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ABSTRACT
Rapidly making sense of, analyzing, and extracting useful in-
formation from large and complex data is a grand challenge.
A user tasked with meeting this challenge is often befuddled
with questions on where and how to begin to understand
the relevant characteristics of such data. Real-world prob-
lem scenarios often involve scalability limitations and time
constraints.

In this paper we present an incremental interactive data
analysis system as a step to address this challenge. This sys-
tem builds on recent progress in the fields of interactive data
exploration, locality sensitive hashing, knowledge caching,
and graph visualization. Using visual clues based on rapid
incremental estimates, a user is provided a multi-level ca-
pability to probe and interrogate the intrinsic structure of
data. Throughout the interactive process, the output of
previous probes can be used to construct increasingly tight
coherence estimates across the parameter space, providing
strong hints to the user about promising analysis steps to
perform next.

We present examples, interactive scenarios, and experi-
mental results on several synthetic and real-world datasets
which show the effectiveness and efficiency of our approach.
The implications of this work are quite broad and can im-
pact fields ranging from top-k algorithms to data clustering
and from manifold learning to similarity search.

1. INTRODUCTION
Our capability for collecting and storing data has far out-

stripped our ability to efficiently explore and subsequently

analyze such data-stores. While database technology has
provided us with the basic tools for accessing and manipu-
lating such large and complex data-stores, the issue of how
to help human end-users in making sense of such data in or-
der to glean actionable insights has become a pressing issue.
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Figure 1: PLASMA-HD Workflow

An end-user is often overwhelmed with the data size and
complexity and often does not have a clear path forward
to understanding and probing the relevant characteristics
of the data (e.g. attribute and entity interactions, intrinsic
structure, data connectivity and clusterability) in order to
make progress. The ability to efficiently explore, and browse
data is thus absolutely essential for downstream analytics
(e.g. parameter tuning) to mine actionable knowledge. An
important consideration here in the context of big data is
cognitive overload motivating the use of simple, visual cues
to enhance one’s ability to fuse and query data.

In this effort we present a system for Probing the LAttice
Structure and MAkeup of High-dimensional Data (PLASMA-
HD). For an arbitrary dataset, and given a similarity or
distance measure-of-interest, PLASMA-HD enables an end-
user to interactively explore the intrinsic connectivity or
clusterability of a dataset under different threshold criteria.
PLASMA-HD employs and enhances, a recently proposed
idea called Bayesian Locality Sensitive Hashing (BayesLSH)[10],
for efficiently estimating connectivity structure among database
entities, at a given similarity or distance threshold. The cru-
cial enhancement we propose in this paper, involves lever-
aging a form of knowledge caching[3, 7] wherein BayesLSH
estimates at a given threshold level can be re-used to esti-
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d1 d2 d3

p1 .07 .26 .96
p2 .51 .56 .64
p3 .20 .94 .30
p4 .34 .15 .93
..
.

p50 .12 .98 .13

(a) Input D: 50 records (b) t1 = 0.8 (c) t1 = 0.5 (d) t1 = 0.2

(e) t1 = 0.8, t2 = 0.995 (f) t1 = 0.5, t2 = 0.9 (g) t1 = 0.2, t2 = 0.001

(h) t1 = 0.8, t2 = 0.995 (i) t1 = 0.5, t2 = 0.9 (j) t1 = 0.2, t2 = 0.001

Figure 2: PLASMA-HD overview on toy dataset. Of networks (b-d), only (c) with t1 = 0.5 is community structure clear.

mate connectivity structure at other threshold levels. By
leveraging the above transformation and converting a high
dimensional dataset into a graphical (dimensionless) repre-
sentation, PLASMA-HD then takes advantage of recent ad-
vances in graph and sub-graph visualization to provide end-
users with relevant visual cues to understand the intrinsic
structure of the data they are examining.

To convey a dataset’s essential structural information es-
timated in a typical PLASMA-HD session we introduce the
Cumulative APSS Graph which shows the number of
similar pairs 1 as the similarity threshold is varied. The
main utility of this visualization is that when the user stud-
ies the data at one similarity threshold, we can compute and
display bounded estimates of the number of pairs at other
thresholds not directly being studied. In this way the user is
guided towards discovery of the most interesting data char-
acteristics. An example scenario is presented in Section 2.2.

A typical PLASMA-HD workflow is depicted in Figure 1.
Given a similarity-measure of interest, a typical user will
probe the data D (alternatively, a sample of the data) with
threshold t1 to generate a Cumulative APSS Graph by lever-
aging BayesLSH[10]. This graph estimate can then be fur-
ther probed by the user, without accessing D (ensuring
interactive response times), through a combination of knowl-
edge cached estimates and dimensionless visual cues (see
Section 2.3) to determine the next threshold with which to
probe the data. Unlike what is done typically the selection
of the next threshold is not pre-canned but based on re-using
estimates generated by the BayesLSH procedure. Once the
new threshold is determined one can iterate through the

1We also implemented a variant for triangles.

process again (now using this new threshold to probe D).

