
GestureQuery: A Multitouch Database Query Interface

Lilong Jiang Michael Mandel Arnab Nandi
Computer Science & Engineering

The Ohio State University

{jianglil,mandelm,arnab}@cse.osu.edu

ABSTRACT
Multitouch interfaces allow users to directly and interactively
manipulate data. We propose bringing such interactive ma-
nipulation to the task of querying SQL databases. This
paper describes an initial implementation of such an inter-
face for multitouch tablet devices called GestureQuery that
translates multitouch gestures into database queries. It pro-
vides database users with immediate constructive feedback
on their queries, allowing rapid iteration and refinement of
those queries. Based on preliminary user studies, Gesture-
Query is easier to use, and lets users construct target queries
quicker than console-based SQL and visual query builders
while maintaining interactive performance.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces

1. INTRODUCTION
Console-based SQL interfaces are difficult to use, especially

for non-experts, especially in situations where the database
query language, the underlying data or the schema are unfa-
miliar to the user. While there has been a significant amount
of work towards making databases usable to end users [11],
ranging from example-driven querying [7, 10, 17] to user
interface innovations such as autocompletion [14], they are
typically geared towards keyboard-driven interfaces. Some
mature products, such as visual query builders, are already
part of several database management systems. For exam-
ple, Microsoft Access and pgAdmin [4] allow users to build
SQL in a visual manner by interacting with a specialized
UI. These products are designed for keyboard-and-mouse set-
tings and do not provide immediate feedback to guide users
towards the intended query. With the popularity of mobile
and interactive-computing devices [8], such as iPad, Kinect,
and Google Glass, there has been a rise in the access, manip-
ulation and querying of data on such devices. To this end,
we have previously proposed a new database architecture

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

system geared towards keyboard-less database interaction,
called GestureDB [13]. There are many challenges in ges-
tural data access, from creating an intuitive and complete
query language to accurately processing query intent and
generating relevant feedback for the user. GestureQuery is
one possible frontend to GestureDB, making it possible for
users to construct and execute queries over relational data
using a multitouch interface. As described in the user stud-
ies, GestureQuery presents better usability compared to the
traditional query interfaces, both console-based and visual.

2. A MULTITOUCH QUERY INTERFACE

2.1 Interface Layout

GestureQuery: Chinook (11 tables, 15K tuples 1MB)!

1"
2"

NYC"

22"

2"
2"
SF"

31"

3"
4"
ATL"

3"

Employee"
id"

projectId"
loca:on"

deptId"

""""""
""
""""

""
""

""""

Chinook!

TPC-H!

12 tables, 15K tuples!

8 tables, 86K tuples!

 Album! 347!

 Customer! 59!

 Artist! 274!

 Employee! 8!

 Genre! 25!

 Invoice! 2K!

 Playlist! 8K! Workspace Table Tray 

Gestural Query 

Database Selector 

Figure 1: The GestureQuery user interface. Users
can select a database, drag tables from the tray on
to the workspace, where they can perform a series
of gestural queries directly on the table data.

The multitouch database interface, as shown in Figure 1,
is divided into three parts: the header, tray and workspace.
The header displays the database information and allows
users to pick another database. The tray shows a list of
tables available in the selected database, along with tuple
cardinalities. It also acts as a source for database table
interface objects. To begin building a query, the user drags
a table from the tray into the workspace. Note that this
is a “clone” operation – multiple copies of a table can be
involved in a query by dragging copies repeatedly to the
workspace. A table is displayed in the workspace as a stack
of rectangles, the first rectangle showing the table name and
subsequent rectangles showing its attributes. Users perform
query operations by manipulating the tables in the workspace
using a series of multitouch gestures.

1342



Figure 2: The PREVIEW gesture

1

2

NYC

22

2

2

SF

31

3

4

ATL

3

Employee

id

projectId

loca on

deptId

Figure 3: The FILTER gesture

1

2

NYC

22

2

2

SF

31

3

4

ATL

3

Employee

id

projectId

loca on

deptId

Figure 4: The SORT gesture

2.2 Interactive Direct Manipulation
Our system allows users to directly manipulate queries[16],

two system properties are required to do so. First, users
must be able to manipulate the data with their gestures
directly in a visual way. Secondly, the system must pro-
vide instantaneous feedback, which can assist users in either
constructing their intended query or exploring the space of
possible queries in a fluid manner, not interrupting the user’s
flow of thought.

