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ABSTRACT

Path prediction is presently an important area of research with a
wide range of applications. However, most of the existing path
prediction solutions are based on eager learning methods which
commit to a model or a set of patterns extracted from historical
trajectories. Such methods do not perform very well in dynamic
environments where the objects’ trajectories are affected by many
irregular factors which are not captured by pre-defined models or
patterns.

In this demonstration, we present the “R2-D2” system that sup-
ports probabilistic path prediction in dynamic environments. The
core of our system is a “semi-lazy” learning approach to proba-
bilistic path prediction which builds a prediction model on the fly
using historical trajectories that are selected dynamically based on
the trajectories of target objects. Our “R2-D2” system has a visual
interface that shows how our path prediction algorithm works on
several real-world datasets. It also allows us to experiment with
various parameter settings.

1. INTRODUCTION
Path prediction is very useful in a broad range of application-

s, including location-based services, traffic management, epidemic
prevention, event prediction, and anomaly detection[7]. For exam-
ple, knowing the future path of mobile phone users gives mobile
advertisement companies the opportunities to push more relevant
advertisements to them. As another example, being able to predict
the future path of vehicles makes it possible for traffic management
officers to control traffic flow in advance to prevent traffic jams.

We observe that, in these real world applications, the environ-
ments where the objects move in are rather dynamic. The objects’
trajectories in such environments are frequently affected by some
short-term and irregular factors such as traffic signals, traffic jams,
weather conditions, and events such as festival and sports games.

Although a few path prediction methods have been proposed [6,
3, 5], they do not work well in dynamic environments. This is
because most of them adopt the eager learning approach and are
not able to capture the dynamic characteristics of the environments.
In eager learning, a model or a set of patterns are extracted from
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historical data in a pre-processing stage. The model/patterns are
then used to predict the paths of target objects (whose future paths
need to be predicted). The pre-processing step typically takes a
long time and is not run frequently. As a result, the models or
patterns may have been invalid when they are applied.

We develop a system, called “R2-D2”1, for pRobabilistic path
pReDiction in Dynamic environments. The core of our system is a
“semi-lazy” learning approach to probabilistic path prediction [10].
The key idea of the “semi-lazy” approach is to retrieve relevant tra-
jectories on the fly, and then use the relevant trajectories to build a
path prediction model that is specific for the target object. In our
“R2-D2” system, all objects’ historical trajectories are kept and in-
dexed. To perform prediction for a target object, the system uses
the trajectory of the target object in the last few time steps as query
trajectory to retrieve a small set of reference trajectories from his-
torical trajectories. Then we apply sophisticated machine learning
techniques on the reference trajectories to construct a local model,
which can predict the future path of the target object.

Our “semi-lazy” learning path prediction approach has the fol-
lowing distinct features. First, unlike the eager learning approach-
es, we build prediction model on the fly. Since the reference tra-
jectories are selected particularly for the target object based on its
recent trajectory, the prediction model built on the fly is specific for
the target object. Second, unlike the lazy learning approaches, we
use slightly more sophisticated learning algorithms to derive accu-
rate local models/patterns with acceptable delay. Since the number
of reference trajectories is typically small, we can afford building
more complex local models. Third, we dynamically construct new
models/patterns if the predicted path does not match the actual path
well, giving rise to a self-correcting continuous prediction method.
Finally, our system outputs the longest path (in terms of time) with
probability higher than a given threshold. Users can use the prob-
ability threshold to control the tradeoff between prediction length
and prediction accuracy.

In this demonstration, we showcase the above key aspects of the
“R2-D2” system using several real-world datasets. The system pro-
vides a visual interface that shows moving objects and their predict-
ed path. The demonstration system also allows users to play with
various parameter settings.

2. RELATED WORK
Existing path prediction methods can be grouped into two cate-

gories: pattern-based prediction method and model-based predic-
tion method. Pattern-based methods can be future categorized in-
to two classes: personal pattern-based methods [8] and general

1R2-D2 is a smart robot in the Star Wars universe.
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pattern-based methods [4, 6]. Personal pattern-based methods re-
quire enough historical trajectories of the target object, and there
could be privacy problems. Existing pattern-based methods take
the eager learning approach that learns a model or a set of patterns
in a time-consuming learning/mining step. Such methods do not
work well in dynamic environments that require the system to cap-
ture new patterns as time goes.

Model-based methods use mathematical models to describe the
movement of objects, such as recursive motion function model [9]
and Markov model [2]. However, these methods can only predict a
short-term path.

