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ABSTRACT

When planning a trip, one essential task is to find a set of
Places-of-Interest (POIs) which can be visited during the
trip. Using existing travel guides or websites such as Lonely
Planet and TripAdvisor, the user has to either manually
work out a desirable set of POIs or take pre-configured travel
packages; the former can be time consuming while the latter
lacks flexibility. In this demonstration, we propose an Inter-
active Package configuration System (IPS), which visualizes
different candidate packages on a map, and enables users
to configure a travel package through simple interactions,
i.e., comparing packages and fixing/removing POIs from a
package. Compared with existing trip planning systems, we
believe IPS strikes the right balance between flexibility and
manual effort.

1. INTRODUCTION

As an essential part of everyone’s life, travel is an im-
portant way for people to socialize, relax, discover, and ex-
plore new cultures. According to a recent report from the
U.S. Travel Association [1], the U.S. travel industry plans
to create 1.3 million American jobs and add $859 billion
to the U.S. economy by 2020. Thus, besides the increasing
popularity of existing online travel websites such as Lonely
Planet, TripAdvisor, and Yahoo! Travel, many startups such
as Tripit have recently been created to help users explore
places and trips around the world.

For the same reason, recently a number of research projects
have also been initiated around the travel business. For ex-
ample, using user-uploaded travel-related photos on Flickr,
researchers have proposed ways to discover landmarks [19],
search landmark images [8], and mine travel patterns [5]. In
addition, various algorithms have been developed to mine
online user travelogues [7].

In this work, we consider one particularly important task
when planning a trip: find the most desirable package of
Places-of-Interest (POIs) to be visited during the trip. Pre-
vious works on this topic, such as [5] and [14], usually define
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a user’s preferences using hard constraints, e.g., a cost bud-
get of $1000 for all the POIs to be visited, and a fixed utility
function, which is usually a linear combination of utilities
of items in the package. These approaches will work when
users know exactly what they want in a desirable package.
However, this may be challenging for the following reasons.
Firstly, users often only have a rough idea of what they
want in a desirable package. E.g., when summing costs of
all POIs, smaller is better; and for the average rating of all
POls, larger is better. Thus hard constraints on a POI fea-
ture may result in, either sub-optimal packages when the
budget is set too low, or a huge number of candidate pack-
ages when the budget is set too high. Secondly, the im-
portance of each criterion specified by the user is usually
unknown. E.g., for some users, the monetary budget may
not be that important and they can afford to pursue a high
quality package while sacrificing a “reasonable” amount of
cost budget; whereas other users may be very sensitive to
the overall cost of the trip, and may have limited flexibility
in terms of monetary budget. We note that the system is
informed about the relative importance of the different cri-
teria to the user solely in terms of the weights given to them.
However, it is not realistic to expect the user to know (and
tell the system) that she/he is 0.8 interested in the overall
cost, and 0.2 interested in the overall quality of the package.

To address the first issue, one intuitive solution explored
in [17, 10] is first to ask for users’ preferences with regard
to each criterion, and then present to the user all skyline
packages, i.e. packages which cannot be dominated on every
criterion. However, the number of such skyline packages, as
shown in the empirical results of [17] and [10], can be in the
hundreds or even thousands for a reasonably sized dataset.
So presenting all of these packages to a user is impractical.

Instead, following recent work on multi-dimensional rank-
ing of items [16], we take a quantitative approach to rank
packages based on multiple criteria, i.e., we consider that
for each traveler u, there is an intuitive “implicit” linear
utility function f,, which depicts u’s preference or trade-
off over different criteria for configuring a desirable package.
By leveraging this utility function, we can easily rank all
packages, and present the best one to the user. E.g., for a
user u who has equal preference on cost budget and average
item rating of a package, we can use the function f,(p) =
0.55U M (pcost) +0.5AV G (prating), where SUM (peost) is the
cost of a package p, and AV G(prating) is the average item
rating of p.

However, as mentioned in the second issue above, one
challenge for this approach is that we cannot assume that
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Figure 1: Architecture of IPS.

the user will define the utility function exactly for the sys-
tem. Thus, similar to some recent work such as [13], [12],
and [11], we will assume the weights of the utility function
are hidden and take an interactive approach to obtain these
weights from user feedback.

