
EnviroMeter: A Platform for Querying
Community-Sensed Data

Saket Sathe
EPFL, Switzerland.
saket.sathe@epfl.ch

Arthur Oviedo
EPFL, Switzerland.

arthur.oviedo@epfl.ch

Dipanjan Chakraborty
IBM Research India.

cdipanjan@in.ibm.com

Karl Aberer
EPFL, Switzerland.
karl.aberer@epfl.ch

ABSTRACT
Efficiently querying data collected from Large-area Community
driven Sensor Networks (LCSNs) is a new and challeng-
ing problem. In our previous works, we proposed adap-
tive techniques for learning models (e.g., statistical, non-
parametric, etc.) from such data, considering the fact that
LCSN data is typically geo-temporally skewed. In this pa-
per, we present a demonstration of EnviroMeter. EnviroMe-
ter uses our adaptive model creation techniques for process-
ing continuous queries on community-sensed environmental
pollution data. Subsequently, it efficiently pushes current
pollution updates to GPS-enabled smartphones (through
its Android application) or displays it via a web-interface.
We experimentally demonstrate that our model-based query
processing approach is orders of magnitude efficient than
processing the queries over indexed raw data.

1. INTRODUCTION
Community-driven sensing relies on on-board or smartphone-

embedded sensors carried by the community (buses, cars,
people) to sense an environmental phenomenon of interest
(e.g., pollution). The main focus of research until now has
been on design and implementation of novel deployments
to collect and process community-sensed data. Large-scale
community-driven sensor networks are fundamentally dif-
ferent from traditional sensor networks, due to their au-
tonomous and unstructured sensing behavior [5].

An example of such a community-sensed deployment is
the OpenSense project [5]. The primary objective of the
OpenSense project is to efficiently and effectively monitor
environmental pollution using wireless and mobile sensors.
The project adopts complex utility driven approaches to-
wards sensing and data management. The geographical
granularity for monitoring environmental pollution is on the
level of a city or state. Pollution data is collected using sen-
sors installed on public transport buses.

Unfortunately, LCSNs cannot be tightly controlled espe-
cially when deployments cover large areas, which makes it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

difficult to produce a homogeneous view of the phenomenon.
Thus, the data collected by sensors is geo-temporally skewed.
Data skewness drastically affects the efficiency and accuracy
of query processing in the following ways: (a) due to semi-
controlled or uncontrolled mobility of sensors, sensor values
may not be always available at a particular position and
time, (b) the accuracy of an estimated pollution value is
not high if a distant sensor value is used to approximate the
pollution value at the current position. Queries that are typ-
ically processed on such data are of two types: point queries
and continuous queries. Point queries return the pollution
value at a given position, while continuous queries are regis-
tered by a mobile object, which is interested in continuously
knowing the pollution around it.

In our prior research [6], we demonstrated that multi-
model approaches are suitable for modeling geo-temporally
skewed community-sensed data. Previous literature exists
on scalable high-speed data processing on the server that
addresses efficient storing and querying of models from raw
data [9, 10]. In the past, research has focused on the prob-
lem of inherent unreliability of the sensors due to their au-
tonomous human-influenced nature or surrounding weather
conditions, due to which sensors become error-prone or run
out of battery [7, 8].

Although the previous works investigate various ways for
the community to perform sensing, they are not concerned
with using the collected data and knowledge in providing
feedback and information about the phenomenon, back to
the community. This work, is focused in closing the gap
in the loop. In this demonstration of EnviroMeter, we use
our proposed techniques from [6] for succinctly representing
community-sensed data in the form of models.

We demonstrate how to use the learned models for ef-
ficiently processing user queries. Our techniques adapt to
the changing nature of the sensed phenomenon by adjusting
the geographical granularity of the models, to capture the
phenomena with high fidelity. EnviroMeter is a complete
framework that senses data in a community-driven sensor
network. It processes the results efficiently, and uses lazy
update policies to present them to users on their mobile de-
vices, while significantly reducing network bandwidth and
processing delay.

2. SYSTEM DESIGN
The system designed for supporting EnviroMeter consists

of three main components. First component uses the adap-
tive techniques for learning single or multiple models over

1294

the concerned geographical area. Second component con-
sists of the different query processing methods that use the
learned models for answering continuous queries. Third
component optimizes the bandwidth required for commu-
nicating the requests/responses during query processing. In
the following sections we discuss each of these components.