2. PLASMA-HD
In this section we discuss the intellectual engine of PLASMA-

HD, i.e. mechanisms for exploring the underlying coherency
and structure of high dimensional data built on top of a
recently proposed idea for locality sensitive hashing and all-
pairs similarity search. Specifically, we discuss how previ-
ously accumulated knowledge (obtained via intrinsic explo-
ration or prior analysis) can be effectively exploited for fu-
ture queries by providing appropriate systems support and
algorithmic hooks to manage such knowledge. Our ideas for
knowledge caching leverage prior work in incremental data
mining [7, 8]. Finally, we discuss how the resulting knowl-
edge can be interactively explored through visual cues drawn
from recent advances in graph visualization[13, 12].

2.1 Enhancing BayesLSH
The all pairs similarity search problem – where one seeks

to find all pairs of vectors whose similarity score (alterna-
tively distance) exceeds a certain user-defined threshold –
is a good starting point since it offers important insight on
relevant characteristics-of-interest of our problem at hand.
For example, Figure 2 shows a toy dataset and networks
where all pairs of data points whose similarity is ≥ t1 are
connected with an edge. t1 = 0.5 as shown in 2c is one
threshold for which good community structure is revealed
for this dataset.

As noted by several researchers [2, 6] the all-pairs prob-
lem finds use not just in our specific use case, but also in a
host of applications from query refinement for web search to
collaborative filtering for advertisements and from duplicate

1319



detection of documents to coalition fraud detection. Funda-
mental challenges in the context of this problem are: i) the
choice of distance measure (not addressed in this paper);
ii) the scale and dimensionality of the data – computing all
pairs similarity naively is prohibitively expensive even for a
single threshold value; and iii) a lack of guidance for select-
ing the threshold.

We address the latter two concerns by expanding upon a
recently proposed idea for similarity search called BayesLSH[10].
BayesLSH adopts a principled Bayesian approach on top of
Locality Sensitive Hashing (LSH) [1], to reason about and
estimate the probability that a particular pair of objects
will meet the user-specified threshold. Unpromising pairs
are quickly pruned away based on these estimates realizing
significant performance gains for a single threshold. Unlike
most space-partitioning or space-filling curve approaches [5],
sparse records are handled elegantly. For a candidate pair,
a number of hashes n are incrementally computed. Let m

be the number of hashes which match between the pair. A
candidate pair is pruned when the probability that the sim-
ilarity is greater than the threshold given computed hashes
M(m,n) becomes less than ǫ:

Pr(S ≥ t|M(m,n)) < ǫ (1)

Besides pruning due to Equation 1, the other possibility
is that the probability that the similarity is greater than
the threshold becomes sufficiently large. A candidate pair is
retained when the probability that the similarity estimate is
accurate to within δ of the true similarity becomes greater
than 1− γ:

Pr(|ŝ(x, y)− s(x, y)| ≥ δ) < γ (2)

Parameters δ and γ are user-specified.
Our main hypothesis is that its current avatar[10] the al-

gorithm fails to retain very useful information across runs,
which if retained, can help one make progress on the two
challenges listed above. We memoize relevant information
on hash match-sets and probability estimates (for each can-
didate pair evaluated) so as to generate a Cumulative APSS
Graph described in Section 1.

Specifically, a candidate pair is evaluated until either Equa-
tion 1 or Equation 2 is satisfied. Before proceeding to the
next candidate pair we log the maximum a posteriori simi-
larity estimate of the pair given n, the number of hashes and
m, the number of matching hashes, and the estimate vari-
ance. At the end of each query the cumulative distribution
function of similarity estimates is updated. Plotting this
distribution gives a useful hint to the user as to the number
of pairs to expect at different thresholds. Based on compar-
isons with the ground truth, this heuristic is successful in
pruning a fraction of the invalid candidates – the develop-
ment of a more aggressive pruning mechanism is something
we are currently looking into.

As described above the inference engine within the algo-
rithm can be modified to compute such a histogram and
estimate with reasonable accuracy. Examples for our test
dataset d1 are shown in Figure 3 (best viewed in color),
where the red line is the (initially unknown) ground truth
number of pairs and other lines show estimates from the
all-pairs algorithm run at user-selected thresholds. Error
bars show slight increased uncertainty above - and more
significant uncertainty below - the specified threshold due
to concentration and pruning, respectively.

Figure 3: d1 with user selection of t1 as 0.8 followed by 0.5.

This data-driven histogram can potentially guide the user
to pick the next threshold to evaluate, thereby avoiding a
pre-canned data-independent protocol for threshold selec-
tion. Additionally, with each subsequent iteration on the
dataset (with different thresholds) the accuracy of the his-
togram estimate will improve (this is provable). The mem-
oization can also be viewed as a knowledge cache, enabling
one to speed up subsequent iterations of the algorithm by
re-using previously computed and memoized information.
In a nutshell, previously computed hash match sets can be
re-used to refine the priors and estimates the algorithm cur-
rently uses to prune and concentrate candidate pairs.

