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ABSTRACT 

In this demo proposal, we describe REEF, a framework that makes 

it easy to implement scalable, fault-tolerant runtime environments 

for a range of computational models.  We will demonstrate diverse 

workloads, including extract-transform-load MapReduce jobs, 

iterative machine learning algorithms, and ad-hoc declarative query 

processing.  At its core, REEF builds atop YARN (Apache Hadoop 

2’s resource manager) to provide retainable hardware resources 

with lifetimes that are decoupled from those of computational tasks.  

This allows us to build persistent (cross-job) caches and cluster-

wide services, but, more importantly, supports high-performance 

iterative graph processing and machine learning algorithms.  

Unlike existing systems, REEF aims for composability of jobs 

across computational models, providing significant performance 

and usability gains, even with legacy code.  REEF includes a library 

of interoperable data management primitives optimized for 

communication and data movement (which are distinct from 

storage locality).  The library also allows REEF applications to 

access external services, such as user-facing relational databases. 

We were careful to decouple lower levels of REEF from the data 

models and semantics of systems built atop it.  The result was two 

new standalone systems: Tang, a configuration manager and 

dependency injector, and Wake, a state-of-the-art event-driven 

programming and data movement framework.  Both are language 

independent, allowing REEF to bridge the JVM and .NET. 

1. INTRODUCTION 
As Hadoop has matured, the range of computational primitives 

expected by its users has broadened.  Numerous performance and 

workload studies have shown that Hadoop MapReduce is a poor fit 

for iterative computations, such as machine learning and graph 

processing, and also for the extremely small, ad hoc queries that 

compose the vast majority of jobs (though not the majority of 

computation) on production clusters. 

Hadoop 2 addresses this problem by factoring MapReduce into two 

components: a MapReduce application master that schedules 

computations for a single job at a time, and YARN, a cluster 

resource manager that coordinates between multiple jobs and 

tenants.  Although YARN allows a wide range of computational 

frameworks to coexist in one cluster, many challenges remain.  

REEF builds on YARN to provide features that are crucial to 

current workloads: 

Retainability of hardware resources across tasks and jobs.  This 

allows iterative and workflow computations to perform well. 

Composability of operators written for multiple computational 

frameworks and storage backends.  This is crucial for usability, 

interoperability and performance. 

Cost modeling for data movement and single machine parallelism.  

Hardware and software trends favor these approaches over 

Hadoop-style storage locality and coarse-grain parallelism. 

Fault handling including checkpointing of task state, and 

deterministic task invocations (which also aids in debugging). 

Elasticity REEF’s checkpointing and preemption mechanisms 

allow jobs to adapt as resource allocations change. 

Above all else, we seek to improve the usability of scalable data 

processing.  These unfortunate rules of thumb characterize the 

current state of the art: 

1. Naïve jobs are orders of magnitude slower than tuned ones, 

and performance issues are rarely application-specific. 

2. Applications manually partition jobs across computational 

runtimes and explicitly convert between wire-level formats. 

3. As cluster software is upgraded, “bit-rot” changes job 

semantics, making it difficult to reproduce old results or 

perform post mortem analysis of compromised data sets. 

In turn, most developer time (often the key bottleneck) is spent on 

issues that should be handled by the underlying data management 

infrastructure. This was our prime target as we designed REEF.  

2. RELATED WORK 
In this section, we survey specialized computational frameworks 

with a focus on low-level issues that prevent Hadoop from 

efficiently supporting such systems.  Next, we explain the 

relationship between cluster resource managers and REEF. 

Hadoop MapReduce is hardcoded to use coarse-grained, stateless 

tasks to run MapReduce jobs, which it implements as a scan, a 

shuffle (sort) phase, followed by scans over groups of (sorted) data.  

It achieves fault tolerance by persisting the output of each task to 

disk.  This approach has a number of performance problems.  

Complex computations are run by chaining MapReduce jobs 

together into workflows.  Each step of the workflow persists its   

output to disk, incurring disk and communication overheads, as     

well as the computational overhead of serializing and parsing the 
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intermediate data.  These costs often dominate job runtimes.   

PACMan [1] improves matters by scheduling tasks to make better 

use of the OS file cache, although it still writes intermediate data to 

disk. Assuming degraded fault tolerance and scalability is 

acceptable, the best solution is to entirely avoid serialization and 

parsing overheads by keeping the parsed data in RAM.  A wide 

range of systems (including some listed below) have used similar 

tricks to improve performance. 

