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ABSTRACT
This demo presents theiRoadframework for evaluating predictive
queries on moving objects for road networks. The main promise
of the iRoadsystem is to support a variety of common predictive
queries includingpredictive pointquery, predictive rangequery,
predictiveKNN query, andpredictive aggregatequery. TheiRoad
framework is equipped with a novel data structure, namedreacha-
bility tree, employed to determine the reachable nodes for a mov-
ing object within a specified future timeT . In fact, thereachability
tree prunes the space around each object in order to significantly
reduce the computation time. So,iRoadis able to scale up to han-
dle real road networks with millions of nodes, and it can process
heavy workloads on large numbers of moving objects. During the
demo, audience will be able to interact withiRoadthrough a well
designed Graphical User Interface to issue different typesof predic-
tive queries on a real road network, to obtain the predictiveheatmap
of the area of interest, to follow the creation and the dynamic up-
date of the reachability tree around a specific moving object, and
finally to examine the system efficiency and scalability.

1. INTRODUCTION
The progression of GPS-enabled devices, e.g., in-car GPS, smart

phones inspires a wide range of location-aware services, e.g., find-
ing nearby facilities. An essential category of these services is
based on objects future locations under the name ofpredictivequeries
[2, 3, 4, 5]. Predictive queries are concerned with the whereabouts
of a set of moving objects in the near future. Primarily, numerous
applications can benefit by considering the manipulation ofpre-
dictive queries such as traffic management, aircraft management,
routing, ride sharing, and advertising.

In this demo, we present theiRoadframework to support predic-
tive query processing on moving objects for road networks. The
basic query we address here ispredictive pointquery, to find out
the objects predicted to show up around a certain node withina
given time units in the future. This fundamental query enables the
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prediction to be done on the lowest level, node, in the underly-
ing road network. Standing on this building block query,iRoad
also supports a wide variety of predictive queries within its frame-
work includingpredictive rangequery,predictiveKNNquery, and
predictive aggregatequery. By the deployment ofiRoadsystem,
location-based services offered by many real applicationscan be
improved, for example;

Traffic Management Systems.By employing iRoad framework,
traffic management systems can benefit from running a bunch
of predictive queries such aspredictive aggregatequery to
find an estimate for the number of cars expected to be inside a
certain region, e.g., down town, in the next time period, e.g.,
20 minutes, from now. So they can take actions to handle
possible congestion in advance. Users do not have to write
SQLcode to issue their queries, instead, through the usage of
the nice graphical user interface ofiRoad, users can simply
draw a rectangle on a map to highlight the area of interest
and enter a value for future prediction time period. Then the
system returns the number of objects expected to be in the
query rectangle within the specified time units. In addition,
iRoadoffers another smart tool named predictive heatmap.
Through one quick look at the predictive heatmap, user can
figure out which areas are expected to be over crowded.

Ride Sharing Systems.The main objective of ride sharing appli-
cations is to find the driver/rider closest to a rider/drivercur-
rent location. By embeddingiRoadframework, the ride shar-
ing services can be enhanced by issuingpredictive range
query to find out the drivers expected to be nearby a rider’s
location in the near future. This helps users to better plan
their trips and avoid wasting their times waiting for a driver
to showup around their locations specially in uncomfortable
conditions, e.g., bad weather, dangerous areas.

Location-based Advertising. By leveragingiRoadto runpredic-
tiveKNN query, a store in a sale season can send electronic
coupons to theK, e.g., seven, costumers that most likely
to show up around its location within the nextt time units,
e.g., next 30 minutes. This paradigm allows location-based
advertising to go beyond current closest customers to target
possible closest ones in the near future. Sending coupons and
promotions to those possible customers can encourage them
to stop by the store which in turns increase the effectiveness
of advertising for both business owner and consumer.