2.1 Adaptive Models
The architecture of the EnviroMeter framework is shown

in Figure 1. It assumes a geographical region R, over which
environmental pollution is sensed using community-driven
approaches. The sensed data is stored in a database in the
form of raw tuples. The adaptive modeling approach that
we propose creates a multi-model abstraction or a model
cover over the raw tuples dumped in the region R. A model
cover is defined as a set of modelsM = {M1, . . . ,MO} that
are respectively responsible for modeling the sub-regions
R1, R2, . . . , RO of R. The sub-regions taken together cover
the entire region R.

multiple model

M1
M2
M3

R1
R2
R3

M3

models

M1R1

R2 R3

W1

W2

R1
R2
R3
R4
R5
R6
R7

M1
M2
M3
M4
M5
M6
M7

raw_tuples

model_cover

siyixitii

database

M2

c

ib

Figure 1: Architecture of the framework.

We denote the raw tuple as bi = (ti, xi, yi, si), where si is
the raw sensor value, and ti and (xi, yi) are the time and the
position corresponding to the sensor value si. We assume
that the model cover is computed using a window of raw
tuples Wc = 〈bi|cH ≤ ti ≤ (c + 1)H〉, where c is a positive
integer and H is the window length.

We briefly present the adaptive method, called adaptive
k-means or Ad-KMN, that gave us the best results among
many candidates we designed [6]. This method partitions
the region R adaptively (i.e., only when and where it is
necessary) and estimates the models M1,M2, . . . ,MO. The
standard k-means algorithm uses the Euclidean distance for
creating the clusters. Instead, in the Ad-KMN method, we
use the model approximation error as an additional cluster-
ing criteria. An example of the Ad-KMN method on toy
data is shown in Figure 2.

Assume that before executing the Ad-KMN method, we
compute two centroids µ1 and µ2 by executing the standard
k-means algorithm using the positions (xi, yi) fromWc (refer
Figure 2(a)). Then, (a) we partition the sensor values inWc,
such that R1 and R2 contain sensor values that are nearest
to µ1 and µ2 respectively, and (b) for the sensor values in
R1 and R2 we estimate linear regression models M1 and M2

and compute the approximation error 1.
Next, we check whether the approximation error is within

a user-defined threshold τn. In the regions (R1 or R2) where
the approximation error is greater than τn, we introduce
an additional cluster centroid (equivalent to splitting the
region) and re-estimate all the centroids. This procedure is

1approximation error is the average percentage error com-
pared to the normal range of si in the environment (pollu-
tant specific).

R1

R2
R2

R3

R4R1

- centroids from last iteration- positions with worst error

road

centroid

(xi ,yi ,ri)

(b)(a)

μ1
μ2

μ1

μ2

μ4

μ3

Figure 2: Example on toy data: (a) initial regions,
and (b) two new regions R3 and R4 added after an
Ad-KMN iteration.

continued until all the regions meet the approximation error
threshold τn. We denote the cluster centroids (µ1, . . . , µO)
as µ.

2.2 Continuous Query Processing
The query processing framework is depicted in Figure 3. It

consists of a mobile object vq that transmits the query tuple
ql = (tl, xl, yl) at time tl from position (xl, yl) to the server
using mobile data services (GPRS or 3G). Here, we assume
a single mobile object (individual or vehicle) continuously
querying for pollution around it. The query that we consider
is formally defined as follows:

Query 1. Continuous Value Query. Given a mobile
object vq that continuously transmits the query tuple ql =
(tl, xl, yl) at time tl, interpolate the sensor value ŝl at posi-
tion (xl, yl) and transmit it to vq.

Here, the sensor value could be any of the pollutants
that are typically monitored: carbon dioxide (CO2), car-
bon monoxide (CO), suspended particulate matter, etc. We
assume that the mobile object transmits a query tuple with
uniform interval, i.e., |tl+1− tl| is always the same. We pro-
pose the following three methods for processing Query 1.

1
1

M1
M2

raw_tuples

model_cover

si

10
15

3.4
4.2

yixiti

0.1
0.8

7.2
7.9

1
2

i

database

base station

Ad-KMNnaive
model cache

l̂s, ,nt m lq
le

lq

serverregion

c
1
2

le

ibib

1
1

M1
M2

raw_tuples

model_cover

si

10
15

3.4
4.2

yixiti

0.1
0.8

7.2
7.9

1
2

i

database

Ad-KMN

baseline

model-cache

l̂s
()nt ,m,

lq

server

region

c
1
2

le

ib

Figure 3: Continuous query processing framework.

Näıve: In this method, the server does an exhaustive search
in the window Wc to find all the raw tuples that are in a
radius r centered at (xl, yl). Then the interpolated value
ŝl is computed as the average value of the sensor values si
found in the radius r. This interpolated value ŝl is then
returned to the object vq.

Metric Space Indexing: This method is similar to the
näıve method, but it uses a metric space index (e.g., R-tree
or VP-tree) to enhance the performance of finding the raw
tuples in window Wc that are within radius r of (xi, yi).

