
Mining and Linking Patterns across Live Data Streams and
Stream Archives ∗

Di Yang, Kaiyu Zhao, Maryam Hasan, Hanyuan Lu, Elke Rundensteiner and Matthew Ward
Worcester Polytechnic Institute

diyang|kaiyuzhao|mhasan|hylu|rundenst|matt@cs.wpi.edu

ABSTRACT
We will demonstrate the visual analytics system V istreamT ,
that supports interactive mining of complex patterns within
and across live data streams and stream pattern archives.
Our system is equipped with both computational pattern
mining and visualization techniques, which allow it to not
only efficiently discover and manage patterns but also effec-
tively convey the mining results to human analysts through
visual displays. In our demonstration, we will illustrate that
with V istreamT , analysts can easily submit, monitor and
interact with a broad range of query types for pattern min-
ing. This includes novel strategies for extracting complex
patterns from streams in real time, summarizing neighbour-
based patterns using multi-resolution compression strate-
gies, selectively pushing patterns into the stream archive,
validating the popularity or rarity of stream patterns by
stream archive matching, and pattern evolution tracking to
link patterns across time.

1. INTRODUCTION
The mining of complex patterns such as clusters, outliers,

and top-k nearest neighbors from huge volumes of streaming
data has been recognized as critical for diverse application
domains, ranging from moving object monitoring to stock
transaction analysis. For example, various pattern mining
requests, ranging from asking for intensive-transaction areas
(clusters) to detecting abnormal transactions (outliers), are
submitted against the transaction stream from NYSE by
financial analysts every day.

Unlike traditional data mining in static environments where
mining queries are submitted to static datasets for one-time
mining results, stream analysis tasks tend to be continuous.
That is the latter requires a mining system to build a tem-
poral context for mining results for analysts. For example,
financial analysts analyzing stock transaction streams may
want to be continuously informed about the latest patterns,

∗This work is supported under NSF grant CCF-0811510,
IIS-0812027, IIS-0119276 and IIS-00414380.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

such as intensive transaction areas arising in the streams.
Also, to correctly interpret the market trend implied by
these transactions, she needs to learn how these patterns
change or relate to each other over time. Other example in-
quiries include whether an interesting pattern just observed
has ever appeared before in the past stream, or what are the
relationships between the patterns observed now and those
observed 5 minutes back, or even which patterns are likely to
remain stable across time. Clearly, this capability of mining
not only the present but also the past, and of establishing re-
lationships among patterns across time provides a powerful
paradigm for effective stream mining.

Unfortunately, state-of-the-art stream mining techniques
tend to focus on mining the present [1, 2, 3], with recent ef-
forts on improving efficiency for extracting patterns in real-
time from high speed streams. Little progress has been made
toward supporting other stream pattern mining services,
such as real time pattern summarization, pattern match-
ing, prospective pattern maintenance and pattern evolution
tracking. These services significantly extend an analyst’s un-
derstanding of the streams, helping them to discern trends
and phenomena of true significance.

Over the past 15 years the XMDV team at WPI, com-
posed of database, visualization and HCI experts supported
by a series of six NSF grants, has developed an open-source
visual tool suite XmdvTool (http : //davis.wpi.edu/xmdv/)
to facilitate interactive data exploration. In our recent re-
search effort, we have began to enhance this tool by provid-
ing services for interactive pattern exploration in stream-
ing data, resulting in a streaming version of XmdvTool [6],
called V istreamT . The ViStreamT 1 system that we pro-
pose to demonstrate here is a significant extension of our
previous basic pattern detection technology. It advances
our previous work, by providing a rich set of functionalities
for mining and querying patterns in the past, the present
and the future of streams. It is an integrated platform that
includes all of our major research results on complex pat-
tern mining since 2009 [5, 6, 8, 7, 9, 10]. In particular,
V iStreamT makes the following contributions:

1) Extract complex patterns from data streams for both
single and several interrelated queries using scalable execu-
tion strategies.

2) Summarize extracted patterns into descriptive yet highly
compact formats by employing multi-resolution compression
strategies. This compression achieves compact storage and
efficient retrieval while preserving key pattern features, such

1T stands for “Timeline”, highlighting ViStreamT ’s new
functionalities for mining the whole timeline of streams.

1346

as the internal pattern structure and external shapes of com-
plex patterns like cluster structures.

3) Identify patterns similar to a pattern of interest from
the historical pattern archives via pattern matching.

4) Define and track evolution of pattern changes over time,
from the past, to the present and even to the near future.

5) Provide an interactive platform to visually initiate a
request and interactively display the knowledge mined above
in unified visualizations.