The main difference between our approach and existing solu-
tions is that our algorithm takes a “semi-lazy” approach that learns
a prediction model on the fly while most of the existing solutions
rely on models or a set of patterns discovered in an offline learning
stage.

3. PRELIMINARIES AND PROBLEM DEF

INITION
Let T i =< Oi

1, ..., O
i
t, ... > be a trajectory, where Oi

t = ((x, y),
t) is a vector denoting that object Oi locates at location (x, y) at
time t. We assume that all trajectories have synchronized times-
tamps. When this assumption is not valid, we interpolate the tra-
jectories. We refer to the trajectory of the target object Op in the
last h time steps as h-backward trajectory and denote it as Wh, i.e.,
Wh =< Op

t0−h+1, O
p

t0−h+2, ..., O
p
t0

> where t0 is the current
time.

Our key idea is to find objects on the fly whose trajectories are
similar to the target object’s recent trajectory and then use their
trajectories to build a prediction model. Such objects are called ref-

erence objects and are referred as RO of Op. The trajectory points
of the reference objects form the reference points of Op at different
timestamps. They are further used to derive possible future states
and path of Op.

Formally, RO of Op are the set of objects which have sub-
trajectories that are similar to Wh. For each object Oi ∈ RO,
we denote Oi

v as the timestamped location of Oi that is nearest to
Op

t0
. In other words, v is the timestamp when object Oi’s location

is closest to Op
t0

.
The reference points of Op at time t0 are defined as RO0 =

{Oi
v|O

i ∈ RO}. The reference points of Op at time t0+k, namely
ROk, are defined as ROk = {Oi

v+k|O
i ∈ RO}. Moreover, we

use RO1:k to denote the reference trajectories of Op, which are all
the reference points of Op from t0 + 1 to t0 + k, i.e., RO1:k =⋃k

i=1
ROi.

Let ⊙(centroid, radius) denote a circle. We call a vector sk =
(⊙(centroid, radius), k) a state of Op, which means Op may be
within the circle at time t0 + k. We define the set of all possible
states of Op at time t0 + k as a state space, i.e., Sk =

⋃
sik. We

denote a sequence of states of Op from t0+1 to t0+k as SS1:k =<
s1, s2, ..., sk >. We call SS1:k a path of Op.

Given RO1:k, we denote the probability that Op is in state sk as
p(sk|RO1:k). Similarly, given RO1:k, we denote the probability
that Op would appear in every state in SS1:k as p(SS1:k|RO1:k).
Now, we can define the probabilistic path prediction problem.

DEFINITION 3.1 (PROBABILISTIC PATH PREDICTION). Given

a moving object Op and a probability threshold θ at time t0, proba-

bilistic path prediction returns a path SS1:k of length k time steps,

which satisfies: (1) p(SS1:k|RO1:k) ≥ θ, and (2) for any path of

length k + 1 time steps, p(SS1:k+1|RO1:k+1) < θ.
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Figure 1: An illustration of probabilistic path prediction. Cur-

rent time is t0 = 11. 2-backward trajectory of Op is W2 =<
Op

10, O
p
11 >. Reference objects of Op are RO = {O2, O3, O4}.

Reference points at k = 2 are RO2 = {O2
7, O

3
4, O

4
5}. If θ = 0.4,

a possible path of Op is SS1:2 =< s01, s
0
2 >; if θ = 0.2, a possi-

ble path of Op is SS1:3 =< s01, s
0
2, s

1
3 >.

4. SYSTEM ARCHITECTURE

4.1 Overview
Figure 2 depicts the architecture of our “R2-D2” system. It has

two main components: the Trajectory Grid (TG) and the Predic-
tion Filter (PF). TG indexes the moving objects’ trajectories, and
PF performs probabilistic path prediction. There are also two pro-
cesses: “Update” and “Prediction”. The “Update” process con-
tinuously collects trajectories of moving objects and stores them
into TG. The “Prediction” process is further divided into two sub-
processes:“Lookup” and “Construction”. The “Lookup” process
retrieves reference trajectories from TG, and the “Construction”
process uses the reference trajectories to build path prediction mod-
el for the target object Op.

TG

Update: streaming

trajectories to TG

PF

Predicted

Path

Dynamic environment

(urban space)

Lookup:

Query in TG
Construction:

Path Prediction

h-backward

trajectory

Reference

trajectories

O
p

Prediction Process

Figure 2: Architecture of the “R2-D2” system. It has a “Up-

date” process (blue solid lines) and a “Prediction” process (red

dotted lines). The “Prediction” process has two sub-processes:

“Lookup” process and “Construction” process.

