

REEF: Retainable Evaluator Execution Framework
Byung-Gon Chun

Chris Douglas
Shravan Narayanamurthy

Josh Rosen

Tyson Condie
Sergiy Matusevych

Raghu Ramakrishnan
Russell Sears

Carlo Curino
Brandon Myers

Sriram Rao
Markus Weimer

{bchun,tcondie,ccurino,cdoug,sergiym,shravan,raghu,sriramra,sears,mweimer} @microsoft.com

bdmyers@cs.washington.edu joshrosen@cs.berkeley.edu

Microsoft Cloud Information Services Laboratory

ABSTRACT

In this demo proposal, we describe REEF, a framework that makes

it easy to implement scalable, fault-tolerant runtime environments

for a range of computational models. We will demonstrate diverse

workloads, including extract-transform-load MapReduce jobs,

iterative machine learning algorithms, and ad-hoc declarative query

processing. At its core, REEF builds atop YARN (Apache Hadoop

2’s resource manager) to provide retainable hardware resources

with lifetimes that are decoupled from those of computational tasks.

This allows us to build persistent (cross-job) caches and cluster-

wide services, but, more importantly, supports high-performance

iterative graph processing and machine learning algorithms.

Unlike existing systems, REEF aims for composability of jobs

across computational models, providing significant performance

and usability gains, even with legacy code. REEF includes a library

of interoperable data management primitives optimized for

communication and data movement (which are distinct from

storage locality). The library also allows REEF applications to

access external services, such as user-facing relational databases.

We were careful to decouple lower levels of REEF from the data

models and semantics of systems built atop it. The result was two

new standalone systems: Tang, a configuration manager and

dependency injector, and Wake, a state-of-the-art event-driven

programming and data movement framework. Both are language

independent, allowing REEF to bridge the JVM and .NET.

1. INTRODUCTION
As Hadoop has matured, the range of computational primitives

expected by its users has broadened. Numerous performance and

workload studies have shown that Hadoop MapReduce is a poor fit

for iterative computations, such as machine learning and graph

processing, and also for the extremely small, ad hoc queries that

compose the vast majority of jobs (though not the majority of

computation) on production clusters.

Hadoop 2 addresses this problem by factoring MapReduce into two

components: a MapReduce application master that schedules

computations for a single job at a time, and YARN, a cluster

resource manager that coordinates between multiple jobs and

tenants. Although YARN allows a wide range of computational

frameworks to coexist in one cluster, many challenges remain.

REEF builds on YARN to provide features that are crucial to

current workloads:

Retainability of hardware resources across tasks and jobs. This

allows iterative and workflow computations to perform well.

Composability of operators written for multiple computational

frameworks and storage backends. This is crucial for usability,

interoperability and performance.

Cost modeling for data movement and single machine parallelism.

Hardware and software trends favor these approaches over

Hadoop-style storage locality and coarse-grain parallelism.

Fault handling including checkpointing of task state, and

deterministic task invocations (which also aids in debugging).

Elasticity REEF’s checkpointing and preemption mechanisms

allow jobs to adapt as resource allocations change.

Above all else, we seek to improve the usability of scalable data

processing. These unfortunate rules of thumb characterize the

current state of the art:

1. Naïve jobs are orders of magnitude slower than tuned ones,

and performance issues are rarely application-specific.

2. Applications manually partition jobs across computational

runtimes and explicitly convert between wire-level formats.

3. As cluster software is upgraded, “bit-rot” changes job

semantics, making it difficult to reproduce old results or

perform post mortem analysis of compromised data sets.

In turn, most developer time (often the key bottleneck) is spent on

issues that should be handled by the underlying data management

infrastructure. This was our prime target as we designed REEF.

2. RELATED WORK
In this section, we survey specialized computational frameworks

with a focus on low-level issues that prevent Hadoop from

efficiently supporting such systems. Next, we explain the

relationship between cluster resource managers and REEF.

Hadoop MapReduce is hardcoded to use coarse-grained, stateless

tasks to run MapReduce jobs, which it implements as a scan, a

shuffle (sort) phase, followed by scans over groups of (sorted) data.

It achieves fault tolerance by persisting the output of each task to

disk. This approach has a number of performance problems.