The ViStreamT system will be released as a freeware in
our next XMDV open-source release (http : //davis.wpi.edu/
xmdv/downloads/).

2. ARCHITECTURE OF VISTREAMT

Figure 1: System Architecture of ViStreamT

The V iStreamT system is composed of one computational
backend and potentially multiple frontends, each serving one
analyst. At the computational backend, the pattern ex-
tractor uses our pattern detection algorithms [9, 10, 8] to
extract live patterns from the current stream window. The
extracted patterns are consumed by one of three different
destinations. 1) Direct feedback via visual displays to the
analysts. 2) Archive in the history pattern base as part of
the stream history. Analysts can specify whether to summa-
rize the extracted patterns, and if yes, to what degree, before
archiving them [7]. 3) The pattern predictor extracts the
pattern that may appear in the near future by analyzing
the live pattern just extracted. It is passed to the pattern
predictor to be used as basis for extracting prospective pat-
terns [5]. The pattern matcher mines the history pattern
archive to find patterns in the stream history most similar
to those specified by the users’ pattern matching queries [7].
The evolution tracker monitors the interrelationship be-
tween the historical, live and prospective patterns to deter-
mine the evolution of patterns over time [5]. In each visual
frontend, the mined knowledge is integrated into a single
pattern space conveyed using the visualization pipelines [4].
A diversity of effective interaction tools are provided for an-
alysts to explore this knowledge, visually uncovering trends
and patterns across time and data sets.

3. PATTERN SUMMARIZATION, ARCHIV-
ING AND STREAM MATCHING

3.1 Pattern Extraction

As the gateway of the backend, the pattern extractor han-
dling huge workloads is a scalable fashion by first grouping
the pattern extraction queries submitted by multiple ana-
lysts by their target pattern types. Then, it employs the
shared pattern extraction strategies proposed in [7, 8] to
achieve effective execution of possibly huge workloads.

In particular, to share computation among queries, we
identify a “containment” interrelationship among patterns
identified by these queries with different pattern-specific pa-
rameter settings. Then we introduce a representation that
captures the patterns identified by queries within a single
compact structure. For example, given two density-based
clustering queries Qi and Qj , if Qi.θ

range ≥ Qj .θ
range and

Qi.θ
cnt ≤ Qj .θ

cnt 2, then Qi is more “relaxed” than Qj .
This indicates that the clusters identified by Qi will be the
“expansion” or “merge” of the clusters identified by Qj or
completely “new clusters” (not identified by Qj before) [10].
Thus, we can represent the cluster structures identified by
those two queries using a single hierarchical cluster repre-
sentation, resulting in significant savings in both CPU and
memory resources.

Second, by leveraging overlaps among sliding windows,
our meta-query strategy utilizes a single query to answer
multiple queries with different window-specific parameters.
Both the incremental pattern representation and meta-query
techniques can be applied to several complex pattern types,
such as clusters, k nearest neighbors, and distance-based
outliers [8]. Our system realizes efficient shared execution
of multiple queries with arbitrary parameter settings.

Pattern predictor provides analysts the capability to de-
termine which patterns are the most likely to persist as the
window slides. The extraction is made based on both the
live patterns just extracted in the present stream window
and the characteristics of the pattern extraction query. For
example, given clustering query Qci which periodically ex-
tracts clusters from a sliding window (window size win = 60
seconds, slide size slide = 10 seconds) over a data stream,
and the clusters extracted by Qci from the current window
at time 00:00:00, ViStreamT can pre-compute the clusters
that are likely to persist in the following output moments,
00:00:10 up to 00:00:60. This is achieved by analyzing the
timestamps of the objects composing the current live pat-
terns (clusters in this case), and by discounting the effect of
expiring objects that will happen in the future to those live
patterns. Although these patterns may need to be updated
when new objects in the stream arrive, many properties are
guaranteed to hold due to integrality and containment.

3.2 Multi-Resolution Pattern Summarization
For long-term analysis, the extracted live patterns may

need to be archived for later reference. Based on the spe-
cific analytical task and available storage, an analyst may
decide to summarize the extracted patterns before archiv-
ing them. The benefits of pattern summarization are mani-
fold. They include not only savings in storage space but also
highlighting of the key features that make patterns quan-
titively comparable (important for later pattern retrieval).
For example, density-based clustering methods are capable
to produce arbitrary shapes clusters, however the state-of-
the-art representation for each cluster is simply all its clus-
ter members (tens of thousands or even millions of objects).

