
EagleTree: Exploring the Design Space of
SSD-Based Algorithms

Niv Dayan1, Martin Kjær Svendsen1, Matias Bjørling1, Philippe Bonnet1, Luc Bouganim2,3

1 IT University of Copenhagen

Copenhagen, Denmark
{mabj,phbo,nday}@itu.dk

2 INRIA Paris-Rocquencourt
Le Chesnay, France

Luc.Bouganim@inria.fr

3 PRISM Laboratory
Univ. of Versailles, France

Luc.Bouganim@prism.uvsq.fr

ABSTRACT
Solid State Drives (SSDs) are a moving target for system
designers: they are black boxes, their internals are undocumented,
and their performance characteristics vary across models. There is
no appropriate analytical model and experimenting with
commercial SSDs is cumbersome, as it requires a careful
experimental methodology to ensure repeatability. Worse,
performance results obtained on a given SSD cannot be
generalized. Overall, it is impossible to explore how a given
algorithm, say a hash join or LSM-tree insertions, leverages the
intrinsic parallelism of a modern SSD, or how a slight change in
the internals of an SSD would impact its overall performance. In
this paper, we propose a new SSD simulation framework, named
EagleTree, which addresses these problems, and enables a
principled study of SSD-Based algorithms. The demonstration
scenario illustrates the design space for algorithms based on an
SSD-based IO stack, and shows how researchers and practitioners
can use EagleTree to perform tractable explorations of this
complex design space.

1. INTRODUCTION
Flash-based Solid State Drives (SSDs) offer the same block
device interface as hard disk drives (HDDs). It is thus seemingly
transparent for a database administrator to replace HDDs by
SSDs. The problem is that SSDs do not respect the performance
contract that has always been valid for HDDs: e.g., sequential IOs
are no longer orders of magnitude faster than random IOs. Worse,
there is no consistent performance contract that all SSDs adhere
to. We have argued in [2] that this absence of a performance
contract is due to the high level of software and hardware
complexity, throughout the portion of the IO stack hidden behind
the block device interface.
So, even if SSDs look like HDDs, they behave in a very different
way. In fact, the behavior of a given SSD is hard to characterize as
it depends on undocumented internal features at the hardware
level, e.g., SSD geometry, underlying flash chips, and mainly at
the software level, e.g., the Flash Translation Layer (FTL)
embedded on the SSD controller.
The fact that complex SSDs internals are hidden and
undocumented raises problems, not just in terms of experimental

methodology – as care must be taken to bring an SSD to a well
defined state before running experiments in order to obtain
reproducible results [3] – but essentially in terms of system
design, as it is impossible for practitioners and researchers to
explore how SSD internals impact overall system performance.
More specifically, we seek to explore the following questions that
have received little attention so far:
• How does SSD parallelism impact performance (or the dual

question: how can an algorithm efficiently leverage SSD
parallelism)? A flash-based SSD contains tens to hundreds of
flash chips wired in parallel to the SSD controller through
multiple channels. The SSD scheduler deals with parallelism
across and within flash chips and must decide which IO should
be scheduled, and for writes, where (i.e., on which LUN1) it
should be done, and precisely when (with respect to other IOs).

• How do garbage collection and wear leveling interfere with
application IOs? Each update leaves an obsolete flash page
(with a before image). Over time, obsolete flash pages
accumulate, and are reclaimed through garbage collection (GC).
In addition, the FTL relies on wear leveling (WL) to distribute
the erase count across flash blocks and mask bad blocks. Note
that both GC and WL read live pages from a victim block and
write those pages at other locations, before that block is erased.
As a result, GC and WL interfere with the application’s IOs,
possibly compromising throughput and contributing to latency
variability. Note that application IOs also interfere with each
other, which raises issues of fairness that have not been
properly addressed so far.

• What is the impact of replacing the block layer by a
communication interface, hopefully better suited to deal with
the complexity of SSDs? We have argued for such a cross layer
approach [2], but we cannot rely on existing SSDs to
experiment with its design.

In order to study these questions, we must resort to simulations
where SSD internals can be manipulated with controlled
experiments. Existing SSD simulators fall short of this requirement.
Early efforts such as FlashSim [7] (open source) and SSDSim [1]
(Microsoft license) are inadequate at the hardware level: they fail
to represent SSD parallelism and chip characteristics. While the
more recent open source simulator NANDFlashSim [6] improves
the hardware and parallelism representation, it does not expose a
design space at the controller level that allows for rapid
experimentation with mapping, GC, WL or scheduling policies.

