

DiAl: Distributed Streaming Analytics Anywhere, Anytime
Ivo Santos

Microsoft Research ATL Europe
Rablstrasse 26

D-81669 Munich, Germany

ivo.santos@microsoft.com

Marcel Tilly
Microsoft Research ATL Europe

Rablstrasse 26

D-81669 Munich, Germany

marcel.tilly@microsoft.com

Jonathan Goldstein
Microsoft Research
One Microsoft Way

Redmond, WA, 98052, USA

jongold@microsoft.com

Badrish Chandramouli
Microsoft Research
One Microsoft Way

Redmond, WA, 98052, USA

badrishc@microsoft.com

ABSTRACT

Connected devices are expected to grow to 50 billion in 2020.

Through our industrial partners and their use cases, we validated

the importance of inflight data processing to produce results with

low latency, in particular local and global data analytics

capabilities. In order to cope with the scalability challenges posed

by distributed streaming analytics scenarios, we propose two new

technologies: (1) JStreams, a low footprint and efficient

JavaScript complex event processing engine supporting local

analytics on heterogeneous devices and (2) DiAlM, a distributed

analytics management service that leverages cloud-edge evolving

topologies. In the demonstration, based on a real manufacturing

use case, we walk through a situation where operators supervise

manufacturing equipment through global analytics, and drill down

into alarm cases on the factory floor by locally inspecting the data

generated by the manufacturing equipment.

1. INTRODUCTION
Today there are 5 billion connected devices, by 2015 we will have

15 billion devices and the forecast for 2020 is 50 billion devices

[1] . The growing demand to process and analyze the data coming

from these devices requires new thinking and new strategies to

handle effectively widely distributed data streams, especially

when near real-time insights on the data are required. There is

clearly not enough bandwidth to transfer all the raw data

generated by these 50 billion connected devices to the cloud for

further processing. And even if networking technologies made it

be possible much of that raw data would be considered noise (i.e.

uninteresting), wasting network and cloud resources. Adopting a

local-global analytics strategy where data is pre-processed, pre-

filtered to remove noise and pre-aggregated as close to the source

as possible can help overcome the bandwidth utilization

challenges, empowering the cloud to handle more efficiently

large-scale global analytics over the already enriched data streams

coming from the devices.

Local streaming analytics capabilities can complement cloud-

based streaming analytics platforms and are typically very useful

to process data born at the devices (e.g. geo location, device

telemetry, asset specific data, sensor readings etc.), enabling data

reduction (noise removal), as a mechanism to handle devices with

occasional/intermittent connectivity patterns and in some

scenarios even as a privacy preserving mechanism. In many

domains, the user requires also a global view of his assets, i.e. his

fleet, the status of his deliveries, or all the alarms in a refinery.

In a typical scenario (e.g. within an oil refinery or a manufacturing

shop floor), sensors are connected to programmable logic

controllers (PLCs) [2], where each PLC can be responsible for

monitoring and controlling one machine. The PLCs forward

information to a backend system where the signals can be

correlated with manufacturing workflow data or enterprise

resource planning. The operators' dashboards are reading and

presenting the data from the backend system. Typically, there are

already some static pre-filtering or down sampling rules on the

PLCs (for example in normal situations, the PLCs should forward

the temperature, vibration and rotation aggregated readings only

every second). However, the PLCs have access to much higher

data rates (up to 10 KHz). Suppose then that the PLC detects that

the temperature is above a given pre-defined threshold and reports

an alarm to the backend. In this situation, the operator would like

to get more information from the machine/PLC associated with

the alarm. Therefore, he grabs his mobile device (e.g. tablet or

smart phone) and goes to the shop floor to check the machine

personally. In front of the failing machine, he would now (1) like

to connect to the machine directly and (2) inspect the high-

resolution data streams. The direct access to these streams

facilitates the visual detection of outliers or spikes associated with

the alarm. He can even go further and post different queries on the

data directly using his mobile device processing capabilities. To

enable this, the operator's mobile device must be able to run local

queries and the system managing the analytics must be able to

detect the new context of the operator (in front of machine) in

order to re-arrange the setup of analytics, so that he, the operator,

can receive the high-rate data streams from the PLCs. Our

demonstration will show the aforementioned scenario,

highlighting the value of enabling real-time event processing in a

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Articles from this volume were invited to present

their results at The 39th International Conference on Very Large Data Bases,

August 26th - 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 12

Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

1386

heterogeneous, distributed setup. The key technical contributions

introduced in this work are a new low footprint complex event

processing engine designed for heterogeneous devices (JStreams)

and a cloud-based service responsible for managing analytics

artifacts deployed across cloud-edge topologies (DiAlM).