2θrange and θcnt are two input parameters that define
density-based clusters

1347

Obviously, such simplistic representation causes significant
strains on pattern storage and retrieval processes. To solve
this problem, we analyze the pattern structures of density-
based clusters and identify their key features that covers
both the internal structure and their external shapes. To
capture these features, we employ two summarization prin-
ciples, namely the graph-based and the grid-based strate-
gies, into one multi-resolution summarization method, called
Skeletal Grid Summarization (SGS) [7]. Figure 2 shows
an example of our proposed Skeletal Grid Summarization
(SGS) for a 2D cluster.

Figure 2: SGS Summarization for a 2D cluster

An important capability is the design of efficient pattern
summarization algorithms. A streaming system conduct-
ing expensive pattern extraction against high speed input
streams can hardly afford additional computational costs
for pattern summarization. Thus, to minimize the compu-
tation costs for pattern summarization, we have developed
an integrated pattern extraction + summarization approach
[7]. For example, our proposed summarization method for
density-based clusters, C-SGS, incrementally maintains both
the full representation and the corresponding SGS summa-
rization of the extracted clusters in an integrated manner.
As our experimental studies on several data sets confirm,
this results in an almost “free” cluster summarization gen-
eration process by piggy-packing the summarization process
into the cluster extraction process itself [7].

3.3 Live Pattern Matching Against Stream
Archives

In V iStreamT , the pattern matcher aims to understand
the properties of current stream phenomena by matching
observed patterns in the current stream against the past
stream archive. In particular, an analyst specifies a pattern
of interest Pi either from newly extracted live patterns or
from the history pattern base. She then asks the pattern
matcher to find patterns that are most similar to Pi in the
history pattern base or via the live pattern match.

Organization of History Pattern Base. The history
pattern base organizes patterns based on their key features.
For example, for density-based clusters, we build two indices
for the archived clusters. One is based on the position of
each cluster, and the second is based on all other features of
each cluster captured in SGS. The first index, the locational
feature index, expresses the position of each cluster using
its minimum bounding rectangle (MBR). We employ one of
the most widely used indices for MBRs, namely the R-tree
index, to organize them. The second index, called the non-
locational feature index, organizes the clusters based on their
non-locational features. We use a four-dimensional grid in-
dex to organize the clusters’ SGS, with the four dimensions:
the volume (number of skeletal grid cells), the status count

(number of core cells), the average density and the average
connectivity of each cluster.

Pattern Matching Process. The strategy for exe-
cuting Pattern Matching Queries is composed of the coarse-
grained candidate search and the fine-grained detailed
match. Our system first searches for the potential match
candidates in the pattern archive. In the position-sensitive
case, it searches the locational feature index for potential
candidate patterns and calculates their non-locational dis-
tance with the to-be-matched patterns. In the non-position-
sensitive case, the Pattern Matcher directly searches the
non-locational feature index for the candidates.

Given the to-be-matched pattern and a matching candi-
date pattern, it compares their features in corresponding
sub-regions and aggregates the results to assign a match
score. In the position-sensitive case, a single scan on the
skeletal grid cells in two clusters is sufficient to calculate
their match score. In the non-position-sensitive case, our
system uses an A* style anytime search algorithm to search
for the best alignment. Figure 3 shows an example of the
pattern matching view in our ViStreamT with the to-be-
matched cluster on the left most side (specified by analyst)
and three matched clusters found in the stream history. In
general, analysts can select any live pattern detected by
ViStream miner of interest, and commit it to the pattern
matcher. A pattern matching view will be generated. The
analysts can gain an insight into the popularity of the to-
be-matched pattern, request matched patterns under some
similarity thresholds, or simply require the top k similar pat-
terns to be returned. Analysts will be offered an overview
by the pattern (upper) level of the displays, while learning
more details about the patterns through the tuple (lower)
level displays.

Figure 3: Pattern Matching View with leftmost to-
be-matched live pattern and three matches from
pattern archive

4. EVOLUTION TRACKING: LINK PAST,
PRESENT AND FUTURE

ViStreamT also provides evolution tracking functionali-
ties for linking mining results through the time line of the
data stream [5]. To track the evolution of the patterns over
time, we analyze the characteristics of the pattern structure
for each pattern type and design an evolution model (se-
mantics) that describes the pattern changes for the given
pattern type. Taking density-based clusters as example, we
present the first evolution model for density-based clusters

1348

in sliding windows [5]. This evolution model not only cov-
ers statistical changes of individual clusters, such as the size
or the centroid changes, but also classifies structural cluster
changes, including splitting and merging of clusters.