1 Flash chips are decomposed into logical units, denoted LUNs that
constitute the minimum granularity of parallelism. This notion of LUN,
introduced in the Open Nand Flash Interface (ONFI) standard, abstracts
away the notions of packages, chips and dies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

1290

In this paper, we present EagleTree, an open source software
simulation framework for SSD-based applications. EagleTree
encompasses the complete IO stack: application, operating
system, SSD controller and flash chips array. EagleTree exposes a
large, complex design space (see Section 2), which can be
explored in a tractable way. The demonstration scenario (see
Section 3) illustrates the complexity of this design space and
shows how researchers and practitioners can use EagleTree to
explore interplays between parameters across the IO stack.

2. THE EAGLETREE SIMULATOR
2.1 Overview
EagleTree is an open source simulator (available at
https://github.com/ClydeProjects/EagleTree). It does not only
simulate an SSD but also (a subset of) the OS and applications
utilizing it. The first advantage of this approach is that EagleTree
is an entire system operating in virtual time. It is thus possible to
conduct large and complex design-space explorations, involving
hundreds of experiments, in a tractable way. A second advantage
is that we can experiment with cross-layer designs.

Figure 1: EagleTree architecture and design space exploration
EagleTree is composed of four layers, from the bottom-up: the
hardware, the SSD controller, the operating system, and the
application layers (see Figure 1). With EagleTree we can study
questions related to an individual layer, or we can conduct cross-
layer studies. For example:

At the hardware layer: Where are the hardware bottlenecks? What
is the impact of the underlying flash chips characteristics? How
should we use advanced commands (e.g. copybacks, pipelining),
and what trade-offs is their usage subject to?

At the SSD controller layer: What is the impact of the mapping
strategy? When should we trigger garbage collection or wear
leveling? How should we schedule application reads and writes
(1) relative to each other and (2) relative to internal IOs? What is
the impact of different interleaving strategies? What is the best
usage for RAM or for battery-backed RAM? What is the impact
of applications’ IOs queue size?

At the OS scheduler level: What is the best scheduling strategy
(e.g., FIFO, CFQ, priorities)? How many outstanding IOs should
be submitted to the SSD? What useful meta-information may be
transmitted to the SSD in case of cross layer optimizations?

At the application layer: How can an algorithm leverage SSD
internal parallelism? How should we submit synchronous and
asynchronous IOs?

Finally, considering a cross-layer approach: How can we leverage
an open interface to cooperate with the OS and the SSD? What is
the impact on application algorithms (e.g., indexing, extent-based
space allocation, join algorithms, external sorting algorithms)?
How should work be divided across layers (e.g., scheduling at OS
level or SSD level or both)?
The obvious drawback of our approach is that the entire system is
simulated, and thus, far away from a deployable system. Our goal
is that EagleTree should be useful to answer some basic questions,
but we recognize that the answers that we obtain will have to be
confronted to actual system components. We are exploring an
approach where the fully simulated environment of EagleTree is
complemented by (1) a software-based SSD simulator (based on
the hardware and controller layers of EagleTree) connected to a
real OS and real applications -- the problem is then to store the
manipulated data in RAM (otherwise it may slowdown the
execution), and to map the virtual IO time to real time, and (2) a
hardware-based SSD simulator using the OpenSSD hardware
[10]. We think that these approaches, more realistic but less agile
[9], are best suited in a second phase, once EagleTree has been
used to get a basic understanding of the key trade-offs.

2.2 Design and Implementation
Each EagleTree layer consists of configurable parameters and
customizable policies. From the bottom-up:

Hardware: EagleTree allows users to set up every hardware
parameter of the simulated SSD: basic flash chip timings (i.e., to
send a command, transfer data on a channel, read, write or erase),
flash chip and SSD geometry. Moreover, EagleTree allows
specifying the flash chip type (i.e., SLC or MLC) and its support
for advanced commands. Finally, EagleTree includes a memory
manager used to track the amount of RAM and battery-backed
RAM used for the controller's metadata and IO buffers. All these
parameters are variables that can be set, viewed and updated with
ease. Predefined configurations are provided based on existing
SSDs and flash chip datasheets.

SSD Controller: The SSD controller is responsible for
orchestrating mapping, garbage-collection, wear leveling modules
and scheduling.
The mapping scheme supports the virtualization of the address
space, mapping logical addresses onto physical ones. For reads,
the mapping scheme must look up the physical address
corresponding to the logical address of the incoming IO. For
writes, the mapping scheme imposes constraints on which
physical address a given IO might be bound to. As a result, the
mapping scheme potentially restricts the scheduling policy. For
now, we have considered the most flexible schemes i.e., page-
based mappings: the well-known DFTL [5] and a page-based
mapping scheme where the entire mapping is kept in RAM.

For page-mapping FTLs, garbage-collection should fulfill the
following requirements. First, it is desirable to wait as long as
possible before performing garbage-collection. Doing so
maximizes the number of invalid pages across the SSD, thereby
ensuring that victim blocks have few live pages. On the other
hand, GC must not occur so late that the FTL actually runs out of
available space for incoming writes. Second, it is desirable to
maintain free space on every LUN to maximize the flexibility for
where writes can be made. The default GC module strives to
fulfill these goals by triggering GC so that a given number of
blocks (GC Greediness parameter) are always free on each LUN.