Specifically, our proposed system initially assumes each
user has equal preference over each desired criterion. Then
the system iteratively recommends to the user a small num-
ber of packages, and the user can select any of her/his fa-
vorite packages from among them. These packages are cho-
sen by the system to learn more about the user, and thus
enable the system to recommend better packages as time
progresses. A key attractive property of our approach is
that while the interactive process needs to exploit a user’s
preferences by suggesting packages, every suggested package
is also a recommendation to the user based on the current
inferred knowledge; this can help the system keep the user
engaged through the interaction process.

In addition to packages which are recommended in each
iteration, the system also has a separate component which
keeps and presents to the user a set of current best packages
according to the partially inferred utility function, and the
user can directly select any of these to inform the system
that the shown package is indeed desirable compared with
other “best” packages presented. As we shall discuss in Sec-
tion 2, every such feedback from the user can also help the
system refine the user’s utility function.

Compared with [12] and [11] which consider preferences
over items, our package configuration problem needs to ex-
plore a much larger space of all possible packages. In addi-
tion, the aggregation-based feature space (e.g., cost budget)
further complicates the underlying problem. On the other
hand, [13] also considers an interactive way of ranking travel
packages. However, the user feedback model in [13] is de-
fined in such a way that for each iteration, the user is asked
to rank a set of POIs instead of packages. Thus every deci-
sion the user makes is “local” in the sense that the user is
not able to personalize her /his preference over packages as a
whole; it is possible that POIs favored in one iteration might
become less desirable after seeing some additional POls.

Based on the above idea, in this work, we propose an In-
teractive Package configuration System (IPS) which can be
utilized to help the user make POI decisions upon planning
a trip. Compared with existing work with a similar pur-
pose, IPS has to address the following challenges: 1) Unlike
previous work which is either concerned with items, or con-
siders packages of fixed size [17, 10], IPS considers packages
which, if considered fully, may require a much larger search
space; 2) Instead of assuming an exact utility function to
be specified by a user, which is not realistic, IPS adopts an
interactive way to explore a large space of utility functions
by asking for users’ preferences among a small set of pack-
ages. Because of the large space of packages, picking the
right packages to present to the user is extremely critical.

In the rest of this proposal, we first formulate the inter-
active package configuration problem, and discuss our pro-

posed algorithms and strategies for solving it (Section 2).
Then in Section 3, we describe our demonstration proposal,
and explain how the audience can interact with IPS. Finally,
we discuss related work in Section 4.

2. PROBLEM SETTING

2.1 System Architecture

The basic framework of IPS is depicted in Figure 1. As
can be seen from this figure, a user u of IPS first selects
from a predefined list of package features those that she/he
is interested in, and the preferred order for each aggregate
value. E.g., u can select the cost budget, and indicate that
the smaller the cost budget, the better. Then the system
will iteratively recommend small batches of packages to u
which exploit the user’s preferences. User u can select from
these packages those she/he likes. Meanwhile, in a separate
panel, the user can also interact with the system at any time
by noting that a current candidate best package shown to
her/him in this panel is preferred, or the user can also inform
the system that a particular POI must be included in or ex-
cluded from the final package (see Figure 2). The system
will keep refining its knowledge about the user through in-
vestigating the received feedback, and the user can stop the
interactive process at any moment when a desirable package
has been found.

2.2 Problem Definition

Consider a set R of n POIs, R = {s1,...,s,}. If F =
{f1, ..., fo} denotes the universe of all possible features, then
each POI s € R is associated with a subset Fs of features,
F, C F. Similar to previous work [17], we assume all feature
values are non-negative rational numbers. We use f(s) to
denote the value of POI s on feature f, while f(s) = nil if
f is not defined on s.

Packages of POIs can be defined as subsets of R, e.g.,
p = {s1, 82,83}, 1,582,583 € R, is a package of three POls.
We define the feature set F}, of a package p as the union
of the feature sets of POIs within p, e.g., for the example
package p, I}, = Fs, UFs, UF,,. Since a feature f € F, may
not be available for each POI s € p, we define the affiliated
poi-set of f in p as py = {s | f(s) # nil}.

As has been discussed in existing work on package config-
uration [17, 10], a user’s preference over packages is usually
based on aggregations over feature values of POIs within the
package. E.g., the sum of the costs of all POIs might de-
fine the overall cost of a package, while the average of the
ratings of all POIs might define the overall quality of a pack-
age. Thus we define the Aggregate Feature Profile (or simply
profile) of a package as follows. We note that for the cur-
rent system, we do not take order of items in a package into
consideration, since this usually leads to problems of much
higher complexity [6, 15].