Complex computations are run by chaining MapReduce jobs

together into workflows. Each step of the workflow persists its

output to disk, incurring disk and communication overheads, as

well as the computational overhead of serializing and parsing the

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post

on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Articles from this volume were invited to present their results at The 39th

International Conference on Very Large Data Bases, August 26th - 30th 2013,

Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

1370

intermediate data. These costs often dominate job runtimes.

PACMan [1] improves matters by scheduling tasks to make better

use of the OS file cache, although it still writes intermediate data to

disk. Assuming degraded fault tolerance and scalability is

acceptable, the best solution is to entirely avoid serialization and

parsing overheads by keeping the parsed data in RAM. A wide

range of systems (including some listed below) have used similar

tricks to improve performance.

Ultimately, application developers have moved to higher-level

programming abstractions (such as Hive and Pig’s SQL-like query

languages), which currently run as job workflows that implement

unintended operations (such as join) atop MapReduce and demand

richer storage primitives (indexes) than HDFS provides. Although

such jobs run atop Hadoop MapReduce, they do so with significant

performance penalties. In response, workflow-friendly Hadoop

replacements, such as PACT [2], Dryad [3], and Hyracks [4] have

emerged, with support for additional operators, arbitrary

computational DAGs and indexing. Although these systems are

promising, like Hadoop, they couple resource management and

computational models, locking out many new (and existing)

workloads.

Mahout is an extreme example of systems that suffer from

unnecessarily reparsing input data. It is a machine learning library

built atop well-behaved MapReduce jobs. As a consequence it

repeatedly reads the same data, and performance suffers

accordingly [5]. Systems such as Giraph (for graph processing),

and VW (machine learning) move beyond workflows to iterative

computations. This highlights another performance problem:

Hadoop’s coarse task granularity. The cost of invoking a Map or

Reduce task in Hadoop is surprisingly high; best practices dictate

that each task should run for at least 10’s of seconds to a minute.

Giraph and VW address this problem by requesting a bunch of Map

tasks and then refusing to release them until the job is complete.

This causes performance and reliability problems for their jobs and

for the cluster as a whole.

In contrast to Hadoop, sub-millisecond tasks are common in

traditional task-based environments [6]. Even in such

environments, coarse tasks are a common bottleneck that prevent

further linear scaling. Clearly, graph-processing and machine-

learning systems would benefit from direct support for fine-grained

tasks and low-latency communication.

Cluster managers like YARN, Mesos [7], Condor [8] and others1

provide raw cluster resources to higher-level applications. They do

so in a coarse-grained fashion: as in Hadoop, allocation requests

should involve at least 10-60 seconds of machine time (Figure 1).

REEF runs atop YARN, though it could be retargeted to most of

the other cluster managers. Like the others, YARN introduces a

two-level scheduler that decouples resource and job management.

This allows MapReduce, workflows and iterative computations to

coexist and run efficiently. In addition to providing access to

1 Google Borg and Microsoft Windows Fabric are internal versions

of the same concept that do not have citable references.

computational resources, YARN exposes storage locality

information from the underlying store (currently just HDFS),

allowing computational frameworks to reason about cluster and

storage topologies as they see fit.

3. KEY ABSTRACTIONS
REEF is structured around the following key abstractions:

Job Driver: The user-supplied control logic. There is exactly one

Driver for each Job. The duration and characteristics of the Job

are determined by this module.

Activity: User-supplied logic that performs the data processing.

Activities are a generalization of Hadoop’s Map and Reduce

Tasks. REEF encourages a strict separation between the control

plane and the data plane of the computation.

Evaluator: The runtime for Activities. There is a 1:1 mapping

between Evaluators and YARN Containers. Evaluators run one

activity at a time, but a single evaluator may run many activities

throughout its lifetime. This enables sharing among Activities

(e.g., caching) and reduces scheduling costs.

Services: Objects and daemon threads that are retained across

Activities that run within an Evaluator. Examples include caches

of parsed data, intermediate state and network connection pools.

The Driver orchestrates communication and computation, resource

management, and fault handling. REEF provides libraries and

services that make it easier to implement new Drivers.

4. ACTIVITY LIFECYCLES
Above, we said that Activities are a generalization of Hadoop

Tasks. Activities contain arbitrary application code, and are able

to behave in arbitrary ways. Here, we describe two variants. The

first mimics Hadoop, allowing REEF to run legacy jobs (and, with

the help of Services, to improve their performance). The second

provides coarse-grained application tasks that may be checkpointed

and migrated between Evaluators. This enables fault tolerance and

dynamic load balancing.

