P. M. Fischer, N. May, A. Tonder, and D. Kossmann.

TPC-BiH: A Benchmark for Bi-Temporal Databases. In TPCTC,
2013.

[7] M. Kaufmann, A. Manjili, S. Hildenbrand, D. Kossmann, and
A. Tonder. Time-Travel in Column-Stores. In ICDE, 2013.

[8] M. Kaufmann et al. Comprehensive and Interactive Temporal Query
Processing with SAP HANA. In VLDB, 2013.

[9] M. Kaufmann et al. The Timeline Index: A Unified Data Structure
for Processing Queries on Temporal Data in SAP HANA. In
SIGMOD, 2013.

[10] N. Kline and R. T. Snodgrass. Computing Temporal Aggregates. In
ICDE, 1995.

[11] K. G. Kulkarni and J.-E. Michels. Temporal features in SQL: 2011.
SIGMOD Record, 41(3), 2012.

[12] B. Salzberg and V. J. Tsotras. Comparison of access methods for
time-evolving data. ACM Comput. Surv., 31(2), June 1999.

[13] C. M. Saracco et al. A Matter of Time: Temporal Data Management
in DB2 10. Technical report, IBM, 2012.

[14] R. T. Snodgrass et al. TSQL2 Language Specification. SIGMOD
Record, 23(1), 1994.

[15] D. Zhang, V. J. Tsotras, and B. Seeger. Efficient temporal join
processing using indices. In ICDE, 2002.

1449