Based on the proposed evolution models, we have designed
efficient evolution tracking algorithms. Clearly, the two-
phase solution of pattern extraction first followed by evolu-
tion tracking is not efficient. We observe that this two-step
solution suffers from a significant performance overhead, be-
cause when conducted independently, the evolution tracking
process can be as expensive as the pattern extraction process
itself. Thus, we propose a more efficient approach by inte-
grating evolution tracking within the pattern tracking pro-
cess itself [5]. By using this integrated strategy, we achieve
almost “free” evolution tracking along with the pattern ex-
traction process.

Figure 4: Visualized Pattern Space of ViStreamT

We organize the detected patterns and their evolution in-
formation into a multi-dimensional pattern space, with one
dimension representing the pattern changes over time and
the other representing patterns in different abstraction lev-
els. We have designed a rich set of visualization and interac-
tion techniques to enable analysts to easily navigate through
the proposed pattern space for reviewing and monitoring
pattern changes over time at different levels of abstraction.
Figure 4, shows an example of the evolution from the past
(W23 and W24) to the present (W25) and the near future
(W26 and W27) as applied to clusters. Clusters that persist
across multiple windows are indicated via the same color.
The links between any two clusters indicate that the later
cluster contains the cluster members of the previous one.

5. VISTREAM T DEMONSTRATION
In our demonstration, we will let the audience first hand

experience the use of ViStreamT for the exploration of com-
plex patterns in data streams. The demonstration will be
based on a live data stream TwinCityTraf reporting the
real-time traffic conditions in the Twin Cities area (MN). We
will also work with two archived real data streams, namely,
the STT data recording stock transactions from NYSE and
the GMTI data recording information about moving objects.
We will let the audience experience the following function-
alities of the ViStreamT system:

1) Submit and monitor multiple pattern extraction queries
that mine the present stream [10]. Users can compare the
patterns extracted based on different parameter settings through

various visualization techniques in ViStreamT , such as dif-
ferent display methods, including parallel coordinates, scat-
terplots matrix and star glyphs, and different layout strate-
gies, such as juxtaposed and integrated layouts [4].

2) Submit pattern matching queries that mine the stream
past by examining the similarities between the to-be-matched
patterns and the matched patterns previously found through
the visual exploration (see Figure 3). If users are not fully
satisfied with the matched patterns found so far, they can
adjust query parameters for matching, such as the distance
function and similarity threshold.

3) Submit prospective pattern extraction queries that aim
to identify which patterns in present window are the most
likely to persist. The live patterns most likely to persist
across time will be visualized to help users understand the
potential trend of the stream characteristics changes. Users
can adjust the maximum numbers of future windows based
on their specific analytical tasks.

4) Turn on evolution tracking that analyses and highlights
the interrelationships among the historical, live and prospec-
tive patterns (see Figure 3). Users can observe the evolution
processes through our proposed pattern evolution view in
ViStreamT , and learn how the patterns change over time.

6. REFERENCES
[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A

framework for clustering evolving data streams. In
VLDB, pages 81–92, 2003.

[2] F. Angiulli and F. Fassetti. Detecting distance-based
outliers in streams of data. In CIKM, pages 811–820,
2007.

[3] Y. Chen and L. Tu. Density-based clustering for
real-time stream data. In KDD, pages 133–142, 2007.

[4] Z. Xie, M. O. Ward, and E. A. Rundensteiner.
Exploring multivariate data streams using windowing
and sampling strategies. Interacting with temporal
data workshop, CHI, 2009.

[5] D. Yang, Z. Guo, E. A. Rundensteiner, and M. O.
Ward. Clues: a unified framework supporting
interactive exploration of density-based clusters in
streams. In CIKM, pages 815–824, 2011.

[6] D. Yang, Z. Guo, Z. Xie, E. A. Rundensteiner, and
M. O. Ward. Interactive visual exploration of
neighbor-based patterns in data streams. In SIGMOD
Conference, pages 1151–1154, 2010.

[7] D. Yang, E. Rundensteiner, and M. Ward.
Summarization and matching of density-based clusters
in steaming environments. In PVLDB 5(2), pages
121–132, 2011.

[8] D. Yang, E. Rundensteiner, and M. Ward. Shared
execution strategy for neighbor-based pattern mining
requests over streaming windows. In TODS, 2012. to
appear.

[9] D. Yang, E. A. Rundensteiner, and M. O. Ward.
Neighbor-based pattern detection for windows over
streaming data. In EDBT, pages 529–540, 2009.

[10] D. Yang, E. A. Rundensteiner, and M. O. Ward. A
shared execution strategy for multiple pattern mining
requests over streaming data. PVLDB, 2(1):874–885,
2009.

1349