The most natural use of YARN (and therefore REEF Evaluators) is

to request a new container for each task, and to return the container

to YARN when the task completes. This provides YARN with the

greatest possible flexibility when it comes to sharing cluster

resources across jobs and tenants, and mirrors the approach used in

earlier versions of Hadoop, making this a reasonable approach for

existing jobs. However, container allocations are expensive: they

consume scheduler resources, and incur high startup costs.

REEF Evaluators provide two alternatives. The first leverages

Evaluators’ ability to run multiple Activities, one after the other.

By using Services to cache Activity state and outputs, Evaluators

can significantly reduce the cost of running chains of Activities.

However, coarse-grained tasks have a number of fundamental

drawbacks. Scheduling decisions are complicated by long-running

tasks with unpredictable runtimes and job parallelism is limited by

the overhead of spawning additional tasks. Furthermore, many

iterative and graph processing computations process each message

by spawning a new task; with heavyweight tasks, this leads to

unacceptable overheads; Evaluator reuse improves the situation

considerably by reducing task spawn times (Figure 1).

Figure : Task spawn latencies in REEF

Local Wake event

REEF Activity

Yarn container

(REEF Evaluator)

1 1 1 1000

1371

Alternatively, certain classes of computation (such as simulations)

consist of long running tasks that cannot be re-run from scratch;

REEF’s checkpointing service makes it easy to serialize Activity

state to disk and to restart the Activity on a different machine. This

allows applications to implement fault tolerance by periodically

checkpointing state, and facilitates elastic load balancing and

scheduling (idle, or shrinking tasks can be paused or consolidated

onto fewer machines) [9]. Of course, in addition to serializing state

to disk, checkpointing requires support from various REEF

components, including networking and storage.

5. DATA MANAGEMENT SERVICES
REEF’s data management service is a set of libraries that provides

mechanisms for networking, storage, checkpointing, and other data

processing infrastructure. It provides a naming abstraction called

an Identifier that is the basis for many of these mechanisms. REEF

Identifiers are glorified URIs that are associated with resource

types, such as files, network addresses and REEF Activities. This

level of indirection allows Activity instances to be checkpointed in

one Evaluator and restored in another; REEF’s network

management layer transparently routes the requests as appropriate.

Identifiers also help provide storage independence. REEF’s

storage manager provides access to generic file and index objects

and Identifiers encode both the name of the object and the

underlying storage implementation, allowing applications to treat

multiple storage systems interchangeably.

These facilities are accessed through two APIs: one in the Driver

and one in the Activity. The Driver API requests and configures

Services when Evaluators are created, and the Activity API

provides access to the actual functionality. This separation makes

it easy to add new data management services to REEF.

In addition to communication and storage, the REEF data

management APIs include computational primitives. One that

bears mentioning is the combine primitive, which groups streams

of (key, value) pairs by key, invokes a combiner callback on pairs

within the same group, and periodically ships combined values to

their destination. This is the basis of Hadoop MapReduce’s

combiner optimization, as well as aggregation trees and many

machine learning training algorithms. Various implementations

make sense in different scenarios, including in-memory, on-disk

and distributed approaches. Providing computational primitives as

part of REEF allows us to automatically leverage any advanced

storage and networking features of the underlying cluster. We are

particularly interested in using Sailfish-style I-Files [10] to build

in-network sorting, grouping and aggregation primitives.

6. WAKE: DATA AND CONTROL PLANES
Two challenges immediately arise during the implementation of

new computational frameworks. Scalable Driver implementations

must coordinate between large numbers of potentially faulty nodes,

and handle network timeouts, unexpected messages and so on.

Furthermore, to obtain good performance, Drivers must make

heavy use of asynchronous operations. We have found that events

are a natural fit for such environments.

Similarly, when implementing high-performance dataflow and

task-based computations, one wants control over (and visibility

into) the flow of work between threads and concurrency between

tasks of the same type. With current multi-core systems, explicit

2 Note that here, we focus on the implementations of computational

frameworks, not high-level user code.

control over thread synchronization and context switching

overheads is crucial as well. With this in mind, we came to the

conclusion that most REEF Drivers and Activities would be best

served by an event-driven system.2

We considered a number of event driven systems, but found that

they were missing crucial features:

Extensibility to multiple I/O subsystems High performance event-

driven networking (such as Netty) and disk I/O libraries exist, but

do not support the range of applications we target (including

legacy libraries, such as JDBC drivers and HDFS handles).