2.3 A Gestural Query Language
Interaction and Language Design: We now describe the
gestural query language used by GestureQuery. The query
language works on the relational model and follows a gestural
query paradigm [13], in which the user has a vague query
intent, and articulates the intent by performing a gesture.
Gestures are designed to be multitouch, allowing opera-
tions to scale to variable amounts of complexity, by using
additional touch points. As the gesture progresses, the intent
transitions from vague to fully articulated. To aid the user in
articulating the intent, the interface attempts to infer pos-
sible queries during the gesture, and provides constant
feedback to aid the user. Upon recognizing an unambiguous
query intent, the UI transforms the workspace to present the
new table. Based on this interaction pattern, we use a query
algebra that is closed, such that each operation in our
algebra takes one or more relations, and produces another
relation. This allows the user to stack multiple operations,
allowing for complex queries to be performed. Based on
this interaction paradigm, we now present a set of query
operations, each of which performs a transformation on one
or more relations. Each operation consists of a multitouch
gesture denoting the operation, instantaneous feedback
given to user, and the final result of the transformation.

PREVIEW: As shown in Figure 2, this operation is implemented
by a pinch-out gesture on the table header. The result of this
operation is to present the user a certain number of tuples.
When the user puts two fingers on the table header, the sys-
tem will recognize this may be a potential pinch-out gesture
so the initial distance between these two fingers is recorded.
Every time a touchMove1 event is triggered and the current
distance is greater than the initial distance by a threshold,
the system recognizes a pinch-out gesture and shows the
table’s first set of tuples. After the table is previewed, the
user can browse the data by scrolling horizontally through
the table content, as shown in Figure 2. The GestureDB
database layer utilizes prefetching and lazyloading strategies
to cache results at the frontend.

1touchMove, longTap, swipeRight and swipeLeft multitouch
events are defined in the iOS & ZeptoJS mobile touch APIs.

FILTER: As shown in Figure 3, this operation allows the
user to select all tuples with a matching value of a particular
attribute. When the user longTaps a table cell (or multiple
cells, in the case of multitouch), the system will recognize
that this may be a filter operation. A free-floating copy of
the cell appears under the user’s finger as feedback, and if
the user drags that cell to the corresponding field header,
the tuples will be filtered to match the value(s) selected.

SORT: Figure 4 describes the SORT operation that allows the
user to sort the tuples in a table by the values in one at-
tribute in either ascending or descending order, implemented
using swipeRight and swipeLeft touch events. When the user
swipes an attribute header from left to right, the table will
be sorted in an ascending order by that field. When the user
swipes an attribute header from right to left, the table will
be sorted in descending order. Due to the ephemeral nature
of this operation, the only feedback provided is at the UI
level, that of the attribute labels moving.

REARRANGE: Faithful to the original definition by Codd [9],
the gesture shown in Figure 5, allows the user to rearrange
the attributes in a table by dragging the attribute header
into the intended position.

GROUP BY AND AGGREGATE: This pair of operations allows the
user to group the tuples by values of a particular attribute,
and aggregate using a user-selected function. Both gestures
are shown in Figure 6: in order to perform a GROUP BY AND

AGGREGATE, the user drags two attribute headers at the same
time. Once the grouping attribute header overlaps the ta-
ble title, an aggregation menu consisting of the potential
aggregation functions will show up near the table. The user
then drags another attribute header onto one aggregation
functions in the aggregation menu to aggregate on that at-
tribute. Should the grouping operation yield a large number
of groups (i.e. greater than a certain threshold, set to 1K
for our UI), the UI warns the user about the aggregation by
flashing the table in red as feedback.