4.2 Trajectory Grid and Update Process
The Trajectory Grid (TG) is a multi-level grid structure that in-

dexes the trajectories. It divides the area of interest into a set of
rectangular cells with fixed size. Trajectories are indexed in the
cells they pass.

In each cell, we maintain two data structures: a density counter
and a hash table called traHash. The density counter records the
number of moving objects that visit the cell. It indicates the pop-
ularity of the cell. The key of the hash table traHash is a vector
(Oid, t), and the value of that is a vector (x, y). The key (i.e.,
(Oid, t)) records that Oid passes this cell at the time t, and the val-
ue (i.e., (x, y)) is the coordinate of the next cell that Oid will pass.
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With the help of traHash, knowing Oi is in cell(i,j) at the time
t immediately enables us to retrieve its following trajectory after
time t.

The “Update” process continuously collects streaming trajecto-
ries of moving objects from the dynamic environment (see Figure
2) and TG indexes these trajectories. TG only buffers the moving
objects’ trajectories in the most recent H time units. We use a list
to link all the elements of traHash, and the oldest element is always
at the end of the linked list. When the moving objects report their
new locations, TG not only updates the relevant cells’ density and
traHash, but also checks the oldest element of each traHash. Then
TG discards the expired elements of each traHash and updates cor-
responding density counters.

4.3 Lookup Process
The “Lookup” process retrieves reference objects from TG. The

idea is that if Oi has a sub-trajectory that matches very well with
the h-backward trajectory of Op, we say Oi is a reference object of
Op. We define a formal matching function which has clear seman-
tic meanings and can support high performance query in TG. The
query process works as follows. For each Op

u ∈ Wh, we define
a circle CRu = ⊙(Op

u, ǫ). Then we obtain the objects that have
visited any CRu from TG. Finally the objects that visited all the
CRu in the same order as Op did are reference objects. The value
of the radius parameter ǫ is computed by multiplying the average
velocity by half of the sampling time interval of the trajectories.

4.4 Prediction Filter and Construction Pro
cess

The Prediction Filter (PF) is a model for path prediction. The
input of PF is a set of reference trajectories, and the output is the
predicted path. The “Construction” process runs within PF. It iter-
atively constructs the state space and makes path prediction.

4.4.1 Prediction Filter

PF is based on the Grid-based Filter model [1], which is a gen-
eralization of Hidden Markov Model. We use ROk, i.e. reference
points of Op at the time t0 + k, as observations. The observation-
s from time t0 + 1 to time t0 + k are RO1:k =

⋃k

j=1
ROj . PF

constructs p(sk|RO1:k) recursively, i.e. from p(sk−1|RO1:k−1) to
p(sk|RO1:k), which is computed by the following function [1]:

p(sk|RO1:k) =
∑

i

wi
k|kδi(sk) (1)

where
wi

k|k−1 ,
∑

j

w
j

k−1|k−1
p(sik|s

j

k−1
) (2)

wi
k|k ,

wi
k|k−1

p(ROk|s
i
k
)

∑
j

w
j

k|k−1
p(ROk|s

j

k
)

(3)

where δ() is a Dirac measure function and w0|0 = 1. The s-

tate transition function p(sik|s
j

k−1) represents the probability that

Op will go to state sik given that Op is in state sjk−1at the time
t0+k−1. We model the state transition function by considering s-
patial relations and common reference objects between states sjk−1

and sik. The likelihood function p(ROk|s
i
k) represents the proba-

bility that ROk is observed given Op is in state sik. By Bayes’ the-
orem, we have p(ROk|s

i
k) ∝ p(sik|ROk)p(ROk)/p

′(sik), where
p(sp,ik |ROp

k) can be computed according to the distribution of ref-
erence points ROp

k in different states, and p′(sik) can be computed
by the cells’ average density covered by state sik.

4.4.2 Construction Process

The “Construction” process has two stages, which are (1) to gen-
erate the possible state space of Op at a future time t = t0+k (t0 is
the current time) and (2) to make path prediction. The path predic-
tion can be done by the maximum a posteriori (MAP) estimation
in the state space by applying the Viterbi Algorithm. The returned
result is a predicted path, whose probability (confidence) is larg-
er than θ (set by users) and whose length (in term of time) is the
longest. Now we focus on the state generation.
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Figure 3: State generation at t = t0 + k

