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ABSTRACT 

Connected devices are expected to grow to 50 billion in 2020. 

Through our industrial partners and their use cases, we validated 

the importance of inflight data processing to produce results with 

low latency, in particular local and global data analytics 

capabilities.  In order to cope with the scalability challenges posed 

by distributed streaming analytics scenarios, we propose two new 

technologies: (1) JStreams, a low footprint and efficient 

JavaScript complex event processing engine supporting local 

analytics on heterogeneous devices and (2) DiAlM, a distributed 

analytics management service that leverages cloud-edge evolving 

topologies. In the demonstration, based on a real manufacturing 

use case, we walk through a situation where operators supervise 

manufacturing equipment through global analytics, and drill down 

into alarm cases on the factory floor by locally inspecting the data 

generated by the manufacturing equipment. 

1. INTRODUCTION 
Today there are 5 billion connected devices, by 2015 we will have 

15 billion devices and the forecast for 2020 is 50 billion devices 

[1] . The growing demand to process and analyze the data coming 

from these devices requires new thinking and new strategies to 

handle effectively widely distributed data streams, especially 

when near real-time insights on the data are required. There is 

clearly not enough bandwidth to transfer all the raw data 

generated by these 50 billion connected devices to the cloud for 

further processing. And even if networking technologies made it 

be possible much of that raw data would be considered noise (i.e. 

uninteresting), wasting network and cloud resources. Adopting a 

local-global analytics strategy where data is pre-processed, pre-

filtered to remove noise and pre-aggregated as close to the source 

as possible can help overcome the bandwidth utilization 

challenges, empowering the cloud to handle more efficiently 

large-scale global analytics over the already enriched data streams 

coming from the devices.  

Local streaming analytics capabilities can complement cloud-

based streaming analytics platforms and are typically very useful 

to process data born at the devices (e.g. geo location, device 

telemetry, asset specific data, sensor readings etc.), enabling data 

reduction (noise removal), as a mechanism to handle devices with 

occasional/intermittent connectivity patterns and in some 

scenarios even as a privacy preserving mechanism. In many 

domains, the user requires also a global view of his assets, i.e. his 

fleet, the status of his deliveries, or all the alarms in a refinery.   

In a typical scenario (e.g. within an oil refinery or a manufacturing 

shop floor), sensors are connected to programmable logic 

controllers (PLCs) [2], where each PLC can be responsible for 

monitoring and controlling one machine. The PLCs forward 

information to a backend system where the signals can be 

correlated with manufacturing workflow data or enterprise 

resource planning. The operators' dashboards are reading and 

presenting the data from the backend system. Typically, there are 

already some static pre-filtering or down sampling rules on the 

PLCs (for example in normal situations, the PLCs should forward 

the temperature, vibration and rotation aggregated readings only 

every second). However, the PLCs have access to much higher 

data rates (up to 10 KHz). Suppose then that the PLC detects that 

the temperature is above a given pre-defined threshold and reports 

an alarm to the backend. In this situation, the operator would like 

to get more information from the machine/PLC associated with 

the alarm. Therefore, he grabs his mobile device (e.g. tablet or 

smart phone) and goes to the shop floor to check the machine 

personally. In front of the failing machine, he would now (1) like 

to connect to the machine directly and (2) inspect the high-

resolution data streams. The direct access to these streams 

facilitates the visual detection of outliers or spikes associated with 

the alarm. He can even go further and post different queries on the 

data directly using his mobile device processing capabilities. To 

enable this, the operator's mobile device must be able to run local 

queries and the system managing the analytics must be able to 

detect the new context of the operator (in front of machine) in 

order to re-arrange the setup of analytics, so that he, the operator, 

can receive the high-rate data streams from the PLCs. Our 

demonstration will show the aforementioned scenario, 

highlighting the value of enabling real-time event processing in a 
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heterogeneous, distributed setup. The key technical contributions 

introduced in this work are a new low footprint complex event 

processing engine designed for heterogeneous devices (JStreams) 

and a cloud-based service responsible for managing analytics 

artifacts deployed across cloud-edge topologies (DiAlM). 

