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ABSTRACT
The advent of cloud computing redefines the traditional query pro-
cessing paradigm. Whereas computational overhead and memory
constraints become less prohibitive, data privacy, security, and con-
fidentiality concerns become top priorities. In particular, as data
owners outsource the management of their data to service providers,
query processing over such data has more resources to tap into, yet
the data oftentimes has to be encrypted so as to prevent unautho-
rized access. The challenge that arises in such a setting is to devise
an encryption scheme that still allows for query results to be effi-
ciently computed using the encrypted data values. An important
type of query that raises unconventional requirements in terms of
the operator that has to be evaluated is the skyline query, which re-
turns a set of objects in a dataset whose values are not dominated by
any other object therein. In this demonstration, we present eSkyline,
a prototype system and query interface that enables the processing
of skyline queries over encrypted data, even without preserving the
order on each attribute as order-preserving encryption would do.
Our system comprises of an encryption scheme that facilitates the
evaluation of domination relationships, hence allows for state-of-
the-art skyline processing algorithms to be used. The actual data
values are reconstructed only at the client side, where the encryp-
tion key is known. Our demo visualizes the details of the encryption
scheme, allows a user to interact with a server, and showcases the
efficiency of computing skyline queries and decrypting the results.

1. INTRODUCTION
Consider a database DB whose tuples are represented as a set of

multidimensional data points. A point p then belongs to the skyline
set Ssky if there is no other point p′ that can improve on p in at least
one dimension without worsening in any other dimension. Such
points collectively represent the best tradeoffs among the different
aspects of the data. The problem of identifying such skyline points
has been known in economics as the Pareto optimum problem and
in optimization theory as the maximum vector problem [10].

∗Work supported by a Rutgers Business School RRC grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

Skyline query processing attracts consistent attention in database
research, due to its applications in decision making and analytics
[4, 11, 8]. For example, assume database DB contains numerical
information about hotels in the Maldives. The attribute values of
hotel h (e.g., price per night, distance to beach) can then define the
coordinates of the point p representing h. A user may be interested
in hotels that are both inexpensive and close to the beach. However,
it is not clear how such a user would assess a hotel very close to the
beach but more pricey than others, or a relatively cheap hotel far-
ther away from the beach. In other words, a scoring function based
on which we could assess and compare different hotels based on
the relative importance of their attributes is not available or not ap-
plicable. The skyline query avails us of the need for such a scoring
function, as it simply retrieves all hotels that cannot be matched or
bettered in both price and distance to the beach by any other. Figure
1 presents an example of such data, where the coordinates of each
point stands for a hotel’s attributes. The skyline set is {a, i, m, k}.
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Figure 1: Skyline Example

Apart from the discussed hotel booking scenario, skyline queries
find application in electronic marketplaces. For instance, in air
travel sales, a user may wish to navigate the Pareto tradeoff cre-
ated by the price, number of stops, and flight duration, while a user
buying a car may wish to see which cars are provide a good tradeoff
in the criteria of fuel consumption, age, and price.

Skyline query processing has hitherto been studied in either cen-
tralized or distributed environments, where one or more data ven-
dors dispose their actual data in one or more servers, and these data
are then processed in order to acquire the skyline set. Nevertheless,
nowadays data vendors have financial and technological incentives
to exploit emerging computing paradigms such as database out-
sourcing, content sharing, and cloud computing, in which the task
of data processing it taken over by a remote service provider. In
this scenario, additional security and confidentiality concerns en-
ter the picture, as the remote service provider may be relied upon
to provide computing infrastructure, but not so when it comes to
disclosing private customer data and business information [6]. For
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instance, airlines, travel agencies, and hotel groups may wish the
data on their offers to be available for querying and comparison
shopping at a remote server, but not readily available for down-
load by their competitors; similarly, a national statistics bureau
may wish to allow querying over confidential census data for the
purpose of determining outlier and skyline values, but not for the
sake of making the full corpus of such data available to a third party.
Under these circumstances, the need arises to devise query process-
ing techniques that can operate over data that has been encrypted
so as not be exposed to untrusted third parties, including the ser-
vice provider. In this framework, a service provider is called to
process queries securely over the encrypted data without accessing
the data’s real values [9]. Thus, the employed encryption scheme
should support the execution of queries over the encrypted data.
Past research has examined how point queries, range queries, and
nearest-neighbor search can be performed under such confidential-
ity constraints [12, 14]. However, no method has hitherto been
proposed that achieves the same effect for skyline queries.