Ultimately, application developers have moved to higher-level 

programming abstractions (such as Hive and Pig’s SQL-like query 

languages), which currently run as job workflows that implement 

unintended operations (such as join) atop MapReduce and demand 

richer storage primitives (indexes) than HDFS provides.  Although 

such jobs run atop Hadoop MapReduce, they do so with significant 

performance penalties.  In response, workflow-friendly Hadoop 

replacements, such as PACT [2], Dryad [3], and Hyracks [4] have 

emerged, with support for additional operators, arbitrary 

computational DAGs and indexing.  Although these systems are 

promising, like Hadoop, they couple resource management and 

computational models, locking out many new (and existing) 

workloads. 

Mahout is an extreme example of systems that suffer from 

unnecessarily reparsing input data.  It is a machine learning library 

built atop well-behaved MapReduce jobs. As a consequence it 

repeatedly reads the same data, and performance suffers 

accordingly [5].  Systems such as Giraph (for graph processing), 

and VW (machine learning) move beyond workflows to iterative 

computations.  This highlights another performance problem: 

Hadoop’s coarse task granularity.  The cost of invoking a Map or 

Reduce task in Hadoop is surprisingly high; best practices dictate 

that each task should run for at least 10’s of seconds to a minute.  

Giraph and VW address this problem by requesting a bunch of Map 

tasks and then refusing to release them until the job is complete. 

This causes performance and reliability problems for their jobs and 

for the cluster as a whole. 

In contrast to Hadoop, sub-millisecond tasks are common in 

traditional task-based environments [6].  Even in such 

environments, coarse tasks are a common bottleneck that prevent 

further linear scaling.  Clearly, graph-processing and machine-

learning systems would benefit from direct support for fine-grained 

tasks and low-latency communication.   

Cluster managers like YARN, Mesos [7], Condor [8] and others1 

provide raw cluster resources to higher-level applications. They do 

so in a coarse-grained fashion: as in Hadoop, allocation requests 

should involve at least 10-60 seconds of machine time (Figure 1).  

REEF runs atop YARN, though it could be retargeted to most of 

the other cluster managers.  Like the others, YARN introduces a 

two-level scheduler that decouples resource and job management.  

This allows MapReduce, workflows and iterative computations to 

coexist and run efficiently.  In addition to providing access to 

                                                                 
1 Google Borg and Microsoft Windows Fabric are internal versions 

of the same concept that do not have citable references. 

computational resources, YARN exposes storage locality 

information from the underlying store (currently just HDFS), 

allowing computational frameworks to reason about cluster and 

storage topologies as they see fit.   

3. KEY ABSTRACTIONS 
REEF is structured around the following key abstractions: 

Job Driver: The user-supplied control logic.  There is exactly one 

Driver for each Job. The duration and characteristics of the Job 

are determined by this module. 

Activity: User-supplied logic that performs the data processing.  

Activities are a generalization of Hadoop’s Map and Reduce 

Tasks.  REEF encourages a strict separation between the control 

plane and the data plane of the computation. 

Evaluator: The runtime for Activities. There is a 1:1 mapping 

between Evaluators and YARN Containers.  Evaluators run one 

activity at a time, but a single evaluator may run many activities 

throughout its lifetime.  This enables sharing among Activities 

(e.g., caching) and reduces scheduling costs.   

Services: Objects and daemon threads that are retained across 

Activities that run within an Evaluator.  Examples include caches 

of parsed data, intermediate state and network connection pools. 

The Driver orchestrates communication and computation, resource 

management, and fault handling.  REEF provides libraries and 

services that make it easier to implement new Drivers.  

4. ACTIVITY LIFECYCLES 
Above, we said that Activities are a generalization of Hadoop 

Tasks.  Activities contain arbitrary application code, and are able 

to behave in arbitrary ways.  Here, we describe two variants.  The 

first mimics Hadoop, allowing REEF to run legacy jobs (and, with 

the help of Services, to improve their performance).  The second 

provides coarse-grained application tasks that may be checkpointed 

and migrated between Evaluators.  This enables fault tolerance and 

dynamic load balancing. 

The most natural use of YARN (and therefore REEF Evaluators) is 

to request a new container for each task, and to return the container 

to YARN when the task completes.  This provides YARN with the 

greatest possible flexibility when it comes to sharing cluster 

resources across jobs and tenants, and mirrors the approach used in 

earlier versions of Hadoop, making this a reasonable approach for 

existing jobs.  However, container allocations are expensive: they 

consume scheduler resources, and incur high startup costs. 