The paper describes the distributed analytics architecture and 

components in section 2, section 3 provides a demonstration 

walkthrough and section 4 is the conclusion. 

2. ARCHITECTURE 
Our architecture for distributed analytics (DiAl) aims to boost the 

connected devices story for cloud-based services and to provide 

easy-to-use analytics on devices. The architecture consists of two 

major components: (1) an engine enabling low-latency data 

stream processing on devices and also in the cloud, called 

JStreams, and (2) a service managing analytics artifacts (e.g. 

queries) across all connected nodes, DiAlM (see Figure 1). 

 

 

 

 

 

The DiAl architecture enables the realization of end-to-end 

scenarios where data born on devices, such as sensor or phones, 

can be locally pre-processed, sent to the cloud for further analysis 

with results then visualized also on edge devices, such as a tablets 

and smart phones 

2.1 JStreams 
JStreams is a complex event processing engine that implements 

the CEDR algebra [3] (like Microsoft StreamInsight [4]), with 

support for relational and temporal operations such as filters, 

projections, temporal joins, windowed aggregates, group and 

apply, lifetime manipulations etc.. JStreams is implemented in 

JavaScript and can run on practically any place where JavaScript 

runs, such as smart phones, tablets, web browsers, cars, or servers. 

JStreams is designed to be lightweight and cross-platform. It 

offers a simple but powerful programming experience, with an 

API designed especially for JavaScript developers. It also comes 

with built-in cloud connectivity to enable analytics manageability 

and streaming data connectivity from devices to cloud and cloud 

to devices in an easy way. 

JStreams can run inside a device application container that 

connects physical sensors with inputs consumed by the queries. 

Some sensor values are exposed via HTML5/JavaScript APIs (e.g. 

location) and others can be accessed via platform specific 

connectors. The JavaScript runtime can be any kind of web 

browser, node.js [5] or a Windows 8 store application [6]. The 

results of the JStreams queries are sent to an output operator (a 

user defined function) that can, for example, display them in a 

local dashboard or send them to a service in the cloud (Figure 2). 

 

Table 1 shows performance test results for some JStreams 

operators. Note that as with any JavaScript application only one 

core is actually used (no multithreading). The tests were executed 

using node.js [5] in an Intel Xeon W3530 PC (4 cores @ 2.67 

GHz) with 10.0GB RAM. 

Table 1. JStreams performance test results 

Operator Average throughput 

Filter 2.0 Million events / sec 

Project 1.7 Million events / sec 

Min, Max, Average 
 (temporal snapshot window) 

0.5 Million events / sec 

Min grouped by key 
(temporal snapshot window) 

0.4 Million events / sec 

Temporal Join 0.6 Million events / sec 

 

2.2 DiAlM 
The distributed analytics management service (DiAlM) 

coordinates analytics artifacts such as queries, inputs and outputs 

on distributed nodes (devices). The analytics are expressed as 

queries over continuous streams of data. The queries and device 

metadata are stored in the cloud (see Figure 3). 

 

 

 

Figure 1: DiAl architecture 

Figure 2: JStreams embedded in JavaScript container 

Figure 3: DiAlM platform 
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Devices interact with DiAlM via the device metadata endpoint, 

which offers a REST based API on top of ODATA [7]. The push 

notification service informs registered devices about new artifacts 

(e.g. new queries). The DiAlM service scales-out by design, as all 

state is stored in cloud-based distributed storage. 

 

3. DEMO WALKTHROUGH 
In our demonstration, we are showcasing a day in the life of an 

operator in an industry shop floor. A control room dashboard 

shows the process data of four machines (Figure 4). The PLCs, 

connected to the machines, collect high-resolution sensor data 

(sampling rates > 1000 Hz).  

 

 

 

 

Sending all readings to the backend system is not an option (for 

bandwidth reasons), so the data is aggregated, pre-filtered and 

resampled directly on the PLCs using JStreams. On each PLC, we 

run two queries: (1) filtering alarm and (2) aggregating over a 

time window. Both queries are taking the power signal as input. 