DEFINITION 1. (Aggregate Feature Profile) The aggregate
feature profile of a package p is defined as V, = {A1(pyp,), - -,
A (Dfn )}, where {f1,..., fm} CF, and each A;, 1 < i <
m, is one of the aggregation functions MIN, MAX, SUM,
or AVQ.

We call V = {(A1, f1),- .., (Am, fm)} the package profile
schema. Note that given a fixed set of POIs, we can easily
calculate the maximum aggregate value for a feature that
can be achieved by any package. E.g., for M AX (py, ), the
maximum value on f; that can be achieved by any package
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is simply the maximum f; value from all the POIs. So we
normalize each aggregate value in a profile using the maxi-
mum possible aggregate value of the corresponding feature.
Thus 0 < Ai(py,) <1,1<i<m.

Given a set P of packages, following previous work [16], we
model a user’s preference over P using a utility function g,
which is a weighted linear combination of aggregate feature
values in a profile V.

9(Vp) = wiAi(psy) + ... + wimAm(ps,,) (1)

If a user prefers smaller values to larger ones for an aggre-
gate feature (A, f;) in the package profile schema, we can
modify the corresponding aggregate feature to be (1—A;, f;).
Thus, in the following discussion, we assume w.l.o.g. that
the user prefers larger values for each aggregate feature, and
also that >, w; =1,0<w; <1,1 <3< m.

A framework based on a utility function essentially defines
a total order over all packages, so is different from [17, 10]
which aim to return all the skyline packages, the number of
which can be prohibitively large.

Despite being intuitive, there are two major challenges in
adopting the utility function based framework for package
configuration in practice. First, users are usually not able
to specify the exact weights of the utility function g. Thus
we need to have interactive mechanisms which enable us to
elicit users’ preferences over weight values. Second, unlike
[17] and [10] which consider packages of fixed size, we allow
package size to be flexible in our framework. E.g., given a
system-defined maximum package size of say 20, we consider
all possible package sizes ranging from 1 to 20.

Clearly the core problem in IPS is to infer the utility func-
tion of the user through feedback. We formulate this prob-
lem in Definition 2.

DEFINITION 2. Preference Elicitation: Given the cur-
rent value range of each weight in the utility function g, and
a constant k, find the best set Pr of k packages to present
to the user, such that the system can gain the mazximum
expected amount of knowledge about the utility function g.

By refining the partial knowledge about g through itera-
tive interaction (details will be presented in Section 2.3), the
goal of IPS is to find for the user the most desirable package.

DerINITION 3. Best Package Search: Given a pack-
age profile schema V and partial knowledge about the util-
ity function g, find the most desirable package p* € P,
where P is the set of all possible packages, such that Vq €

P —{p"}, g(p") = 9(q), where g(p)/g(p) denotes the mini-

mum/mazimum possible score for a package p w.r.t. g.

2.3 Algorithms

Initially, when the system knows nothing about the hidden
utility function, clearly the space of all possible combina-
tions of weights forms an m-dimensional hyper-cube [0, 1]™.

To solve the preference elicitation problem of Definition 2,
we first consider the simple case where the system presents
two packages for the user to review in each iteration. Let the
two packages be pi1, p2. Clearly, without any further infor-
mation from the user, we can only assume that each package
has an equal chance to be preferred by the user. Without
loss of generality, assume the user picks p;. This feedback
indicates that for the utility function g, g(Vp,) —g(Vp,) > 0.
Thus we can infer that g(Vp,) — g(Vp,) = O defines an m-
dimensional decision-boundary which is a hyperplane and
separates the desirable weight space from the undesirable
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weight space. In the following iterations, we only need to
look at weights which come from the desirable weight space.
We note that if the user chooses both or neither of the two
packages recommended, we can simply ignore the current
feedback and try to recommend two new packages.

But what is the guideline for choosing the best two pack-
ages in each iteration? Ideally the best two packages should
be selected in a way such that the the desirable weight space
left after each iteration is minimized. Assuming each pack-
age has an equal chance to be selected, it can be shown that
we should select packages such that the decision-boundary
divides the current weight space into two halves of equal
volume. Then by implementing an efficient algorithm for
finding candidate packages which can potentially become
the best package given a specified weight space, IPS can
iteratively apply the above idea to interact with the user
and refine the weight space. The algorithm stops when it
can already determine the most desirable package using the
refined weight space.