The paper describes the distributed analytics architecture and

components in section 2, section 3 provides a demonstration

walkthrough and section 4 is the conclusion.

2. ARCHITECTURE
Our architecture for distributed analytics (DiAl) aims to boost the

connected devices story for cloud-based services and to provide

easy-to-use analytics on devices. The architecture consists of two

major components: (1) an engine enabling low-latency data

stream processing on devices and also in the cloud, called

JStreams, and (2) a service managing analytics artifacts (e.g.

queries) across all connected nodes, DiAlM (see Figure 1).

The DiAl architecture enables the realization of end-to-end

scenarios where data born on devices, such as sensor or phones,

can be locally pre-processed, sent to the cloud for further analysis

with results then visualized also on edge devices, such as a tablets

and smart phones

2.1 JStreams
JStreams is a complex event processing engine that implements

the CEDR algebra [3] (like Microsoft StreamInsight [4]), with

support for relational and temporal operations such as filters,

projections, temporal joins, windowed aggregates, group and

apply, lifetime manipulations etc.. JStreams is implemented in

JavaScript and can run on practically any place where JavaScript

runs, such as smart phones, tablets, web browsers, cars, or servers.

JStreams is designed to be lightweight and cross-platform. It

offers a simple but powerful programming experience, with an

API designed especially for JavaScript developers. It also comes

with built-in cloud connectivity to enable analytics manageability

and streaming data connectivity from devices to cloud and cloud

to devices in an easy way.

JStreams can run inside a device application container that

connects physical sensors with inputs consumed by the queries.

Some sensor values are exposed via HTML5/JavaScript APIs (e.g.

location) and others can be accessed via platform specific

connectors. The JavaScript runtime can be any kind of web

browser, node.js [5] or a Windows 8 store application [6]. The

results of the JStreams queries are sent to an output operator (a

user defined function) that can, for example, display them in a

local dashboard or send them to a service in the cloud (Figure 2).

Table 1 shows performance test results for some JStreams

operators. Note that as with any JavaScript application only one

core is actually used (no multithreading). The tests were executed

using node.js [5] in an Intel Xeon W3530 PC (4 cores @ 2.67

GHz) with 10.0GB RAM.

Table 1. JStreams performance test results

Operator Average throughput

Filter 2.0 Million events / sec

Project 1.7 Million events / sec

Min, Max, Average
 (temporal snapshot window)

0.5 Million events / sec

Min grouped by key
(temporal snapshot window)

0.4 Million events / sec

Temporal Join 0.6 Million events / sec

2.2 DiAlM
The distributed analytics management service (DiAlM)

coordinates analytics artifacts such as queries, inputs and outputs

on distributed nodes (devices). The analytics are expressed as

queries over continuous streams of data. The queries and device

metadata are stored in the cloud (see Figure 3).

Figure 1: DiAl architecture

Figure 2: JStreams embedded in JavaScript container

Figure 3: DiAlM platform

1387

Devices interact with DiAlM via the device metadata endpoint,

which offers a REST based API on top of ODATA [7]. The push

notification service informs registered devices about new artifacts

(e.g. new queries). The DiAlM service scales-out by design, as all

state is stored in cloud-based distributed storage.

3. DEMO WALKTHROUGH
In our demonstration, we are showcasing a day in the life of an

operator in an industry shop floor. A control room dashboard

shows the process data of four machines (Figure 4). The PLCs,

connected to the machines, collect high-resolution sensor data

(sampling rates > 1000 Hz).

Sending all readings to the backend system is not an option (for

bandwidth reasons), so the data is aggregated, pre-filtered and

resampled directly on the PLCs using JStreams. On each PLC, we

run two queries: (1) filtering alarm and (2) aggregating over a

time window. Both queries are taking the power signal as input.

The alarm filtering query checks the power input for power drops

(where value < threshold) and the aggregation query calculates the

average over a one second time window of the power signal. In

the cloud (backend), we run a correlation query to get a global

view of the energy consumption in our shop floor (see Figure 5).

Suddenly several alarms occur for one of the machines, reporting

power drops. An operator takes his tablet, opens the monitoring

dashboard and observes the data coming from the machine: alarms

and the actual down sampled signal (see Figure 6).

Unfortunately, the data rates sent from the PLC to the backend are

so low that the power drops are not visible in the signal. The

operator might even wonder if the alarm really exists and is

intrigued to understand the causes. The operator starts his

investigation by connecting his mobile device directly with the

PLC reporting the alarms to get high-resolution data streams from

the machine, as he believes the power drops are somehow hidden

in the aggregated data. With the high data rate, he is able to see

the power drops now in the power line and it becomes clear that

these are generating the alarms (see Figure 7).