In this demonstration, we present eSkyline, a system and inter-
face that encrypts database tuples and efficiently processes skyline
queries over them; it employs a scalar-product-preserving encryp-
tion scheme that allows for domination relationships among en-
crypted tuples to be “blindly” determined by the server without the
plain data being revealed. It does so without disclosing the order
among attribute values, as an Order-Preserving Encryption Scheme
[1] would do, and without carrying the computational burden of
fully homomorphic encryption [7]. After a skyline result set has
been reported, real data values can be decrypted and reconstructed
at the client side via a set of transformation matrices. The function-
alities of our model can be incorporated into a system of database
outsourcing for the particular aim of processing skyline queries.

2. TECHNICAL OVERVIEW
In this section we discuss the main building blocks of our system.

We start out by presenting skyline computation techniques, which
we adopt from previous research for our purposes. Then we outline
the novel encryption scheme we employ. Last, we present the archi-
tecture of the prototype system we have implemented for use in this
demonstration. We emphasize that an analysis of the security fea-
tures of our encryption scheme with regards to the computational
power of an adversary falls outside the scope of this demo paper
and is relegated to a more extensive research article.

2.1 Skyline Computation
Symbol Description
m Dimensionality
DB Dataset
t, s Tuples of DB
Ssky Skyline tuples

Table 1: Overview of Notations.

We are given a dataset DB on a data space defined by a set of
m attributes (dimensions) {d1, ..., dm}. A tuple t ∈ DB is repre-
sented as t = {t1, ..., tm} where ti is the value on dimension di.
Without loss of generality, we assume that ∀di : ti ≥ 0, and that
larger values of each attribute are preferable to smaller ones. Table
1 provides an overview of the notation we employ.

DEFINITION 1. Skyline Query We say that a tuple t ∈ DB
dominates another tuple s ∈ DB, as relationship denoted as t ≺
s, if (1) on every dimension di, ti ≥ si; and (2) on at least one
dimension dj , tj > sj . The skyline is the set of points Ssky that
are not dominated by any other point in DB.

In the example of Figure 1, the x-dimension represents a ho-
tel’s distance to a point of interest such as the beach, while the
y-dimension indicates the price of a room in the hotel. Accord-
ingly, a hotel dominates another hotel when it is both cheaper and
closer to the beach (or equal on one aspect and better on the other).
Thus, the skyline points a, i, m and k represent the most attractive
tradeoffs between price and distance to the beach that are available.

Regardless whether the data setDB is encrypted or not, the com-
putation of a skyline requires a capacity to determine one funda-
mental relationship among any pair of tuples {s, t}: to ascertain
whether one dominates the other. In addition, it is useful to possess
the values of any function f(t) that is monotonic on each attribute ti

of t, i.e., non-decreasing as the value of ti changes in the direction
of higher preferability. Under the assumption that larger values are
preferable to smaller ones, we can simply use the aggregate func-
tion over all attribute values as our f(t). We can then efficiently
compute the skyline set using the Sort-Filter-Skyline (SFS) algo-
rithm of previous research [5], shown in Algorithm 1.

Algorithm 1 Sort-Filter-Skyline
1: Input: data set DB sorted by f(t)
2: Output: skyline set of DB
3: Ssky ← ∅
4: for (each tuple t in DB) do
5: dominant = TRUE;
6: s = first point in Ssky;
7: while ((dominant) ∧ (s 6= NULL)) do
8: if s dominates t then
9: dominant = FALSE;

10: end if
11: s = next point in Ssky;
12: end while
13: if dominant then
14: Ssky = Ssky ∪ {t};
15: end if
16: end for
17: return Ssky

2.2 Encryption Mechanism
To our knowledge, the only extant solution for secure skyline

querying over some form of encrypted data is provided in [15].
This solution uses OPES, the Order-Preserving Encryption scheme
proposed in [1]. Unfortunately, OPES, built on an encoding that
preserves the order of the numerical data in each column, is not
sufficiently secure; an adversary who observes the encrypted data
effectively learns the order of tuples on each attribute, which is a
significant amount of information by itself [13, 2, 3].

Nevertheless, as we show, order preservation per se is not a nec-
essary condition to enable the processing of skyline queries over
encrypted data. After all, the fundamental operation we have to
perform in order to answer a skyline query is the operation that de-
cides whether a tuple t dominates or is dominated by another tuple
s. In other words, given a pair of tuples in DB, (t, s), we need to
decide whether there is a domination relationship among them, as
in Line 8 of Algorithm 1. Furthermore, the problem of determin-
ing domination, as a decision problem, does not need to specify
whether it is t that dominates s or s that dominates t; it suffices to
ascertain whether a domination exists among them. The specifica-
tion of the dominant and dominated tuples can be easily performed
as an auxiliary operation, provided that the values of monotonic
function f for both tuples are available; the tuple of higher f val-
ues is the dominant one. Thus, without loss of generality, for each
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tuple t we can always compute such a function as the sum of all
attribute values, and treat it as attribute t0.