REEF Evaluators provide two alternatives.  The first leverages 

Evaluators’ ability to run multiple Activities, one after the other. 

By using Services to cache Activity state and outputs, Evaluators 

can significantly reduce the cost of running chains of Activities. 

However, coarse-grained tasks have a number of fundamental 

drawbacks.  Scheduling decisions are complicated by long-running 

tasks with unpredictable runtimes and job parallelism is limited by 

the overhead of spawning additional tasks.  Furthermore, many 

iterative and graph processing computations process each message 

by spawning a new task; with heavyweight tasks, this leads to 

unacceptable overheads; Evaluator reuse improves the situation 

considerably by reducing task spawn times (Figure 1). 

Figure : Task spawn latencies in REEF 
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Alternatively, certain classes of computation (such as simulations) 

consist of long running tasks that cannot be re-run from scratch; 

REEF’s checkpointing service makes it easy to serialize Activity 

state to disk and to restart the Activity on a different machine.  This 

allows applications to implement fault tolerance by periodically 

checkpointing state, and facilitates elastic load balancing and 

scheduling (idle, or shrinking tasks can be paused or consolidated 

onto fewer machines) [9].  Of course, in addition to serializing state 

to disk, checkpointing requires support from various REEF 

components, including networking and storage. 

5. DATA MANAGEMENT SERVICES 
REEF’s data management service is a set of libraries that provides 

mechanisms for networking, storage, checkpointing, and other data 

processing infrastructure.  It provides a naming abstraction called 

an Identifier that is the basis for many of these mechanisms.  REEF 

Identifiers are glorified URIs that are associated with resource 

types, such as files, network addresses and REEF Activities.  This 

level of indirection allows Activity instances to be checkpointed in 

one Evaluator and restored in another; REEF’s network 

management layer transparently routes the requests as appropriate. 

Identifiers also help provide storage independence.  REEF’s 

storage manager provides access to generic file and index objects 

and Identifiers encode both the name of the object and the 

underlying storage implementation, allowing applications to treat 

multiple storage systems interchangeably. 

These facilities are accessed through two APIs: one in the Driver 

and one in the Activity. The Driver API requests and configures 

Services when Evaluators are created, and the Activity API 

provides access to the actual functionality.  This separation makes 

it easy to add new data management services to REEF. 

In addition to communication and storage, the REEF data 

management APIs include computational primitives.  One that 

bears mentioning is the combine primitive, which groups streams 

of (key, value) pairs by key, invokes a combiner callback on pairs 

within the same group, and periodically ships combined values to 

their destination.  This is the basis of Hadoop MapReduce’s 

combiner optimization, as well as aggregation trees and many 

machine learning training algorithms. Various implementations 

make sense in different scenarios, including in-memory, on-disk 

and distributed approaches.  Providing computational primitives as 

part of REEF allows us to automatically leverage any advanced 

storage and networking features of the underlying cluster.  We are 

particularly interested in using Sailfish-style I-Files [10] to build 

in-network sorting, grouping and aggregation primitives. 

6. WAKE: DATA AND CONTROL PLANES 
Two challenges immediately arise during the implementation of 

new computational frameworks.  Scalable Driver implementations 

must coordinate between large numbers of potentially faulty nodes, 

and handle network timeouts, unexpected messages and so on.  

Furthermore, to obtain good performance, Drivers must make 

heavy use of asynchronous operations.  We have found that events 

are a natural fit for such environments. 

Similarly, when implementing high-performance dataflow and 

task-based computations, one wants control over (and visibility 

into) the flow of work between threads and concurrency between 

tasks of the same type.  With current multi-core systems, explicit 

                                                                 
2 Note that here, we focus on the implementations of computational 

frameworks, not high-level user code.  

control over thread synchronization and context switching 

overheads is crucial as well.  With this in mind, we came to the 

conclusion that most REEF Drivers and Activities would be best 

served by an event-driven system.2 

We considered a number of event driven systems, but found that 

they were missing crucial features: 

Extensibility to multiple I/O subsystems High performance event-

driven networking (such as Netty) and disk I/O libraries exist, but 

do not support the range of applications we target (including 

legacy libraries, such as JDBC drivers and HDFS handles).  

Using them would break composability: each data management 

service would have to be handled by a different REEF subsystem. 