Using them would break composability: each data management

service would have to be handled by a different REEF subsystem.

Profiling and bottleneck analysis tools similar to those proposed

by SEDA [11]. Such tools are the primary benefit of event-driven

programming, as they are able to produce per-event handler

tracking of throughput, mean event handler latencies, queue

lengths, parallelism, and latency histograms [12]. Such

information aids debugging and runtime schedulers.

Inlining of event handlers Although Wake’s event handling API

is purely asynchronous, we often schedule handler invocations in

a synchronous fashion by configuring Wake to directly invoke

the next handler instead of adding the event to a dispatch queue.

This allows aggressive inlining of chains of event handlers [13].

Immutable dataflows Wake event handlers are wired up by

invoking object constructors, ensuring that event processing

streams are correctly constructed. This avoids complex set-

up/tear-down logic in event handlers. It also eliminates a broad

class of runtime errors, and associated error handling and runtime

overheads. It simplifies Drivers, which can safely assume full

knowledge of the dataflows they create (including ones that run

remotely, or are written in a different language than the Driver).

7. TANG: JOB CONFIGURATION
REEF Drivers, Evaluators, Activities, and Services are simply

implementations of like-named Java or .NET3 interfaces. Each Job

consists of a:

YARN application master that hosts a Java or CLR VM that, in

turn, contains a single Driver object, and a

Set of YARN containers that each contain an Evaluator object.

Evaluators, in turn, instantiate Services, and run one Activity at a

time until they are shut down. As we implemented REEF, we

realized that, in order to compose Activities from multiple

frameworks, we needed a way to write general purpose (runtime-

and application-independent) code to instantiate these objects.

Early REEF prototypes used ad-hoc logic to process configuration

data from properties files (as Hadoop does [14]). Such logic

consumed a significant fraction of our code (as in Hadoop), and

made hidden assumptions about applications and runtimes. There

was no way to move classes between environments, and extending

REEF involved mastering obscure design patterns and modifying

multiple files. Error handling was a nightmare: there was no

distinction between configuration and runtime errors, and no

reproducible way to run faulty components in isolation.

To address these issues, we implemented Tang, a configuration

manager and dependency injector. Now, REEF extensions consist

3 We plan to add support for additional languages over time.

1372

of standard Java and C# classes and a few annotations. The

following properties distinguish Tang from existing approaches:

Static checking of configurations allows jobs to fail earlier and

partitions runtime errors into classes: incomplete or wrongly-

typed configurations, initialization failures, and runtime errors.

Language independence Drivers written in one language can

configure Activities written in multiple languages. This allows

REEF to interoperate with the .NET and SQL Server ecosystems,

Java-centric DBMS’s, and big data solutions built atop Hadoop.

Separation of concerns between configuration processing and

Driver implementations. Developers can introduce new types of

Drivers and Activities without modifying Tang. In contrast,

many dependency injectors are coupled to one application

domain (often web services).

Graceful handling of ambiguity for configurations that require

further specialization, which enables runtime selection of

efficient execution plans.

In short, Tang reduces the problem of bootstrapping a REEF Job to

that of shipping configuration files, binaries and any other

dependencies to the appropriate Evaluator. Tang automatically

checks for and reports the vast majority of application

configuration errors and provides detailed diagnostic information

when a buggy Driver (or other application code) generates a faulty

configuration or makes an unserviceable injection request.

Tang exposes a declarative, dependency-based configuration

language that provides the lowest level of composability and

(because it is deterministic) fault tolerance in REEF.

8. DEMO DESCRIPTION
We plan to present a REEF cluster running a hybrid MapReduce

and machine learning workload. Depending on the job

configuration, MapReduce output will be stored on disk or

pipelined directly into a machine learning training job. The

iterative training algorithm will be capable of making use of per-

evaluator retainable state, or of repeatedly scanning over the input

data on disk. In addition to this hybrid job, we plan to demonstrate

an implementation of page rank based on bulk-synchronous graph

processing and an example of REEF’s checkpointing mechanisms.

We will also include demonstrations of Tang and Wake. Tang will

provide debugging information for misconfigured jobs, perform

build-time checks for a range of common mistakes, and emit the

information needed to reproducibly run jobs, including the

configurations shipped to each Evaluator as the job progresses. For

Wake, we will demonstrate profiling tools that pinpoint

bottlenecks, measure the effective concurrency achieved by

Activities and present request latency histograms from the Driver.