Flash memory array

LUN
LUN

LUN
…

LUN
LUN

LUN
…

LUN
LUN

LUN
…

LUN
LUN

LUN
…

Applications
(Workload generator)
Operating System

(IO scheduler)

Exploring extended interface
impact on applications

Exploring the OS
scheduling strategies

Exploring HW design space
•  Nb of channels
•  Nb of LUNs / channel
•  Chip configuration
•  RAM / Safe RAM quantity
•  etc…

Exploring the SSD controller
design space

•  IO scheduling strategies
•  GC / WL strategies
•  Handling extended interface
•  etc…

Ex
pl

or
in

g
cr

os
s-

la
ye

r o
pt

im
iz

at
io

ns

SSD Controller
•  Mapping
•  IO Scheduling
•  Garbage Collection (GC)
•  Wear Leveling (WL)

1291

The default wear leveling module keeps track of (1) the ages of all
blocks, (2) a timestamp for each block marking the time in which it
was last erased, (3) the average length of time it takes a block to be
erased, and (4) the current time. Using this information, the WL
module can identify particularly young blocks that have not been
erased for a very long time, and can target them for static wear
leveling. Moreover, EagleTree contains dynamic wear-leveling
strategies that allow maintaining several free blocks of different
ages in each LUN. The overall goal is to associate hot data with
young blocks and cold data with old blocks. Temperature
detection for pages can be done by (1) assuming the pages
migrated in static wear-leveling are cold, and everything else is
hot, or (2) using a temperature detection mechanism for each page
such as the one described in [8], which we have implemented, or
(3) using information about the temperature of data coming
through an open interface from the application.

EagleTree supports parallelism among channels and operation
interleaving within a channel thus making the IO scheduler a central
part in EagleTree. With regards to IO scheduling, the problem is
roughly the following. Given the state of the flash chip array and a
queue of pending IOs from various sources (e.g. application,
garbage-collection, mapping, etc.), of various types (e.g. read, write,
erase, copy-back), and that have been waiting in the queue for
different lengths of time, which IO should be executed next and
where? EagleTree provides a modular framework for exploring
scheduling policies. For example, it is possible to:

• Control when and where to trigger internal operations, such as
garbage-collection, wear-leveling;

• Implement priority schemes that differentiate among IOs based
on their sources, types, and waiting times;

• Set deadlines for different IO types, and control the way in
which overdue IOs are handled as relative to other IOs;

• Record and exploit information about logical address patterns
(e.g. sequential vs random, hot vs cold);

• Control the aggressiveness of interleaving and copy-back
operations;

Obviously, these defaults strategies can be overwritten or
complemented. In addition, other modules can be added to the SSD
controller, e.g., a write-buffering module that uses battery-backed
RAM to temporarily store data before it is written on flash pages.

Open Interface: EagleTree takes a departure from the traditional
block device interface by basing communication between the OS
and the SSD on an extensible messaging framework that allows
the operating system and SSD to communicate as peers. Users are
able to create new types of messages between the SSD and the OS
conveying any amount of information or instructions. Using this
framework, it is possible to build arbitrarily complex
communication protocols between the SSD and OS. Investigating
what we stand to gain from more explicit communication between
the OS and SSD is the subject of our ongoing work. For now, we
hope to inspire and excite the reader by sketching a few examples
and their potential impact on performance.

• Priorities: the OS can communicate to the SSD the priority of
an IO. The SSD can take this into account by offering the IO
special treatment in terms of scheduling.

• Update-locality: the OS can inform the SSD which pages share
update-locality. The SSD can then write these pages so as to
minimize subsequent garbage-collection.

• Temperatures: the OS can inform the SSD whether the page
being written is likely to be updated soon. The SSD can use this
to benefit wear-leveling and garbage-collection efficiency.

OS Scheduler: The Operating System manages IO requests
incoming from multiple simulated concurrent threads. It maintains a
pool of pending IOs from each thread and decides, based on a

Figure 2: EagleTree demonstration main window (on the left) and example of code and results

1292

customizable scheduling policy, which IOs to issue next to the SSD.
This policy can take into account the IO type (e.g. read/write/trim),
its priority, the dispatching thread, etc. The default scheduling
strategy is FIFO. Once the SSD has completed executing an IO, it
interrupts and notifies the OS. The OS then activates the thread that
dispatched the IO. The thread can respond by issuing additional IOs.
Threads: The Thread layer is a programming framework that
gives users absolute control over the workload. Users are able to
extend an abstract thread class by providing a definition for two
methods: init() and call_back(). The init() method is called by the
OS when the thread is initialized, and the call_back() method is
triggered every time an IO originating from that thread completes.
Within each of these methods, it is possible to issue any number
of messages to the OS. A user can create any number of threads
with arbitrarily complex behaviors. For example, we have
implemented threads simulating the behavior of a file system as
well as a thread that follows the IO pattern of Grace hash Join.