Profiling and bottleneck analysis tools similar to those proposed 

by SEDA [11].  Such tools are the primary benefit of event-driven 

programming, as they are able to produce per-event handler 

tracking of throughput, mean event handler latencies, queue 

lengths, parallelism, and latency histograms [12].  Such 

information aids debugging and runtime schedulers. 

Inlining of event handlers Although Wake’s event handling API 

is purely asynchronous, we often schedule handler invocations in 

a synchronous fashion by configuring Wake to directly invoke 

the next handler instead of adding the event to a dispatch queue.  

This allows aggressive inlining of chains of event handlers [13].   

Immutable dataflows Wake event handlers are wired up by 

invoking object constructors, ensuring that event processing 

streams are correctly constructed.  This avoids complex set-

up/tear-down logic in event handlers. It also eliminates a broad 

class of runtime errors, and associated error handling and runtime 

overheads.  It simplifies Drivers, which can safely assume full 

knowledge of the dataflows they create (including ones that run 

remotely, or are written in a different language than the Driver). 

7. TANG: JOB CONFIGURATION 
REEF Drivers, Evaluators, Activities, and Services are simply 

implementations of like-named Java or .NET3 interfaces.  Each Job 

consists of a: 

YARN application master that hosts a Java or CLR VM that, in 

turn, contains a single Driver object, and a 

Set of YARN containers that each contain an Evaluator object. 

Evaluators, in turn, instantiate Services, and run one Activity at a 

time until they are shut down.  As we implemented REEF, we 

realized that, in order to compose Activities from multiple 

frameworks, we needed a way to write general purpose (runtime- 

and application-independent) code to instantiate these objects. 

Early REEF prototypes used ad-hoc logic to process configuration 

data from properties files (as Hadoop does [14]).  Such logic 

consumed a significant fraction of our code (as in Hadoop), and 

made hidden assumptions about applications and runtimes.  There 

was no way to move classes between environments, and extending 

REEF involved mastering obscure design patterns and modifying 

multiple files.  Error handling was a nightmare: there was no 

distinction between configuration and runtime errors, and no 

reproducible way to run faulty components in isolation. 

To address these issues, we implemented Tang, a configuration 

manager and dependency injector.  Now, REEF extensions consist 

3 We plan to add support for additional languages over time. 
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of standard Java and C# classes and a few annotations.  The 

following properties distinguish Tang from existing approaches: 

Static checking of configurations allows jobs to fail earlier and 

partitions runtime errors into classes: incomplete or wrongly-

typed configurations, initialization failures, and runtime errors. 

Language independence Drivers written in one language can 

configure Activities written in multiple languages.  This allows 

REEF to interoperate with the .NET and SQL Server ecosystems, 

Java-centric DBMS’s, and big data solutions built atop Hadoop. 

Separation of concerns between configuration processing and 

Driver implementations. Developers can introduce new types of 

Drivers and Activities without modifying Tang.  In contrast, 

many dependency injectors are coupled to one application 

domain (often web services). 

Graceful handling of ambiguity for configurations that require 

further specialization, which enables runtime selection of 

efficient execution plans. 

In short, Tang reduces the problem of bootstrapping a REEF Job to 

that of shipping configuration files, binaries and any other 

dependencies to the appropriate Evaluator.  Tang automatically 

checks for and reports the vast majority of application 

configuration errors and provides detailed diagnostic information 

when a buggy Driver (or other application code) generates a faulty 

configuration or makes an unserviceable injection request. 

Tang exposes a declarative, dependency-based configuration 

language that provides the lowest level of composability and 

(because it is deterministic) fault tolerance in REEF. 

8. DEMO DESCRIPTION 
We plan to present a REEF cluster running a hybrid MapReduce 

and machine learning workload.  Depending on the job 

configuration, MapReduce output will be stored on disk or 

pipelined directly into a machine learning training job.  The 

iterative training algorithm will be capable of making use of per-

evaluator retainable state, or of repeatedly scanning over the input 

data on disk.  In addition to this hybrid job, we plan to demonstrate 

an implementation of page rank based on bulk-synchronous graph 

processing and an example of REEF’s checkpointing mechanisms. 

We will also include demonstrations of Tang and Wake.  Tang will 

provide debugging information for misconfigured jobs, perform 

build-time checks for a range of common mistakes, and emit the 

information needed to reproducibly run jobs, including the 

configurations shipped to each Evaluator as the job progresses.  For 

Wake, we will demonstrate profiling tools that pinpoint 

bottlenecks, measure the effective concurrency achieved by 

Activities and present request latency histograms from the Driver. 