The main idea ofiRoadsystem is to employ a novel data struc-
ture, namedreachability tree, to hold the nodes reachable within a
certain time frameT from an object current location. We assume
that objects follow shortest paths during their travel fromsource
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to destinations [6, 7]. So, we organize the nodes insidereachabil-
ity treesaccording to the shortest path from the object start node
which is the root of the tree. The time frameT is a controllable
parameter used to determine the maximum prediction timeiRoad
can support. However, we use 30 minutes as a default value for
T , based on the finding that mean trip length for private cars is19
minutes, NHTS [7]. By employing the reachability trees,iRoad
is able to prune the space around each object which significantly
shrinks the number of nodes to be considered for predicting object
possible destinations. A probability value is assigned to each node
according to its position in the tree, such that closer nodeshave
higher probabilities. The probability of a nodeni being a destina-
tion to the objectO is equal to the probability of its parent nodenj

divided by the number of children ofnj , where the probability of
the object’s current node is one. According to the underlying ap-
plication requirements, the system can be adjusted to consider only
objects with probabilities above a certain thresholdP in the re-
ported answers. Based on this technique, handling large number of
objects can be done efficiently which guarantees the scalability of
the iRoad. To control the depth of the reachable trees,iRoadoffers
another tunable parameter,ǫ, to compromise between the storage
consumption and computation overhead. Whenǫ is set to its min-
imum value, zero, a new reachability tree has to be obtained each
time the object leaves its current node. This means, less storage
needed to hold the trees but more computation for trees construc-
tion and pruning. On the other side, whenǫ is set to its maximum
value,T , one tree only will be used during the object whole trip,
which means more storage to hold much bigger tree, but less com-
putation overhead.

2. SYSTEM OVERVIEW
In this section, we define the basic query we support, and its as-

sumptions and extensions, then we briefly describe theiRoaddata
structures and modules.
Query. Initially, we focus on addressing thepredictive pointquery
as our basic query on road networks. Thepredictive pointquery
can be formalized as: “Given (1) a set of moving objectsO, (2) a
road network graphG = (V, E, W), whereV is the set of nodes,E
is the set of edges, andW is the edges weights (i.e., travel times),
(3) a maximum prediction timeT , and (4) a predictive point query
Q(v, t), wherev ∈ V, andt is a time period such thatt ≤ T , we
aim to find the set of objectsR ∈ O expected to show up around
the nodev within the future timet. The returned result should
identify the objects along with their probabilities to showup at the
node of interest. For example, within the next 30 mins, object O1 is
expected to be at nodev3 with probability 0.8, so, the query result
will be R(Q(v3,30)) ={<O1,0.8>}.
Assumptions.We assume that moving objects follow shortest paths
in their routing trips. The intuitions behind this assumption is based
on the fact that most of the moving objects, e.g., drivers, travel
through shortest paths to the destinations [6, 7]. TheT value is
bounded by the finding that the average trip length for private cars
is approximately 19 minutes, national household travel survey [7].
Extensions. We consider thepredictive pointquery as a build-
ing block upon whichiRoadcan support other types of predictive
queries including: (i)Predictive rangequery, where a user defines
a query region that might contain more than one node and asks for
the list of objects expected to be inside the boundaries of that re-
gion within a specified future time, (ii)PredictiveKNN query to
find out theK objects expected with the highest probability to be
around the node of interest within a certain time period, and(iii)
Predictive aggregatequery to return the number of predicted ob-
jects to be inside a given region in the next time period.

Figure 1: iRoad System Architecture

Data Structures. In iRoad, there are three basic data structures to
maintain: (1)Road Network Graphcontains a set of nodesV and
edgesE, the edges weights in terms of travel times. For each node
v in the road network, we store thepredicted answersto carry a
list of objects predicted to show up around the nodev with their
probabilities in the future timet, determined in the query, e.g., 20-
minute. (2)Reachability Tree, the core data structure insideiRoad.
For each nodev in the underlying road network graphG, we build
a reachability tree withv as a root, to hold all nodes reachable
to v within a prespecified time frameT . Detailed discussion in
Section 3. (3)Trip History, for each moving object, we maintain a
buffer to hold the recent history of an object during its present trip.
System Architecture.Figure 1 gives the architecture of theiRoad
framework, which consists of two main modules, namely, themove-
ment handlermodule and thequery processormodule. A brief il-
lustration will be provided in Section 4 and 5 respectively.

3. REACHABILITY TREES
Our proposed systemiRoad intelligently employs a novel data

structure namedreachability treeto prune the road network around
each moving object. Yet, only nodes reachable to an object start
location within a specified time limitT are obtained and organized
in a tree structure rooted by the object start node. The tree organi-
zation is based on the shortest path from the root node to the rest of
nodes in thereachability tree, meaning that, traversing a tree from
the root node to a leaf node gives the shortest path from the root to
this leaf.