The alarm filtering query checks the power input for power drops 

(where value < threshold) and the aggregation query calculates the 

average over a one second time window of the power signal. In 

the cloud (backend), we run a correlation query to get a global 

view of the energy consumption in our shop floor (see Figure 5). 

 

 

 

 

Suddenly several alarms occur for one of the machines, reporting 

power drops. An operator takes his tablet, opens the monitoring 

dashboard and observes the data coming from the machine: alarms 

and the actual down sampled signal (see Figure 6).  

 

 

 

 

Unfortunately, the data rates sent from the PLC to the backend are 

so low that the power drops are not visible in the signal. The 

operator might even wonder if the alarm really exists and is 

intrigued to understand the causes. The operator starts his 

investigation by connecting his mobile device directly with the 

PLC reporting the alarms to get high-resolution data streams from 

the machine, as he believes the power drops are somehow hidden 

in the aggregated data. With the high data rate, he is able to see 

the power drops now in the power line and it becomes clear that 

these are generating the alarms (see Figure 7).  

 

 

 

 

However, what is the root cause? To further investigate, he 

connects his mobile device to the manufacturing execution system 

(MES), what enables him to see all control commands submitted 

to the shop floor. His investigation leads him to a broken pump:  

whenever there is a power drop on his faulty machine, the pump 

turns on and at the same time the power signal of the pump shows 

an unexpected peak. The operator wants to use this discovered 

knowledge to enhance the dashboard output on the fly. Instead of 

just showing the aggregated power values, he wants to display the 

min and max values within a window as well and he wants to 

report enriched alarms that associate the power drop with the 

spike in the pump power signal.  

He quickly drafts two new JStreams queries by downloading 

templates from DiAlM: query (1) aggregates over a time window 

of 1 second to calculate the min, max and average. 

 

// Query 1 

var minExpression =      

     JStreams.From("powerConsumption") 

    .Agg(“value”,  

         “min”, JStreams.Min(), 

         “max”, JStreams.Max(),  

         “avg”, JStreams.Avg(),  

         JStreams.OnHop(1, 1)); 

Figure 5: query plan 

Figure 4: Control room dashboard 

Figure 6: Alarm monitoring dashboard 

Figure 7: Alarm monitoring dashboard 
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And query (2) issues an alarm whenever there is a power drop of 

the machine and a power peak for the pump with the information 

“Power drop, please check pump!”. 

 

var alarmPowerDrop =  

    JStreams.From("powerConsumption") 

    .Where(function (event) { 

        event.value < threshold}); 

 

var alarmPumpPowerPeak =  

JStreams.From("pumpPowerConsumption") 

    .Where(function (event) { 

        event.value > threshold}); 

 

JStreams.Join( 

     alarmPowerDrop, alarmPumpPowerPeak) 

    .Select("value", "Power drop, please check 

pump!").Deploy("output"); 

 

 

 

 

The operator first previews the query execution directly on his 

device (Figure 8) and after verifying that it is producing the 

expected results he deploys query 1 to the PLCs and query 2 to 

the cloud (query 2 joins information from two different sources, 

PLC and MES). 

 

 

After deployment the enriched information gets visible on the 

dashboard within seconds. And the next time the pump breaks the 

operator also sees the new detailed alarm. Figure 9 summarizes 

the different demonstration steps.  

4. CONCLUSION 
This demonstration illustrates one of many scenarios where data 

born in connected devices can be leveraged in a distributed 

topology to gain business and operational insight. In a scenario 

inspired by a real-world use case, we show efficient asset 

monitoring in a manufacturing shop floor though local and global 

analytics, including drill down in alarm cases and root-cause 

analysis. We introduce the DiAl (Distributed Analytics 

architecture) and two main technologies: JStreams, a new 

complex event processing engine designed for heterogeneous 

devices and DiAlM, a cloud-based management service 

responsible for coordinating the different analytics artifacts 

(queries, devices, inputs, outputs etc.) across distributed cloud-

edge topologies. 
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Figure 8: Query composition and preview 

Figure 9: Demonstration flow overview  
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