9. CONCLUSION 
We plan to use REEF to support a wide range of scalable, fault 

tolerant computational frameworks.  In this demo proposal, we 

have outlined the primitives that REEF exposes, and explained how 

they allow many computational frameworks to run atop Hadoop’s 

new resource manager, YARN.  We also described Wake, a state 

of the art event-driven programming framework, and Tang, a 

configuration manager and dependency injector.  Together with the 

data management primitives that ship with REEF, these systems 

greatly simplify the implementations of new scalable 

computational frameworks, and provide compatibility with existing 

data management infrastructure. 

10. REFERENCES 
[1] Ananthanarayanan, Ganesh, Ghodsi, Ali, Wang, Andrew, 

Borthakur, Dhruba, Kandula, Srikanth, Shenker, Scott, and 

Stoica, Ion. PACMan: Coordinated memory caching for 

parallel jobs. In USENIX NSDI (2012). 

[2] Alexandrov, Alexander, Ewen, Stephan, Heimel, Max et al. 

MapReduce and PACT-comparing data parallel 

programming models. In Proceedings of the Conference 

Datenbanksysteme in Buro, Technik und Wissenschaft 

(BTW), GI, Bonn, Germany (2011), 25-44. 

[3] Isard, Michael, Budiu, Mihai, Yu, Yuan, Birrell, Andrew, 

and Fetterly, Dennis. Dryad: distributed data-parallel 

programs from sequential building blocks. ACM SIGOPS 

Operating Systems Review, 41, 3 (2007), 59-72. 

[4] Borkar, Vinayak, Carey, Michael, Grover, Raman, Onose, 

Nicola, and Vernica, Rares. Hyracks: A flexible and 

extensible foundation for data-intensive computing. In 

ICDE (2011), 1151-1162. 

[5] Chu, Cheng, Kim, Sang Kyun, Lin, Yi-An, Yu, YuanYuan, 

Bradski, Gary, Ng, Andrew Y, and Olukotun, Kunle. Map-

reduce for machine learning on multicore. NIPS, 19 (2007), 

281. 

[6] Blumofe, Robert D, Joerg, Christopher F, Kuszmaul, 

Bradley C, Leiserson, Charles E, Randall, Keith H, and 

Zhou, Yuli. Cilk: An efficient multithreaded runtime system. 

ACM, 1995. 

[7] Hindman, Benjamin, Konwinski, Andy, Zaharia, Matei et 

al. Mesos: A platform for fine-grained resource sharing in 

the data center. In USENIX NSDI (2011), 22-22. 

[8] Thain, Douglas, Tannenbaum, Todd, and Livny, Miron. 

Condor and the Grid. Grid computing: Making the global 

infrastructure a reality (2003), 299-335. 

[9] Ananthanarayanan, Ganesh, Douglas, Christopher, 

Ramakrishnan, Raghu, Rao, Sriram, and Stoica, Ion. True 

elasticity in multi-tenant data-intensive compute clusters. In 

ACM SoCC (2012), 24. 

[10] Rao, Sriram, Ramakrishnan, Raghu, Silberstein, Adam, 

Ovsiannikov, Mike, and Reeves, Damian. Sailfish: A 

framework for large scale data processing. In ACM SOCC   

(2012), 4. 

[11] Welsh, Matt, Culler, David, and Brewer, Eric. SEDA: an 

architecture for well-conditioned, scalable internet services. 

In ACM SIGOPS Operating Systems Review (2001), 230-

243. 

[12] Joukov, Nikolai, Traeger, Avishay, Iyer, Rakesh, Wright, 

Charles P, and Zadok, Erez. Operating system profiling via 

latency analysis. In OSDI (2006), 89-102. 

[13] Kohler, Eddie, Morris, Robert, Chen, Benjie, Jannotti, John, 

and Kaashoek, M Frans. The Click modular router. ACM 

TOCS, 18, 3 (2000), 263-297. 

[14] Rabkin, Ariel. Using Program Analysis to Reduce 

Misconfiguration in Open Source Systems Software. 

Dissertation, UC Berkeley, 2012. 

 

1373


	1. INTRODUCTION
	2. RELATED WORK
	3. KEY ABSTRACTIONS
	4. ACTIVITY LIFECYCLES
	5. DATA MANAGEMENT SERVICES
	6. WAKE: DATA AND CONTROL PLANES
	7. TANG: JOB CONFIGURATION
	8. DEMO DESCRIPTION
	9. CONCLUSION
	10. REFERENCES

