
PROPOLIS: Provisioned Analysis of
Data-Centric Processes ∗

Daniel Deutch
Ben Gurion University

Yuval Moskovitch
Ben Gurion University

Val Tannen
University of Pennsylvania

ABSTRACT
We consider in this demonstration the (static) analysis of
data-centric process-based applications, namely applications
that depend on an underlying database and whose control
is guided by a finite state transition system. We observe
that analysts of such applications often want to do more
than analyze a specific instance of the application’s pro-
cess control and database. In particular they want to in-
teractively test and explore the effect on analysis results
of different hypothetical modifications applied to the appli-
cation’s transition system and to the underlying database.
To that end, we propose a demonstration of PROPOLIS, a
system for PROvisioned PrOcess anaLysIS, namely analy-
sis of data-centric processes under hypothetical modification
scenarios. Our solution is based on the notion of a provi-
sioned expression (which in turn is based on the notion of
data provenance), namely an expression that captures, in a
compact way, the analysis result with respect to all possible
combinations of scenarios, and allows for their exploration
at interactive speed. We will demonstrate PROPOLIS in the
context of an online shopping application, letting partici-
pants play the role of analysts.

1. INTRODUCTION
Many real-life applications rely, in intricate ways, on an

underlying database in their operation. For example, E-
commerce applications such as that of Ebay [9] rely on a
database for management of products, orders etc., which
affects the possible execution of the application and its in-
teraction with potential users. Due to the complexity and
importance of such applications, it is a common practice to
perform an automatic (static) analysis of properties related
to anticipated application executions.

As a simple example, consider a typical E-commerce ap-
plication where users can navigate through a selection of

∗This research was partially supported by the Frankel In-
stitute, the National Science Foundation (NSF IIS 1217798)
and the US-Israel Binational Science Foundation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

products (classified through categories and sub-categories),
and proposed discount deals. The underlying process logic
can be captured via a Finite State Machine whose states
reflect web-pages and logical application states, and (part
of) its transitioning is governed by queries on an underlying
relational database. Now, an analyst may be interested in
answering, among others, the following questions:
• (A1) What is the probability that a user would exit

without viewing the daily discount deals?
• (A2) What is the minimal number of clicks allowing a

user to view daily deals?
• (A3) What is the probability that a user would view

product sub-categories for some category?
Such analysis tasks can be expressed in LTL (Linear Tem-

poral Logic) [12] which is commonly used in the context of
static analysis. To obtain a better understanding of the ap-
plication, analysts may want to do more than pose a single,
static analysis task with respect to its current specification,
but rather to test and explore the effect of different modifica-
tions to the process or underlying data, on analysis results.
Hence, she may want to perform analysis of the above flavor
under hypothetical scenarios such as:
• (S1) What if we remove/add a link between two web

pages?
• (S2) What if a particular product is no longer avail-

able?
• (S3) What if the user is a member of a particular club?

In realistic cases, there may be many possible scenarios
and combinations thereof that are of interest. An analyst
would like to interactively explore the different combina-
tions, refining them according to the analysis results (e.g.
removing one link at a time and observing is effect). A sim-
ple way to support the exploration of such scenarios is to ap-
ply each requested hypothetical scenario to the application
specification, and then analyze the obtained specification.
This, however, would be prohibitively inefficient, as it in-
volves repeated costly evaluation of the LTL formula as well
as costly accesses to the application’s underlying database.

Instead, we propose an alternative approach and imple-
ment it in PROPOLIS (PROvisioned PrOcess anaLysIS), whose
high-level architecture is depicted in Fig. 1. Once the model
specification was set, the analyst may (1) pose an LTL query
and (2) define hypothetical scenarios by defining parameters
with respect to the process specification (logical flow and/or
underlying database) at points of interest. Then, PROPOLIS
evaluates the given LTL formula with respect to the param-
eterized specification, and computes an expression referred
to as a provisioned expression. This expression captures, in

1302



Figure 1: System Architecture

a compact way, the result of evaluating the LTL formula
with respect to applying all possible combinations of speci-
fied scenarios (parameter values) to the process specification.
The provisioned expression is passed to a module which al-
lows interactive exploration of scenarios using only the pro-
visioned expression while avoiding further costly access to
the database or costly evaluation of the LTL formula.