JOIN: An equijoin operation is performed by dragging two
tables towards one another. The system attempts to deter-
mine which attributes to join the tables on based on their
proximity and compatibility with one another [15]. To aid
in this process, the system arranges the attributes of each
table in an arc that the user can adjust. Specifically, the
user can perform a four-finger gesture, with two fingers on
each table, to move the center of the arcs and adjust the
attributes that are closest to one another. Once the system
recognizes the JOIN operation, feedback is provided in the
form of a join preview to give user insight into the data, as

1343



Employee

id

projectId

location

deptId

title

deptId

Figure 5: REARRANGE

Employee

id

projectId

location

deptId

title

locationprojectId

Aggregate

MIN

MAX

AVG

SUM

Figure 6: GROUP BY / AGGREGATE

projectId
location

Employee

id

deptId

parentProjectId
supervisorID

Project

id

managerId

⋈
1:2
n=1200

John SF Audit Tax Fin Joe
John LA Review Acc Fin Jen

Figure 7: JOIN

Figure 8: The UNION gesture

shown in Figure 7. If the user continues to move the tables
closer, the preview table will become a regular result table,
allowing for further gestural queries on the result.

UNION: To perform a UNION operation, the user moves one
table on top of the other in a stacking gesture, as shown
in Figure 8. We determine whether it is a stacking gesture
through calculating the distance between the last attribute
header in the upper table and the table header in the bottom
table. For feedback, the colors beside the tables indicate the
attribute pairs that are schema-compatible.

Resolving ambiguity: Since a two-table gesture may be a
JOIN or UNION operation, we use a maximum entropy classi-
fier to distinguish these two operations. This classifier uses
two features, proximity and schema compatibility to predict
the likelihood of all possible JOIN and UNION queries between
the two tables. The proximity feature measures how close
these two tables or attributes are, while the compatibility fea-
ture describes whether two tables are schema compatible for
UNION or two attributes are of the same data type for JOIN.
In order to avoid unnecessary computations, the classifier is
only run when the distance between the two tables is below
a threshold, and the computation of the likelihood of each
potential query is only carried out until an answer can be
found. For example, if two fields are not schema-compatible,
their distance will not be computed.

3. ARCHITECTURE
We implemented the GestureQuery interface on iPad in

javascript using the ZeptoJS library [6], connecting to the
backend using Tornado [5]. When DOM elements regis-
ter for multitouch events, DOM elements will continually

receive TouchEvent objects (The TouchEvent class encapsu-
lates information about a touch event [2]) as fingers touch
and move across the iPad. Our system classifies the gesture
into the intended query according to the multitouch coordi-
nates collected so far. In order to avoid extra computation,
the classifier performs distance calculations and looks into
schema features only if there is the possibility of an ambigu-
ous gesture. GestureQuery additionally minimizes network
communication with the backend database by utilizing a
client-side cache for both schema and data.

User

C
on

te
xt

C
ac

he

U
se

r I
nt

er
fa

ce
Gesture
Mapping

Ne
tw
or
k

Intent
Interpretation

Feedback
Generation

GestureDB

DB

GestureQuery

4. USER STUDY
In order to evaluate the usability of our system, we ran

a preliminary user study, comparing GestureQuery against
console-based SQL and a visual query builder. In order to
evaluate all components of GestureQuery (i.e. the UI, the
query language, the maximum entropy classifier and the
feedback generated from the backend), we consider the two
complex operations: JOIN and UNION – all other operations
are either equivalent or drastically simpler in our UI. In this
experiment, we use Active Query Builder [1] as the visual
query builder, since it allows the construction of both JOIN

and UNION queries.
Five users, at varying levels of database expertise (3 CS

grad students, 2 non-CS grad students) were instructed to
perform 4 query tasks for all three systems, with the order
of tasks and systems randomized. Two query tasks involved
JOIN queries and the other 2 were for the UNION query. The
target query was provided explicitly posed to them as an
English query, including the exact names of the schema
elements, such as “Perform a JOIN between Album and
Artist ON ArtistID”. Users were provided a brief overview
of all systems prior to usage, and were asked after the tasks
if the GestureQuery frontend was (1) easy to learn (2) easy
to use after the tasks.
Metrics: We recorded the time that it took each user to
perform each query with each system from the time that they

1344



started the interface to the time that the system correctly
recognized their intended query, referred to as prediction
time. For our system, we also recorded the time that it
took our system to make a decision after each TouchMove.
This measure, named performance, is used to determine
whether the system can be used interactively or not. It
should be noted that the GestureQuery interface poses the
distinct disadvantage over the competing interfaces in that
it lacks a keyboard or mouse, which are typically considered
required for querying.

0!

5!

10!

15!

20!

25!

30!

35!

Join1! Join2! Union1! Union2!