9. CONCLUSION
We plan to use REEF to support a wide range of scalable, fault

tolerant computational frameworks. In this demo proposal, we

have outlined the primitives that REEF exposes, and explained how

they allow many computational frameworks to run atop Hadoop’s

new resource manager, YARN. We also described Wake, a state

of the art event-driven programming framework, and Tang, a

configuration manager and dependency injector. Together with the

data management primitives that ship with REEF, these systems

greatly simplify the implementations of new scalable

computational frameworks, and provide compatibility with existing

data management infrastructure.

10. REFERENCES
[1] Ananthanarayanan, Ganesh, Ghodsi, Ali, Wang, Andrew,

Borthakur, Dhruba, Kandula, Srikanth, Shenker, Scott, and

Stoica, Ion. PACMan: Coordinated memory caching for

parallel jobs. In USENIX NSDI (2012).

[2] Alexandrov, Alexander, Ewen, Stephan, Heimel, Max et al.

MapReduce and PACT-comparing data parallel

programming models. In Proceedings of the Conference

Datenbanksysteme in Buro, Technik und Wissenschaft

(BTW), GI, Bonn, Germany (2011), 25-44.

[3] Isard, Michael, Budiu, Mihai, Yu, Yuan, Birrell, Andrew,

and Fetterly, Dennis. Dryad: distributed data-parallel

programs from sequential building blocks. ACM SIGOPS

Operating Systems Review, 41, 3 (2007), 59-72.

[4] Borkar, Vinayak, Carey, Michael, Grover, Raman, Onose,

Nicola, and Vernica, Rares. Hyracks: A flexible and

extensible foundation for data-intensive computing. In

ICDE (2011), 1151-1162.

[5] Chu, Cheng, Kim, Sang Kyun, Lin, Yi-An, Yu, YuanYuan,

Bradski, Gary, Ng, Andrew Y, and Olukotun, Kunle. Map-

reduce for machine learning on multicore. NIPS, 19 (2007),

281.

[6] Blumofe, Robert D, Joerg, Christopher F, Kuszmaul,

Bradley C, Leiserson, Charles E, Randall, Keith H, and

Zhou, Yuli. Cilk: An efficient multithreaded runtime system.

ACM, 1995.

[7] Hindman, Benjamin, Konwinski, Andy, Zaharia, Matei et

al. Mesos: A platform for fine-grained resource sharing in

the data center. In USENIX NSDI (2011), 22-22.

[8] Thain, Douglas, Tannenbaum, Todd, and Livny, Miron.

Condor and the Grid. Grid computing: Making the global

infrastructure a reality (2003), 299-335.

[9] Ananthanarayanan, Ganesh, Douglas, Christopher,

Ramakrishnan, Raghu, Rao, Sriram, and Stoica, Ion. True

elasticity in multi-tenant data-intensive compute clusters. In

ACM SoCC (2012), 24.

[10] Rao, Sriram, Ramakrishnan, Raghu, Silberstein, Adam,

Ovsiannikov, Mike, and Reeves, Damian. Sailfish: A

framework for large scale data processing. In ACM SOCC

(2012), 4.

[11] Welsh, Matt, Culler, David, and Brewer, Eric. SEDA: an

architecture for well-conditioned, scalable internet services.

In ACM SIGOPS Operating Systems Review (2001), 230-

243.

[12] Joukov, Nikolai, Traeger, Avishay, Iyer, Rakesh, Wright,

Charles P, and Zadok, Erez. Operating system profiling via

latency analysis. In OSDI (2006), 89-102.

[13] Kohler, Eddie, Morris, Robert, Chen, Benjie, Jannotti, John,

and Kaashoek, M Frans. The Click modular router. ACM

TOCS, 18, 3 (2000), 263-297.

[14] Rabkin, Ariel. Using Program Analysis to Reduce

Misconfiguration in Open Source Systems Software.

Dissertation, UC Berkeley, 2012.

1373

	1. INTRODUCTION
	2. RELATED WORK
	3. KEY ABSTRACTIONS
	4. ACTIVITY LIFECYCLES
	5. DATA MANAGEMENT SERVICES
	6. WAKE: DATA AND CONTROL PLANES
	7. TANG: JOB CONFIGURATION
	8. DEMO DESCRIPTION
	9. CONCLUSION
	10. REFERENCES