We will demonstrate that PROPOLIS has several desired
features. In particular:
• PROPOLIS allows to specify hypothetical scenarios of

interest via a simple interface.
• PROPOLIS computes provisioned expression with rea-

sonable overhead in time, w.r.t. LTL evaluation with
respect to the original specification.
• The size of the provisioned expression is feasibly small.

In particular, it depends on the size of the Finite State
Machine and the number of scenario parameters, but
is independent of the size of the underlying database.
• PROPOLIS allows for interactive and intuitive explo-

ration of analysis results under hypothetical scenar-
ios, which is faster by orders of magnitude than can
be achieved by re-evaluation of the LTL formula on
modified specifications.

The main technical challenges towards achieving those
desiderata are related to computation of feasibly small provi-
sioned expression that compactly captures properties of pos-
sibly infinitely many 1 executions, under exponentially many
combinations of scenarios. To this end we devise a novel al-
gorithm that leverages, combines and extends (1) algorithms
for the analysis of (non-data-dependent) processes, allowing
to compactly handle infinitely many executions, and (2) ad-
vancements in the management of data provenance based on
the semiring framework [11, 2]. A provisioning paradigm in
the context of analytical database queries was introduced
in [7] but no provisioned data-centric process analysis was
considered until now.

We next provide details on the technical background un-
derlying PROPOLIS (Sec. 2) and on implementation issues
(Sec. 3), and describe the demonstration scenario (Sec. 4).

2. TECHNICAL BACKGROUND
We (informally) introduce the main technical notions in-

volved in the development of PROPOLIS, through examples.

1When there are loops in the Finite State Machine

Home
page

Cat.

Sub
Cat.

Product

Shopping
Cart

Daily
Deals

Pay
Exit

Exit

Payment

x1

x1

if Q1 = 0

if Q1 > 0
x2 x2

x3
x4

x3 + x4
if Q2 = 0

if Q2 > 0

Figure 2: Data-Driven Process

Model. A data-dependent processes (DDPs) is defined by a
Finite State Machine, where some transitions may be “guarded”
by a boolean query on an underlying database. We sup-
port, for guarding queries, an expressive fragment of SQL,
equivalent to boolean positive relational algebra with aggre-
gates. Boolean queries results decide guarded transitions,
while other transitions are decided by external factors such
as user choices. A DDP execution is then a (finite or infi-
nite) path in the state machine, and the set of all executions
of a DDP S is denoted exec(S).

Example 2.1. Consider the (partial) process logic in Fig-
ure 2. Each state intuitively stands for a web page, and
transitions model links. Some transitioning is based on the
user decision, such as the one from “shopping Cart” to “Pay
and Exit”, “HomePage” or “Daily Deals” depending on the
user navigation choice (ignore for now the variables next
to these transitions). Other transitions depend on the un-
derlying database: for instance the transition from ”Cat.”
(standing for a page where the user chooses a category) to
a “SubCat.” page (where the user is presented a set of sub-
categories) or to a “Product” page (listing relevant products)
depend on availability of sub-categories. Such transitions are
associated with boolean queries on an underlying database,
such as “if Q1 = 0” (checking for the existence of a sub-
category of the chosen category). A fragment of the database
and some simplified guarding queries are given in Figs. 3
(ignore for now the Prov. column) and 4 resp.

Linear Temporal Logic (LTL). LTL allows formulating
properties of (possibly infinitely long) executions. An LTL
formula comprises of propositional formulas (possibly using
AND,OR,NOT) w.r.t. a given process state (e.g. the state
name), the logical modalities X φ standing for “φ must hold
in the next state” and φ U ψ (“φ must hold until we reach
a state where ψ holds”). Derived modalities include F φ (fi-
nally φ is true) and φ B ψ(φ holds before ψ holds). E.g. the
property “A user exiting without viewing the daily deals”
(w.r.t. our example) is captured by the LTL formula (Exit
OR PayExit) B DailyDeals. We use e |= f to denote that
an execution e satisfies an LTL formula f .