Model Cover: This method uses the model cover M and
the cluster centroids µ for query processing. In this method,
we first find the cluster centroid µ∗ in µ that is nearest to
(xl, yl). Then the model M∗ ∈ (M1, . . . ,MO) corresponding
to µ∗ is used for interpolating the sensor value ŝl.

2.3 Bandwidth Optimization Techniques

1295

It is a well-known fact that smartphones spend significant
amount of battery power and bandwidth in transmitting
data via GPRS or 3G data services. In order to optimize
the bandwidth- and power-usage, we propose a caching tech-
nique referred to as model-cache. Model-cache stores the
model cover on the smartphone and only queries the server
when the cached model cover becomes invalid.

Model-Cache: As a system initialization step vq sends a
model request, denoted as el, to the server (refer Figure 3).
In response to el the server sends the following items: (i) the
coefficients of all the models inM, (ii) the cluster centroids
µ, and (iii) the time tn until which the current model cover
is valid. vq stores (tn,µ,M) in its local memory.

Now, when the user, who has EnviroMeter running on
his/her smartphone, needs a pollution update, a query tuple
ql is generated. Then, EnviroMeter checks whether tl ≤ tn.
If tl ≤ tn, then it finds the nearest cluster centroid µ∗ to
(xl, yl). It uses the model M∗ corresponding to µ∗ for com-
puting the value ŝl, without contacting the server. If tl > tn,
then the current model cover is invalid, and a new model re-
quest el is sent to the server for updating (tn,µ,M). Since
in practice it often happens that mobile objects have limited
mobility or predefined trajectories, we save a considerable
amount of bandwidth by caching (tn,µ,M).

In Section 4, we compare the model-cache technique with
a baseline technique, which simply responds to each query
tuple with the interpolated sensor value ŝl, without caching
the models. We experimentally demonstrate that model-
cache is approximately 50 times bandwidth efficient as com-
pared to the baseline technique.

3. DEMONSTRATION
As a part of the demonstration we present the EnviroMe-

ter Android application. The users are presented with a map
of Lausanne, Switzerland. EnviroMeter users can quickly
find the CO2 concentration at their current position. The
application has the ability to record routes. After a route
has been recorded, the user can view it on a map. In ad-
dition, the application presents the average pollution level
through the route. An informative text indicating whether
this value is acceptable according to the OSHA (Occupa-
tional Safety and Health Administration) [1] guidelines is
displayed. Moreover, the map shows each of the points in
the route with a marker whose color varies from green (safe)
to red (hazardous CO2 levels). Finally, users can set up
configuration parameters, like the server address and the
interval for the position updates using the settings menu.

In the second part, we demonstrate a web interface of
EnviroMeter. The web interface can be used in three dif-
ferent modes: continuous query (Query 1), point query and
heatmap visualization. In the continuous query mode, users
select a set of points that constitute the route, and the appli-
cation computes dynamically and displays the average CO2

level for each point on the route. Figure 5(a) shows an
example of the web interface, along with the CO2 concen-
tration at a point clicked by the user. In single point query
mode, users click on a point in the map, and the application
presents the interpolated CO2 concentration measured in
parts per million (ppm) at that point. Finally, the user can
visualize a heatmap of the area Figure 5(b). The emitting
points are the centroids computed by the Ad-KMN algo-
rithm with its pollution level. The points are colored in a

(a) query mode (b) settings

Figure 4: (a) Map showing the points in a continu-
ous query, and (b) user-defined settings.

scale going from acceptable (green) to dangerous to human
health (red).

(a) query mode (b) heatmap visualization

Figure 5: (a) EnviroMeter web interface for single
point query, and (b) heatmap of the pollutant con-
centration.

4. EXPERIMENTAL EVALUATION
We perform the experiments on a real dataset collected in

the city of Lausanne, Switzerland for the OpenSense project
[5]. The dataset is community-sensed by two public trans-
port buses that are equipped with various environmental
pollution sensors. For our experiments, we focus only on
CO2. Our dataset was collected over a period of 1 month and
has 176K raw tuples with sampling interval of 60 seconds.
We refer to this dataset as lausanne-data. In Section 4.1,
we compare the various query processing methods for pro-
cessing Query 1, followed by the experiments on bandwidth
optimization methods in Section 4.2.

4.1 Query Processing
To evaluate the performance of our query processing meth-

ods, we use a varying window size H from 40 to 240 raw tu-
ples (4 hour window), a radius r of 1 km, and error thresh-
old τn = 2%. The näıve and the model cover methods are
implemented using Python. For testing the metric space
indexing methods, we use Python-based implementations
of the R-tree [3] and the VP-tree [4]. We use 5000 point
queries for comparing the efficiency, accuracy, and memory
consumption of all the query processing methods.

Efficiency: Figure 6(a) presents elapsed time for the de-
scribed scenario. We can observe that the model cover
method processes the queries 7.1 times faster as compared

1296

to the VP-tree method for H = 40. In addition, it is 39.4
times faster than the R-tree method for H = 240.