We note that there are two additional issues with the
above solution. Firstly, arbitrarily chosen packages may re-
sult in irregularly shaped desirable weight spaces, which in
turn will increase the complexity of the remaining computa-
tion. Thus in IPS we only consider packages such that the
resulting refined weight spaces are hyper-rectangles. Sec-
ondly, in order to satisfy the above properties, IPS may have
to show the user “fake” packages. But in order to guarantee
a good user experience, similar to the truthfulness property
discussed in [12], IPS will ensure that whenever fake pack-
ages are presented to the user, there exist actual packages
which either are equal to or can dominate the fake ones with
respect to quality.

Finally, consider the case of showing more than two pack-
ages in each iteration. The decision-boundary is no longer
a hyperplane, but instead is formed by the Voronoi bound-
ary which separates each package profile from the others.
To ensure that the refined space after the user’s feedback
is still a hyper-rectangle, it can be shown that we need to
present 2° packages in each iteration, where i is a small in-
teger. Note that showing more packages in each iteration
can result in a much smaller refined weight space after each
iteration, but the price will be that users need to make more
complex decisions in each iteration.

3. DEMO SCENARIO

For the implementation of IPS, we crawled Yelp for real
ratings, monetary cost, and location information of POlIs
from the most visited cities in North America. For time du-
ration (cost) information, we use synthetic data by making
a simple assumption that the time spent on each POI is pro-
portional to its area/size (this information can be crawled
from Wikipedia), and multiplied by a factor which depends
on the type of the POI. An alternative way to get time cost
information is to analyze online user-generated content as
described by [5].

IPS has two major components: (1) initial preference cus-
tomization interface, and (2) interactive package planner.
Initial Preference Customization Interface: Through
this interface, users of IPS can specify the travel destination
and customize the aggregation functions to be used in the
package profile schema. E.g., for the rating of items in the
package, the user can prefer either larger minimum rating
or larger average rating; similarly, for monetary cost of the
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Figure 2: The main 1nterface for reviewing packages in IPS.

package, the user can prefer either smaller maximum cost
or smaller total cost. Optionally, users can turn on or off a
specific type of POI, e.g., parks, to be considered by IPS.
Interactive Package Planner: Once a user has speci-
fied her/his initial preference, IPS will start the interactive
package planner, the interface of which is shown in Figure 2.
There are three types of interactions that are supported in
IPS. (1) The system presents a small set of packages to the
user, which are visualized on the map interface, and POlIs
from different packages can be distinguished using different
colors. Then the user can select her/his favorite package
from the list, which enables IPS to gain further information
about the hidden utility function of the user. (2) Mean-
while, the user can click on each POI shown on the map to
obtain its detailed description. If the user really likes/hates
a specific POI, she/he can tell IPS this, so that the cor-
responding POI will be included/excluded from all future
package configurations. A list of POIs which have been in-
cluded/excluded is shown on the map interface using unique
markers, and the user can choose to change this behavior by
clicking on them. (3) Finally, a list of current best packages
is also shown on the interface, and the user can select any of
them as favorite to let the system gain further information
about the hidden utility function, and also find candidate
packages which can beat this favored package.

4. RELATED WORK

There has been much investigation into handling pref-
erences of items in the database community, e.g., general
preference frameworks [9, 4], skyline queries [2], and top-k
queries [16]. However only recently have researchers started
considering preference handling for sets of items. Some ini-
tial work on this by Al researchers (e.g., see [3]) typically fo-
cuses on the formal aspects of this problem, e.g., expressive-
ness of the preference language. Unfortunately, the proposed
preference model is often not suitable in practice. In [14], we
model preferences on packages using hard constraints and a
fixed score function, thus turning the problem of finding the
top preferable sets into an optimization problem. A similar
approach has also been studied in [5]. However, hard con-
straints may not be intuitive in practice, since users are of-
ten flexible when considering budgets, and may be willing to
trade costs for better result quality. Recent work in [17] and
[10] represents an alternative approach of finding all skyline
packages of fixed cardinality. However, as mentioned in the
introduction, a severe drawback of this approach is that the
number of skyline packages usually tends to be prohibitive.

In IPS we adopt a more practical framework of modeling
set preferences using a personalized utility function. How-
ever, unlike previous work in top-k query processing [16],
we assume that the parameters of the utility function are
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unknown, and they need to be inferred from online user
feedback. Compared with existing work on interactive pref-
erence elicitation [12, 18, 11], our search space of all can-
didate packages is much larger, and we need to consider
features which are based on complex aggregations of item
attribute values. Finally, the motivation for IPS is similar
in spirit to [13]; however, the feedback model in [13] is based
on items, instead of packages as a whole, and so may result
in sub-optimal decisions for the user.
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