To ensure interactive response times PLASMA-HD relies
on a combination of data sampling, fast similarity estima-
tion through BayesLSH and knowledge cached estimates,
coupled with statistical bounds (for accuracy estimates) for
determining subsequent threshold probes. The above cou-
pled tightly with dimensionless visual aids and correlated
visual plots ensures a novel approach for the intrinsic inter-
rogation of big data.

2.2 Interactive Scenario
Figure 3 shows two steps of an interactive scenario de-

scribed below. The user begins with a blank canvas; suppose
they first choose a similarity threshold of t1 = 0.8. The sys-
tem computes an estimate for the number of pairs at 0.8 as
well as estimates at other thresholds and renders the green
line. The user does not see the (dark red) ground truth
line but we note that the green line is accurate at upper
thresholds around 0.8. The user then notices the “knee” in
steepness of the green line about threshold 0.5, and investi-
gating it, selects a new similarity threshold of t1 = 0.5. The
system then computes the estimate for the 0.5 threshold and
renders the purple line, which is much more accurate across
lower similarity thresholds. Combining the upper thresh-
old estimates for 0.8 (green) and the lower for 0.5 (purple),
a close approximation to ground truth is obtained in just
two steps. The 0.8 and 0.5 estimates as shown take 0.7 and
1.5 seconds to generate, respectively. The brute-force alter-
native, iteratively computing a pair-count estimate for each
0.0, 0.1, . . . , 1.0 threshold value, takes a total of 13.3 seconds.
The interactive approach yields an 83% time savings, which
can be even more significant for larger and more complex
datasets.

To guide the user we provide error bars for each estimate,
giving the user a feel for the parameter space. We next dis-
cuss augmenting these simple visualizations with enhanced
visual cues and summary graph statistics.
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(a) Triangle count, t1 = 0.9, 0.95 (b) Triangle histogram, t1 = t2 = 0.992 (c) Triangle density plot, t1 = t2 = 0.99

Figure 4: wine dataset triangle count and visual cues

2.3 Visual Cues and Interaction
A limitation of Cumulative APSS Graph is that it cannot

convey some data coherency characteristics such as density
and clusterability. In addition running an all-pairs compu-
tation can be expensive lower thresholds (see Section 2.2).

To provide fast interactive insight into data coherency at
different thresholds we provide some visual cues driven solely
by the knowledge cache without requiring further access to
source data D. Once all-pairs is run at a threshold t1, these
visualizations can be generated repeatedly for any threshold
t2 as shown in Figure 1.

The currently implemented visual cues are 1) triangle ver-
tex cover histogram and 2) triangle density plot shown in
Figs. 4b and 4c for the wine dataset from UCI machine
learning repository. Since triangles are closely related to
clusterability [11], the histogram of the number of trian-
gles incident on each vertex gives the user an estimate of
how clusterable the data is. The triangle density plot [12,
13] method visualizes cohesive subgraphs (dense subcompo-
nents) within a large graph. The density plot is the clique
distribution of the graph and flat peaks in the plot indicate
potential cliques.

3. AUDIENCE EXPERIENCE
We plan a demonstration that leads audience members

through various elements of PLASMA-HD. Starting with
candidate datasets drawn from text, social media, image
processing, biomedical andWWW application domains users
will be allowed to explore the different interactive elements
of the proposed system. Currently two popular metrics of
similarity are supported (e.g. Jaccard, Cosine) and we hope
to have other similarity metrics in time for the live demon-
stration. In its current avatar PLASMA-HD is implemented
as both a standalone system operating on a laptop or tablet,
as well as a web-based service working off a back-end server,
where one may upload one’s own data. Users will have the
option to choose between these two options.

Users will experience the workflow presented in Figure 1
and will come across the various exemplar visual cues dis-
cussed in this extended abstract as well as some additional
ones that we lacked space to describe. Explicit feedback
from audience members will be sought to rate and evalu-
ate the system along the traditional axes of quality, effi-
ciency and usability. While we do plan to have some pre-
canned workflow experience for time-constrained audience
members, the more inquisitive members of the audience will
have the opportunity to probe various datasets in a relaxed
manner.

4. POTENTIAL IMPACT
The ability to probe the intrinsic structure of data can

have broad scientific appeal. Within the database commu-
nity a tool like PLASMA-HD can help with NN [9] and Re-
verse NN [4] searches as well as help with identifying good
parameters for indexing – especially clustered indexing. A
fundamental challenge for large scale clustering algorithms
is to determine K the number of clusters that truly model
the data. The PLASMA-HD system through its interac-
tive guidance and visual cues may provide some guidance
on this – particularly through its density plots. Similarly, a
fundamental pre-processing step for a number of learning al-
gorithms (e.g. manifold learning) is to first derive a nearest
neighbor graph. Selecting the threshold for identifying such
an NN Graph can be accomplished through PLASMA-HD.
Acknowledgements: This work was supported by Google
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