Accuracy: For measuring the accuracy of the obtained re-
sults, we compare the näıve method and our proposed model
cover method. Recall that the näıve method computes the
value ŝl as the average of the sensor values that lie in the
radius r of the query tuple. Figure 6(b) shows that our
method consistently generates a smaller NRMSE (normal-
ized root-mean-square error) than the näıve method. The
R-tree and the VP-tree methods are not considered, since
they produce the same result as the näıve method.

Memory Consumption: For demonstrating the saving in
memory due to the model cover method, we use a larger
window size H = 5000. We compared the memory re-
quired to store: (a) the complete set of points for the näıve
method, (b) the index information for the R-tree and VP-
tree methods, and (c) the models generated by the model
cover method. The memory required is accurately measured
using the Pympler library [2]. Figure 7(a) presents the av-
erage memory required by all the methods averaged over 10
independent runs. Observe that the model cover method
dramatically reduces memory consumption and requires ap-
proximately 7 times, 70 times and 407 times less memory
than the näıve, R-tree and VP-tree methods respectively.

10-1

100

101

102

 40 80 120 160 200 240

ti
m

e
 (

s
e
c
o

n
d

s
)

window size (H)

Ad-KMN
VP-tree

R-tree

naive

(a) efficiency

 0

 3

 6

 9

 12

 15

 18

 21

 40 80 120 160 200 240

N
R

M
S

E
 (

%
)

window size (H)

Ad-KMN naive

(b) accuracy

Figure 6: Comparing efficiency and accuracy of
query processing. Note the logarithmic scale on the
y-axis in (a).

4.2 Bandwidth Optimization
To evaluate the bandwidth savings obtained from using

the model-cache technique, we use a continuous query of
100 query tuples. We measured the total number of bytes
transmitted and received by the mobile device, and the to-
tal time to complete the query. From the results presented
in Figure 7(b) we can see that the model-cache technique
dramatically reduces the memory consumption and query
processing time. Compared to the baseline technique (see
Section 2.3), model-cache requires 113 times less transmit-
ted bytes, 30 times less received bytes, and approximately
100 times less time.

5. CONCLUSION
In this demonstration, we introduced EnviroMeter, an ef-

ficient and easy-to-use framework for processing queries over
community-sensed data. We proposed various design strate-
gies for query processing and optimizing network bandwidth.
We presented the main functionalities of the EnviroMeter
Android application for smartphones and the web interface.
Finally, we evaluated our techniques on a real dataset and

10-1

100

101

102

103

104

Ad-KMN naive R-tree VP-tree

kilobytes

(a) memory

10-1

100

101

102

recived (kb) sent (kb) total time (sec)

31x

113x
100x

baseline model-cache

(b) bandwidth

Figure 7: (a) Comparing memory requirements of
various query processing methods and (b) compar-
ing the bandwidth optimization techniques. Note
the logarithmic scale on the y-axis.

clearly demonstrated the orders of magnitude performance
enhancements obtained using our methods.

6. ACKNOWLEDGMENTS
The work is supported by the OpenSense project (refer-

ence number 839 401) supported by the Nano-Tera initiative
(http://www.nano-tera.ch).

7. REFERENCES
[1] Occupational Safety and Health Administration:.

http://www.osha.gov/dts/chemicalsampling/data/

CH_225400.html.

[2] Pympler. http://pythonhosted.org/Pympler.

[3] Pyrtree. http://code.google.com/p/pyrtree/.

[4] Python VP-Tree. http:
//www.logarithmic.net/pfh/blog/01164790008.

[5] K. Aberer, S. Sathe, D. Chakraborty, A. Martinoli,
G. Barrenetxea, B. Faltings, and L. Theile.
OpenSense: Open community driven sensing of
environment. In IWGS (along with ACM GIS), 2010.

[6] S. Cartier, S. Sathe, D. Chakraborty, and K. Aberer.
ConDense: Managing data in community-driven
mobile geosensor networks. In IEEE SECON, 2012.

[7] R. Cheng, D. V. Kalashnikov, and S. Prabhakar.
Evaluating probabilistic queries over imprecise data.
In SIGMOD, pages 551–562, 2003.

[8] A. Krause et al.. Towards community sensing. In
IPSN, 2008.

[9] M. Mokbel, X. Xiong, and W. Aref. SINA: Scalable
incremental processing of continuous queries in
spatio-temporal databases. In SIGMOD, page 634,
2004.

[10] M. Mokbel, X. Xiong, S. Hambrusch, S. Prabhakar,
and M. Hammad. PLACE: A Query Processor for
Handling Real-time Spatio-temporal Data Streams. In
VLDB, 2004.

1297