Then, assuming each tuple has m (original) attributes, and using
“·” to denote the scalar product of vectors, the existence of a domi-
nation relationship between s and t can be expressed as follows:

(ti − si) · (ti+1 − si+1) > 0, 0 ≤ i ≤ m− 1 (1)

For the sake of conciseness, we use > in our inequalities, without
prejudice to the fact that the strict domination definition requires a
> inequality along at least one dimension, while it suffices to have
a ≥ inequality along other dimensions. In our implementation, we
take care of the strict definition of domination. For each tuple vec-
tor t =<t0, t2, . . . , tm >, we construct a set of sub-vectors:

tj =<t0, t2, . . . , tj >, jt =<t1, ..., tj+1 >, 0 ≤ j ≤ m−1

Then the set of Inequalities (1) can be also expressed as:

(t0 − s0) · (0t−0s) > 0

(tj − sj) · (jt−j s)− (tj−1 − sj−1) · (j−1t−j−1s) > 0 (2)

For 1 ≤ j ≤ m − 1. Following the exact definition of domina-
tion, we can express the condition as follows: The series of terms

(tj − sj) · (jt−j s), 0 ≤ j ≤ m− 1 (3)

should be an non-descending series of non-negative terms, with at
least one pair of consecutive terms being strictly ascending.

In effect, the problem of determining domination between two
tuples is mapped to a problem of computing scalar products among
the sub-vectors of tuples, as well as comparing their f values, in
case domination exists. We can then deal directly with the differ-
ences among these sub-vectors and the scalar products of those. Let
p = t− s. Then it suffices to compute terms of the form:

pj ·j p (4)

We should then have a method for computing scalar products of
this form, where p may have been computed from any two tuples
in DB. Such scalar products can in turn be expressed as:“

(pj)T ×Mj)× (M−1
j ×jp

”
(5)

Where pj and jp are represented as column vectors, Mj is any in-
vertible (j+1)×(j+1) matrix, “×” denotes matrix multiplication,
and aT denotes the transpose of a. Based on the above analysis, if
we have a set of m− 1 invertible matrices M1, M2, ..., Mm−1, we
can encrypt all the sub-vectors we need as follows:

E(tj) = MT
j × tj , E(jt) = M−1

j ×j t (6)

where E() is our encryption function. Then, for any t, s, with
p calculated as p = t−s, and for any j ∈ [0, m−1], it holds that
E(pj)·E(jp) = (MT

j ×pj)T×M−1
j ×

jp = (pj)T×jp = pj·jp. Thus,
all scalar product calculations we need can be effectively performed
by working solely over encrypted sub-vectors and their differences.
At same time, given the encrypted sub-vectors of a tuple t, E(tj)
and E(jt), it is not possible for an adversary to determine the value
of tj or any other metric of t without knowing Mj . In other words,
the set of invertible matrices is the key of our encryption scheme.

We emphasize that the attribute t0 of any tuple t undergoes a rel-
atively trivial encryption, as matrix M0 is only a scalar value. How-
ever, this feature does not constitute a weakness of our scheme. On
the contrary, we intentionally design our scheme this way so that
values of attribute t0, namely the monotonic function f(t), allow

their order relationships to be recovered after being encrypted. That
is, as long as M0 is positive, their order remains unchanged. On the
other hand, it takes significantly more effort to recover the order, or,
for that matter, the values of other attributes, apart from the extent
to which those can be inferred from domination relationships.1

Using the encryption scheme, we can safely compute whether
there is a tuple s dominates another tuples t. In more detail, given
a data set DB of m-dimensional tuples and a set of m invertible
matrices M0, M2, ..., Mm−1, as described above, and a monotonic
function f(t), the encrypted from of DB, DB′, is created by map-
ping each tuple t ∈ DB to a m2 + m-dimensional tuple t′ formed
by concatenating the contents of tj and jt for 0 ≤ j ≤ m − 1.
Thereafter, a service provider holding the encrypted data applies
the SFS algorithm directly on encrypted tuples in order to answer
skyline queries. The only modification required is that now domi-
nation is ascertained by computing a sequence of scalar products.
For each domination check, this sequence of scalar products is
aborted as soon as a product gives negative result, which indicates
that domination does not hold. After all calculations, the server re-
turns the encrypted form of tuples to the client. An encrypted sub-
vector E(m−1t) of t suffices to decrypt all of t’s attributes’ values at
the client side by the matrix-vector multiplication t = Mj ×m−1t.