Provenance semirings. We rely for provisioning on semiring-
based provenance, which we next briefly overview. A com-
mutative monoid is an algebraic structure (M,+M , 0M ) where
+M is an associative and commutative binary operation and
0M is an identity for +M . A commutative semiring is then

1303



SelectedCat
Cat. Prov.
· · · · · ·
Cell Phones d1
Computers d2
Fashion d3
· · · · · ·

CategoryHeirarchy
Cat SubCat. Prov.
· · · · · · · · ·
Cell Phones Smartphones d4
· · · · · · · · ·

Figure 3: Underlying Database

Q1 :

SELECT COUNT(*)
FROM CategoryHierarcy CH,
SelectedCat SC
WHERE CH.Cat = SC.Cat

Q2 :

SELECT COUNT (*) FROM
AvailablePaymentSystems PS

Figure 4: SQL Queries

(K,+K , ·K , 0K , 1K ) where (K,+K , 0K ) and (K, ·K , 1K ) are com-
mutative monoids, ·K is distributive over +K , and a ·K 0K =
0 ·K a = 0K . A deep connection between the operations and
axioms of the relational algebra and that of commutative
semirings was established in [11]: intuitively, ·K can stand
for a joint use of tuples (as in the join operation), while +K

can stand for alternative use (as in projection). Since we
will have to deal with infinite objects (infinitely many exe-
cutions), we will consider here only ω-continuous semirings
(see [11]). In particular such semirings satisfy that for any
a ∈ K it holds that a∗ =

∑
i=0...∞ a

i (Kleenee star of a) is
also an element of K. To support arbitrary aggregates for
guarding queries we use a further construction whose details
can be found in [2] but are omitted here for lack of space.

Provisioning. To support provisioning, we allow the an-
alyst to choose some transitions and tuples whose modifi-
cation she would like to explore; consequently tuples are
associated with annotations taken from some semiring K,
and transitions (corresponding to external effects) with el-
ements of a possibly different semiring K′. This allows to
parameterize both. We call the result an annotated DDP.

For example, reconsider Fig. 2, and note now the annota-
tions for external provenance (x1-x4). We use xi to denote
the complement of xi; i.e. if xi is mapped to a boolean value,
then xi is mapped to its negation. Similarly, database tuples
are annotated in Fig. 3 with d1-d4.

Next, we define two notions of provenance with respect
to such executions. The data provenance of an execution e
(with respect to an annotated DDP) is obtained as the ac-
cumulation (via product, following the idea of joint use), of
provenance expressions obtained from evaluating the queries
guarding transitions that were followed in the execution.
This expression can be computed based on [11, 2]. Simi-
larly, the external provenance is the product of provenance
encountered in unguarded transitions (capturing external ef-
fects). The provenance of an execution, denoted prov(e), is
then defined as the pair (k, k′) where k is the data prove-
nance and k′ is the external provenance of the execution.
The intuitive interpretation is joint use of k and k′ and thus
we overload notation and use k ·k′ to denote the pair (k, k′).

We are now ready to define provisioned expressions, via
provenance. To that end, recall that summation corresponds
to alternative computation; so, the provisioned expression
for an LTL formula f with respect to an annotated DDP
s (denoted prov(f, S)) is defined as the formal sum [11] of

provenance of qualifying executions, i.e.
prov(f, s) =

∑
{e∈exec(S)|e|=f} prov(e). Note that prov(f, S)

is defined as a formal, possibly infinite, sum. However, we
can compute a compact representation for it, intuitively re-
sembling a regular expression of all executions conforming to
the formula, capturing both data and external provenance
of all such executions. The size of this expression is depen-
dent only on the number of states and number of parameters
and, as we will demonstrate, is feasibly small.