In a nutshell, we cluster the reference points ROk, and then con-
vert each reference points cluster to a state. We propose a hierar-
chical method to generate the states. Figure 3 shows an illustration
of the state generation process. The whole process of state genera-
tion has two steps. First, we build a state space tree in a bottom-up
manner. We use a modified agglomerative hierarchical clustering
algorithm to merge the reference points in ROk until there is only
one root cluster. All clusters in each level of the cluster tree are
converted to one candidate state space of Op (i.e., one cluster for
one state). In this way, we get a state space tree from the cluster
tree. Second, we use a score function to select the state space with
the highest score from the state space tree in a top-down manner.
Suppose the state with largest probability in state space Sk,l is s∗k,l,
and the radius of s∗k,l is r∗k,l, then the score function is:

fk,l =
p(s∗k,l|RO1:k)

[r∗k,l]
α

(4)

Here, α controls the compromise between the probability and the
radius. p(s∗k,l|RO1:k) is introduced in section 4.4.1.

Based on the observation that objects’ locations change gradu-
ally, we also improve the efficiency of state generation by reusing
micro clusters. Details can be found in [10].

4.4.3 Selfcorrecting continuous prediction

In real-life applications, we may need to continuously predict the
path of a moving object. Continuous prediction gives us an oppor-
tunity to incrementally improve the path prediction result. During
the prediction, the actual movement of the prediction target (Op)
can be compared against the predicted movement. With this infor-
mation, we can incrementally refine our model.

The basic idea is to give more weight to the reference object-
s that have helped us make the correct prediction. We introduce
a new attribute, called credit, for each moving object. We use a
linear growth and exponential decay method to update the moving
object’s credit. If a reference point Oi contributed to generate the
correct state which target object Op will pass, we linearly increase
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the credit of Oi; otherwise, we halve the credit of Oi. Then we in-
tegrate the credit (as weighted coefficient) into the state generation
and path prediction algorithm.

5. DEMONSTRATION

Figure 4: Screenshot of the main interface

We have implemented a web based system2 and studied its per-
formance with comprehensive experiments [10]. We would use this
demonstration to show the key aspects of our system. We will run
our system on different real-world and synthetic datasets. Users
will be able to interact with our system by setting different applica-
tion scenarios with regard to datasets and parameter values.

5.1 System Setup
We will demonstrate our system with two real-world datasets and

one synthetic data set. The two real-world datasets are (1) the Sin-
gapore Taxies (ST) dataset, which is a collection of trajectories of
about 15,000 taxis in Singapore over one day and contain more than
268 million points; and (2) Human Tracking (HT) dataset, which is
a collection of human trajectories of 10,000 persons extracted from
30 minutes surveillance video in a train station and contains about
160 thousand points.

The synthetic dataset is a collection of synthetic trajectories of
200,000 objects on the road network of Oldenburg generated by
Brinkhoff generator over 400 time units. The synthetic data set
has 10 different kinds of moving objects and contains 80 million
points. We also put 400 moving obstacles in the space to simulate
the changes of the environment. Note that the system performance
is mainly affected by the number of moving objects; therefore, the
larger synthetic dataset is used to illustrate our system’s scalability.

We compare with two existing path prediction methods: Recur-
sive motion function [9] that is the most accurate motion function
in literature, and TraPattern [6] that is a general pattern-based path
prediction method.

5.2 Demo Interface
Figure 4 is a screenshot of the demo interface. It consists of two

parts: control panel (left part) and display panel (right part). The
control panel is composed of four areas from top to bottom: (A)
Data sets, (B) Prediction setting, (C) Output and (D) a group of
control buttons. In the area (A), users can select the test data sets.
In the area (B), the user can set various parameters. In the area

2http://db128gb-b.ddns.comp.nus.edu.sg/jzhou/R2-D2/

(C), the users can see some system output information, such as the
different statistics information of our prediction method compared
against existing algorithms.

The display panel is composed of two parts from top to bottom:
the canvas view and the timeline bar. In canvas view, the user can
see the map of visualized trajectory, moving objects and predicted
path. In Figure 4, the red points represent the target objects whose
path need to be predicted, and the sequences of green dots are the
predicted path. The background blue map is the visualization of
trajectories of other objects. The timeline bar lets us set the time
interval for selecting datasets.

6. CONCLUSIONS
In this paper, we briefly present our approach to path predic-

tion in dynamic environments and describe a demonstration of our
“R2-D2” system. We describe the main components of “semi-lazy”
path prediction method, explain how they work, and show its per-
formance on real world and synthetic datasets. The demonstration
of our system provides interactive graphical user interface for user-
s to play with our system, and includes dynamic visualization for
users to observe the performance of our path prediction method.
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