2.3 System Architecture
We have implemented a prototype system that performs the tasks

of both server and client. A database DB is encrypted using a
series of randomly generated matrices Mj and uploaded to the
server module, while observing user preferences during encryption.
Thereafter, the server processes user-issued skyline queries over the
encrypted data and return the results. These results are decrypted
at the client side and the final result presented to the user. Figure
2 presents a screenshot of the user interface during the final result
decryption, along with a visualization of the final skyline tuples via
a colored bar-gram, with one bar per attribute per tuple. We present
some additional details of our system architecture in the following.

Environment The encrypted database is loaded on IBM DB2
Version 9.7, while skyline computation is implemented in C++.
Windows forms were used to create user interfaces. Testing exper-
iments were conducted on a Microsoft Windows 2007 workstation
with a 1.60GHz Intel Core i7 processor and 6GB of memory.

Data Set We have obtained data sets from the IPUMS archive2.
Our data consists of a relation of 105 records containing demo-
graphic information about economic characteristic of US house-
holds, including attributes such as cost of Electricity, Gas, Wa-
ter, and Fuel. The number of attributes loaded an encrypted can
be adjusted by the user. During encryption, a monotonic function
f(t) is calculated based on user’s preferences and appended at the
beginning of each tuple t as attribute t0. The data type used for
this first attribute is decimal, so as to allow sorting by value. All
other attributes are stored as strings. The database is accessed in
the front end through the ODBC driver that is available with IBM
DB2, while the ODBC Data Reader is used for reading the records.

Encryption Stage Prior to encryption, a user is asked to specify
a preference for each attribute, i.e., whether lower or higher value
is preferable. The system then calculates the f(t) function, stored
as attribute t0, and produces the elongated vector representing each
tuple. The incorporation of t0 serves two purposes: (i) it does not
allow the actual first attribute to be easily inferred, and (ii) it allows
for tuples to be sorted so that the SFS algorithm can be applied.

1An adversary could launch a known plaintext attack in order to determine that con-
tents of matrices Mj ; still, a complete security analysis of our scheme is outside the
scope of this demo paper.
2Downloaded from www.ipums.org
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Figure 2: A Screenshot of the eSkyline interface

Thereafter, a series of invertible random square matrices, Mj ,
are generated. The elements of these matrices are constrained in
the range [0.2, 5] so as to delimit error propagation during vector-
matrix multiplication. These matrices constitute our encryption
key; they are shared only at the client side. These matrices are
then employed to generate the contents of the encrypted tuples by
Equation (6) and insert them in the encrypted database.

Skyline Query Processing Skyline computation is performed
for a specific subset of attributes selected by the user. Our SFS
implementation caters to subspaces and computes domination re-
lationships by taking into account only the attributes in a selected
subspace. This effect is achieved by omitting some scalar product
computations and catering only to those for relevant attributes.

Decryption Stage Once the skyline result Ssky is obtained, the
encrypted tuples are returned to the client. At the client side, each
skyline tuple t is decrypted as t = Mm−1 ×m−1 t. For verifica-
tion, other sub-vectors can also be decrypted using the respective
matrices, using the inverse of the matrix employed for encryption.
Sample matrices used in the decryption stage and a decrypted sky-
line result for a simple data set are depicted in Figure 2.

3. DEMONSTRATION EXPERIENCE
Our demonstration showcases the functionality of the eSkyline

system. The audience can witness all the internal workings of en-
cryption and decryption, as well as issue skyline queries over the
database instance we have extracted from IPUMS. Visitors will
have the option of determining, via the user interface, whether a
lower or higher value of each numerical attribute is preferable. Fol-
lowing the selected settings, they system goes though the encryp-
tion stage that produces encrypted tuples to be used at the server
side. Sample encrypted values are displayed in a data grid.

Visitors can navigate through the encrypted database. They can
(i) issue skyline queries by selecting a subset of attributes of inter-
est, and (ii) select and upload new data to the server, using the same
encryption scheme. Through interactive exploration, participants
will be able to witness how the skyline in each subspace is affected
after new tuples are added, how skyline of different subspaces dif-
fer from each other, while all are obtained over the encrypted data.
Moreover, the user interface presents the time it takes to compute a
skyline over the encrypted data (upper right corner in Figure 2); the
audience will also have the choice to execute the same query over

the non-encrypted data, so as to witness the affordable time over-
head required to work over the encrypted database, and confirm
that the system’s interactivity remains unfettered by encryption.

4. CONCLUSION
This demonstration paper presented eSkyline, a novel system ar-

chitecture for processing skyline queries over encrypted data. Our
system allows for a service provider to answer queries posed by
clients without having the actual data values disclosed. This func-
tionality is enabled by a novel encryption scheme we proposed,
with allows for the domination among two tuples to be efficiently
determined, yet does not use any form of order-preserving encryp-
tion. In the future, we aim to validate our results with very large
data sets following diverse value distributions, and expand our so-
lution to the case where the data distributed among several servers.
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