Example 2.2. Consider scenario A1 from the Introduc-
tion. The LTL formula (Exit OR PayExit) B DailyDeals.
The provisioned expression is a formal sum over all (in-
finitely many) possible executions satisfying it, which can
be compactly represented as follows. The provenance for
database queries is captured by expressions on the di’s (e.g.
for Q1 > 0 we get d1 · d4; for the join result to be non-
empty both tuples need to be present). Now let P = d1 · d4 ·
(x2 + x2 · x4) + d1 · d4 · x4 (P captures paths leading from
HomePage to one of the exit states without looping), and
let P1 = (d1 · d4 + d1 · d4 · x2) · x3 (intuituively capturing
one traversal of the FSM loop). The provenance expression
obtained is P ·P ∗1 . We have obtained an expression that de-
pends only on x’s and d’s. A1 asks for the probability of an
event so we can “instantiate” the variables x1-x4 with proba-
bility values (assumed for simplicity to be independent), say
0.7, 0.6, 0.5, 0.4 resp. To analyze the probability of the event
with respect to the current process structure and underlying
database, we simply set d1-d4 to 1 (and di to 0), i.e. corre-
sponding tuples are all in the database. In this case we get
(by simplification) 0.64 · 0.3∗ ≈ 0.91 (for the last step we
have applied a∗ = 1

1−a
which holds for probabilities). What-

if scenarios can be explored by e.g. assigning variables to 0
or 1. There are 28 such assignments, and analysts can, at
interactive speed, explore those that are of interest to them.
For instance, to re-compute the probability for the case that
sub-categorization of “cell phones” is canceled (i.e. the cor-
responding tuple is omitted) we simply set d4 = 0 to get
that the probability has decreased to 0.4 · 0.5∗ = 0.8. This
computation involves only arithmetics.

The same abstract expression can be used for “minimal
number of steps”. For that, we use the tropical semiring [11]
(+ is the standard min, · is the standard +). Hypothetical
modifications can be examined simply by changing variables
values.

Related Work. Data-centric processes and workflows have
been extensively studied in the database community, with
research on e.g. management and analysis of records of ex-
ecutions (e.g. [1, 5]), simulation (e.g. [14]), or on static
analysis of possible executions (e.g. [3, 8, 10, 4]). The latter
is the most relevant to our work, but we are not aware of
previous work allowing for provisioned static analysis of the
flavor implemented in PROPOLIS. In the verification commu-
nity there are works on parameterized process analysis (see
e.g. [6]), but these do not consider processes that interact
with an underlying database, and are thus not applicable to
our settings. We have mentioned the previous work on pro-
visioning in [7]. The complementary problem of automatic
optimization based on hypothetical reasoning was studied
in [13] for database queries, but not for process analysis.

1304



3. IMPLEMENTATION ISSUES
PROPOLIS is implemented in C] with WPF GUI using

.NET framework, and runs on Windows 7. It uses MS SQL
server as its underlying database management system. We
have presented the system architecture in the Introduction,
and we next review some more implementation issues.

Provisioning. The provisioning module includes a generic
implementation of a DDP model and of the analysis engine.
Its input is an annotated DDP and an LTL formula. The
DDP (without annotation) structure is fed once by an ad-
ministrator, and the analyst specifies hypothetical scenarios
with respect to it, resulting in an annotated DDP. The spec-
ification of scenarios is done via an intuitive interface: the
analyst is shown the finite state machine structure as well as
the underlying database, and by clicking can choose a tran-
sition (or a pair of states between which there is currently
no transition), a database tuple or cell, or a group thereof.
This leads to a pop-up where the analyst can choose to pa-
rameterize the selection (and specify an optional parameter
name) or set a particular value where applicable. For the
demonstration, we have designed a simple graphical inter-
face for some common formulas (including those exemplified
in this proposal), in addition to supporting arbitrary LTL
formulas. The output of evaluating the LTL formula f on
the annotated DDP S is a provisioned expression prov(f, S)
which is fed to the dashboard module.

Dashboard. Once a provisioned expression has been com-
puted and fed to the dashboard module, the analyst can
interact with this module through an interface allowing to
change the value of the predefined parameters and observe
the effect of the change on the result of the LTL formula.
The dashboard interface is simple and intuitive: the parame-
ter names and current values (with default values reflecting
the current application structure and database state) are
presented in a table. By clicking on a parameter name, the
analyst can view the relevant part of the DDP specification /
database which becomes highlighted. The analyst can then
repeatedly change the value of any parameter, and view the
analysis results with respect to the modification, which are
computed at interactive speed.