However, what is the root cause? To further investigate, he

connects his mobile device to the manufacturing execution system

(MES), what enables him to see all control commands submitted

to the shop floor. His investigation leads him to a broken pump:

whenever there is a power drop on his faulty machine, the pump

turns on and at the same time the power signal of the pump shows

an unexpected peak. The operator wants to use this discovered

knowledge to enhance the dashboard output on the fly. Instead of

just showing the aggregated power values, he wants to display the

min and max values within a window as well and he wants to

report enriched alarms that associate the power drop with the

spike in the pump power signal.

He quickly drafts two new JStreams queries by downloading

templates from DiAlM: query (1) aggregates over a time window

of 1 second to calculate the min, max and average.

// Query 1

var minExpression =

 JStreams.From("powerConsumption")

 .Agg(“value”,

 “min”, JStreams.Min(),

 “max”, JStreams.Max(),

 “avg”, JStreams.Avg(),

 JStreams.OnHop(1, 1));

Figure 5: query plan

Figure 4: Control room dashboard

Figure 6: Alarm monitoring dashboard

Figure 7: Alarm monitoring dashboard

1388

And query (2) issues an alarm whenever there is a power drop of

the machine and a power peak for the pump with the information

“Power drop, please check pump!”.

var alarmPowerDrop =

 JStreams.From("powerConsumption")

 .Where(function (event) {

 event.value < threshold});

var alarmPumpPowerPeak =

JStreams.From("pumpPowerConsumption")

 .Where(function (event) {

 event.value > threshold});

JStreams.Join(

 alarmPowerDrop, alarmPumpPowerPeak)

 .Select("value", "Power drop, please check

pump!").Deploy("output");

The operator first previews the query execution directly on his

device (Figure 8) and after verifying that it is producing the

expected results he deploys query 1 to the PLCs and query 2 to

the cloud (query 2 joins information from two different sources,

PLC and MES).

After deployment the enriched information gets visible on the

dashboard within seconds. And the next time the pump breaks the

operator also sees the new detailed alarm. Figure 9 summarizes

the different demonstration steps.

4. CONCLUSION
This demonstration illustrates one of many scenarios where data

born in connected devices can be leveraged in a distributed

topology to gain business and operational insight. In a scenario

inspired by a real-world use case, we show efficient asset

monitoring in a manufacturing shop floor though local and global

analytics, including drill down in alarm cases and root-cause

analysis. We introduce the DiAl (Distributed Analytics

architecture) and two main technologies: JStreams, a new

complex event processing engine designed for heterogeneous

devices and DiAlM, a cloud-based management service

responsible for coordinating the different analytics artifacts

(queries, devices, inputs, outputs etc.) across distributed cloud-

edge topologies.

5. ACKNOWLEDGMENTS
We would like to thank Dirk Siemer, Christian Kratzsch, Louis

Latour, Eldar Akchurin, and Rodrigo Alves for their help in

building the demonstration and providing valuable feedback.

6. REFERENCES

[1] Dave Evans, “How the Next Evolution of the Internet Is

Changing Everything,” 2011. [Online]. Available:

http://www.futuristspeaker.com/wp-

content/uploads/Internet-of-Things-1.jpg.

[2] M. A. Laughton, D. J. Warne (ed), “Electrical Engineer's

Reference book”, 16th edition,Newnes, 2003 Chapter 16

Programmable Controller

[3] R. S. Barga, J. Goldstein, M. Ali, and M. Hong,

“Consistent Streaming Through Time : A Vision for

Event Stream Processing 2 . CEDR Temporal Stream

Model,” General Systems, pp. 363–374, 2007.

[4] Microsoft, “Microsoft StreamInsight,” 2013. [Online].

Available: http://msdn.microsoft.com/en-

us/library/ee362541.aspx.

[5] Joyent, “Node.js”, 2013. [Online]. Available:

http://www.nodejs.org/

[6] Microsoft, “Windows Store apps”, 2013. [Online].

Available: http://msdn.microsoft.com/en-

US/windows/apps/br229512

[7] Microsoft, “Open Data Protocol (OData)”, 2013.

[Online]. Available:

http://download.microsoft.com/download/9/5/E/95EF66

AF-9026-4BB0-A41D-A4F81802D92C/[MS-

ODATA].pdf

Figure 8: Query composition and preview

Figure 9: Demonstration flow overview

1389