2.3 Running Experiments
EagleTree contains an experimental suite API, which consists of
experiment templates. An experiment template takes (1) an SSD
parameter or policy (2) a strategy for how to vary it in an
experiment, and (3) a workload definition. It runs an experiment
and produces a comprehensive amount of visual statistical output.
This includes graphs showing how performance metrics (e.g.,
throughput, latency, latency variability) evolved with respect to
the given parameter or policy, as well as graphs showing how
various metrics evolved across time in the experiments, and
massive visual traces showing exactly how every IO was handled
throughout the simulator components. EagleTree contains other
useful features to allow conducting controlled, repeatable
experiments. For example, it is possible to attach statistics
gathering objects to an individual thread to measure its
performance. It is also possible to create dependencies among
threads. This latter feature is particularly useful for bringing the
SSD to a well-defined state. This can typically be done by starting
thread(s) that write over the entire logical address space
sequentially and/or randomly [4] and then triggering the
experiment workload once the preparation threads finished, and
measuring performance only for the experiment workload.

3. DEMONSTRATION SCENARIO
The purpose of the demonstration is to show through experiments,
that: (1) the design space of SSD-based algorithms is vast; that
(2) opening the interface is interesting but still increases that
design space; that (3) EagleTree can help to explore that design
space; and finally that (4) interesting solutions are sometime
counter-intuitive. The demonstration will be centered on
scheduling issues and will roughly follow the following outline.
Layered Tour: This part uses the demonstration GUI shown on
Figure 2. We will first introduce the approach and EagleTree
architecture. Then, attendees will choose configuration parameters
(e.g. hardware setup, controller and OS policies, application
workload) then run the simulator, and observe live results in terms
of numerical performance metrics, traces, and graphical outputs
(lower part of the GUI and right part of Figure 2). We will also
show pre-computed graphs using longer experiments to show the
full power of EagleTree's experimental suite. We will pay
particular attention to the impact of scheduling policies on
performance, and explain why prioritizing between application
reads and writes is not always easy. We will introduce the challenge
of scheduling internal operations as non-obtrusively as possible.

Open Interface Appetizers: In a second phase, we will open the
block device interface. By unlocking the red lock shown on the
figure, we will enable the attendee to choose from a range of
possible extensions to the block device interface (e.g., explicit
communication of locality, data temperature), guiding the attendee
such that large variation in performance can be observed.
Game: We will close the demonstration proposing a game to the
attendee. Using the second GUI (see Figure 3) and knowledge
acquired during the presentation, the user will have to guess the
optimal combination of scheduling policies given a subset of the
SSD scheduling design space. The attendee's objective will be to
maximize throughput for a given workload while balancing mean
latency and latency variability between different types of IOs. The
user who draws nearest to the optimal configuration at each demo
session will win an EagleTree Tshirt.

4. REFERENCES
[1] N.Agrawal, V.Prabhakaran, T.Wobber, John.Davis, M.Manasse,

R.Panigrahy. Design tradeoffs for SSD performance. USENIX ATC, 2008
[2] M.Bjørling, P.Bonnet, L.Bouganim, N.Dayan. The Necessary Death

of the Block Device Interface. CIDR, 2013.
[3] P. Bonnet, L. Bouganim, I. Koltsidas, S. Viglas. System Co-Design

and Data Management for Flash Devices. VLDB 2011.
[4] L. Bouganim, B. T. Jònsson, and P. Bonnet. uFLIP: Understanding

flash I/O patterns. CIDR, 2009.
[5] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash translation layer

employing demand-based selective caching of page-level address
mappings. In ASPLOS, 2009.

[6] M.Jung, E.Wilson, D.Donofrio, J.Shalf, M.Kandemir.
NANDFlashSim: Intrinsic latency variation aware NAND flash
memory system modeling and simulation at microarchitecture level.
MSST 2012

[7] Y.Kim, B.Tauras, A.Gupta, D.Mihai, N.Urgaonkar. FlashSim: A
Simulator for NAND Flash-based Solid-State Drives. SIMUL, 2009

[8] D.Park, D.Du. Hot Data Identification for Flash-based Storage
Systems Using Multiple Bloom Filters. MSST, 2011

[9] M. Saxena, Y. Zhang, M. M. Swift, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau. Getting Real: Lessons in Transitioning Research
Simulations into Hardware Systems, FAST, 2013.

[10] The OpenSSD Project. http://www.openssd-project.org

Figure 3: EagleTree game window

1293