4. DEMONSTRATION SCENARIO
We will demonstrate the usefulness of PROPOLIS in the

context of an online shopping application, mimicking a por-
tion of the Ebay web-site [9]. The logical flow and database
schema for this demonstration were manually constructed
based on the web-site and the database was populated based
on observed data, combined with some (randomly gener-
ated) synthetic data (in realistic cases the analyst is likely
to be given access to such data). We will highlight different
parts of the model. We will then consider provisioned anal-
ysis. For the demonstration, we will pre-define the analysis
tasks exemplified in this proposal and will allow a volun-
teer participant to choose between them (and to “tweak”
them), or to pose other LTL formulas. We will also ask
the participant to identify points in the process logic and/or
underlying data whose modification they wish to explore,
and to parameterize these through our interface. PROPOLIS

will then compute a provisioned expression, demonstrating
feasibility of this computation in terms of execution time.

Then, we will allow the participant to interactively ex-
plore modifications using the dashboard, based on the pa-
rameters she has defined. For each modification, the analysis
results will be promptly computed and presented. This will
demonstrate the intuitive and interactive nature of the ex-
ploration. During the exploration of scenarios by the partic-
ipant, the system will record (for demonstration purposes)
her choices. Then, we will show the audience a simulation
of an alternative computation that repeats the LTL compu-
tation for every modified version of the process specification
(obtained by “replaying” the participant choices). We will
compare the average execution time of such evaluation to
(1) the time it took PROPOLIS to compute the provisioned
expression and (2) the average time it took PROPOLIS to
compute the result following a modification, in the inter-
active process that was based on the expression. This will
demonstrate that (1) computation of provisioned expression
is comparable in terms of execution time to LTL evalua-
tion and (2) exploration using PROPOLIS significantly out-
performs re-evaluation of the formula. Last, we will allow
the audience to look under the hood, showing and explaining
the computed provisioned expression.

5. REFERENCES
[1] A. Ailamaki, Y. E. Ioannidis, and M. Livny. Scientific

workflow management by database management. In
SSDBM, pages 190–199, 1998.

[2] Y. Amsterdamer, D. Deutch, and V. Tannen.
Provenance for aggregate queries. In PODS, pages
153–164, 2011.

[3] D. Cohn and R. Hull. Business artifacts: A
data-centric approach to modeling business operations
and processes. IEEE Data Eng. Bull., 32(3):3–9, 2009.

[4] E. Damaggio, A. Deutsch, R. Hull, and V. Vianu.
Automatic verification of data-centric business
processes. In BPM, pages 252–267, 2011.

[5] S. B. Davidson and J. Freire. Provenance and
scientific workflows: challenges and opportunities. In
SIGMOD, pages 1345–1350, 2008.

[6] C. Daws. Symbolic and parametric model checking of
discrete-time markov chains. In ICTAC, pages
280–294, 2004.

[7] D. Deutch, Z. Ives, T. Milo, and V. Tannen. Caravan:
Provisioning for what-if analysis. In CIDR, 2013.

[8] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. A system
for specification and verification of interactive,
data-driven web applications. In SIGMOD, pages
772–774, 2006.

[9] http://www.ebay.com/.

[10] X. Fu, T. Bultan, and J. Su. Wsat: A tool for formal
analysis of web services. In CAV, pages 510–514, 2004.

[11] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In PODS, pages 31–40, 2007.

[12] Z. Manna and A. Pnueli. Temporal Logic. Springer,
1992.

[13] A. Meliou, Y. Song, and D. Suciu. Tiresias: a
demonstration of how-to queries. In SIGMOD, pages
709–712, 2012.

[14] W. van der Aalst, J. Nakatumba, A. Rozinat, and
N. Russell. Business process simulation: How to get it
right? BPM Center Technichal Report, 2008.

1305