Pr
ed

ic
tio

n 
(s

) 

Console-based SQL!
Visual Query Builder!
GestureQuery!

Figure 9: Time-to-task (prediction time) for non-
trivial queries, for each system, averaged across 5
users. The multitouch GestureQuery interface is
better / comparable to competitors.

Results: Qualitatively, users agreed that GestureQuery
was either faster or comparable with the visual query builder
to learn, and mostly better than the visual query builder
to use. Figure 9 shows the average prediction time for each
task. GestureQuery allows users to create their desired
queries much more quickly than console-based SQL in all
experiments, and is either faster than or comparable with
the visual query builder.

Join1 Join2 Union1 Union2
1.042% 1.175% 2.339% 3.211%

Table 1: Performance Times over 33ms

Based on an ideal threshold of 30 frames (i.e. touch events)
per second to ensure fluid interaction, we enforce a goal of
33ms on the per-touch execution time of our system. Table 1
shows the percentage of touch events where our UI responded
in time greater than 33ms. As we can see, the percentage is
low enough to allow interactive performance. In fact, almost
all performance times except 2 touch events for each gesture
were less than the threshold; these corresponded to the time
when the system is waiting on the backend server to respond.

5. DEMONSTRATION
For our demonstration, we will present to users an app

on the Apple iPad. The app communicates over WiFi
with a backend, hosted on a single PC. Users can perform
all described operations, including PREVIEW, FILTER, SORT,
REARRANGE, GROUP BY & AGGREGATE, JOIN and UNION. Users
can get instantaneous insights into the data through the
feedback provided by the system for each operation, and
thus can be assisted in creating their intended query. Users

will be able to pick from multiple publicly available relational
datasets, such as Chinook [3], an open-source digital media
store database and one based on TPC-H to represent ad-hoc,
decision support datasets.

6. CONCLUSION AND FUTURE WORK
This paper describes an initial implementation of the Ges-

tureQuery iPad front end for GestureDB. It allows users
to formulate queries more quickly than existing interfaces
while providing fluid, real-time feedback to facilitate schema
and data exploration. We have shown that it is possible to
implement a complete SQL algebra through gesture and that
it can be applied to querying databases without keyboards
from the gesture-based interfaces of the future.

In the future, a comprehensive user study is needed to be
done over all the actions. We will add additional operations
to enrich the query space, such as projection and the range
filter. We will add convenient functions such as undoing
recent operations and deleting tables. And finally, we will
simplify the JOIN further so that even in the hardest cases it
is faster than existing systems.

7. ACKNOWLEDGEMENTS
We would like to thank NEC Laboratories America for

supporting part of this work.

8. REFERENCES
[1] Active Query Builder.

http://www.activequerybuilder.com/.

[2] Apple Developer. http://developer.apple.com/.

[3] Chinook Database.
http://chinookdatabase.codeplex.com/.

[4] pgAdmin. http://www.pgadmin.org/.

[5] Tornado. http://www.tornadoweb.org/.

[6] Zepto. http://zeptojs.com/.

[7] A. Abouzied et al. Dataplay: interactive tweaking and
example-driven correction of graphical database queries.
UIST, 2012.

[8] Canalys. Worldwide Smartphone and Client PC
Shipment Estimates. 2012.

[9] E. F. Codd. A relational model of data for large shared
data banks. CACM, 1970.

[10] Y. Ishikawa et al. Mindreader: Querying databases
through multiple examples. VLDB, 1998.

[11] H. Jagadish et al. Making database systems usable.
SIGMOD, 2007.

[12] D. Kammer, M. Keck, G. Freitag, and M. Wacker.
Taxonomy and overview of multi-touch frameworks:
Architecture, scope and features. EPMI, 2010.

[13] A. Nandi. Querying Without Keyboards. CIDR, 2013.

[14] A. Nandi and H. V. Jagadish. Assisted Querying using
Instant-Response Interfaces. SIGMOD, 2007.

[15] A. Nandi and M. Mandel. The Interactive Join:
Recognizing Gestures for Database Queries. CHI, 2013.

[16] B. Shneiderman. Direct manipulation for
comprehensible, predictable and controllable user
interfaces. IUI, 1997.

[17] M. M. Zloof. Query by example. NCCE, 1975.

1345