By pruning the space around each moving object, we signifi-
cantly reduce the computation overhead required to computeand
update the predicted objects along with their probabilities at each
node in the underlying road network. The usage ofreachability
tree facilitates the computation of the probability that the object
will be at each reachable node within a certain time units. Simply,
the probability of an objectOi to be at a certain nodev aftert time
units is equal to one divided by the number of nodes in the sub-tree
underneath the object current nodeu. Surely, the employment of
reachability treesinside theiRoadframework improves the query
processing efficiency and guarantees the system scalability. The
reason for that is because the possible destinations of the prediction
become limited. Thus, we only need to consider a limited number
of nodes for predication computation, instead of millions of nodes
in a real road network. Therefore,iRoadcan efficiently scale up to
support large number of objects over real sized road networks.

The main idea to construct areachability treeis to use a best-first
expansion algorithm, similar to incremental network expansion al-
gorithm INE [8], to visit the nodes and edges on the road network
that are reachable through shortest path traversing. During the con-
struction, we consider two parameters, the prediction timeT which
determines the maximum prediction timeiRoadcan support, and
the time bufferǫ which takes values from zero toT to decide the
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Figure 2: iRoad GUI for Predictive Range Query

depth of thereachability tree. The basicreachability treeis able
to hold nodes reachable to an object in a limited time boundary,
if the object travels over that time boundary, we need to obtain a
new reachability tree. We can load a new reachability tree ifis
precomputed and saved on disk in advance or instantly compute it
during the run time. In all cases, it is time consuming to obtain
a new reachability tree with each single movement of an object.
On the other side, we can obtain one huge reachability tree that al-
lows the handling of the whole object trip without the need toload
other trees. As a side consequence, the system will overwhelm the
available storage. In between the two extremes, we provide acon-
trollable parameterǫ to allow the system to decide a buffer time for
each reachability tree as a tradeoff between the query processing
cost and the storage overhead. Whenǫ is equal to zero, this means
consuming less storage but with more computation overhead,while
the vise versa will occur withǫ equal toT .

4. MOVEMENT HANDLER
This module is triggered when there is an object starting a new

trip, a new movement for existing object, or an object ends its cur-
rent trip. The idea of themovement handlermodule is to limit the
updates caused by an object movement by limiting the space around
each object. This is done by setting the maximum prediction time
we can support to a specific time limitT , e.g., 30 minutes, in the fu-
ture. This space framing significantly reduces the cost consumed to
update all nodes in the underlying road network graph by limiting
update to those nodes inside the in-handreachability tree. Initially,
when an object starts a new trip, themovement handlerconstructs
a reachability treeto hold the object limited space. Then, the list
of predicted answersassociated with each node in this tree is up-
dated by inserting a new record carrying object identifier and object
probability. Once, the object leaves its current node to a new one,
we cascade deleting the object record from thepredicted answers
in all nodes no longer on the shortest paths from the object new
node. At this moment, the sub-tree under the object new node is
expected to be much smaller, yet, the probability to visit any of the
nodes in this sub-tree increases. Therefore, we traverse the sub-tree
rooted by the object new node to reflect the new probability onthe
predicted answers.

It is worthy to mention here thatiRoadoffers another adjustable
probability thresholdP . By tuningP , themovement handlermod-
ule can be controlled to consider only the movement that causes the
probability to be above a certain valueP , otherwise, it is ignored.
For example, when an objectO1 starts its trip, it is expected to have
many reachable nodes, e.g., 200 nodes, from the start location. The
probability ofO1 to be at each of these nodes will be very small,
e.g., 0.05, and not significant in some applications, e.g., traffic man-

Figure 3: iRoad GUI for Predictive HeatMap

agement. So, the system can be controlled to ignore updatingthe
predicted results with this probability until it becomes larger than a
specifiedP value, e.g., 0.10, which intuitively saves proportion of
the computation overhead.

5. QUERY PROCESSOR
The main idea of processing predictive queries iniRoad is to

have the predicted objects at each node precomputed in advance
by themovement handlermodule, so for coming queries, thequery
processormodule fetches those results, adapts them according to
the type of received query and returns the answer in a very fast
response time.

To evaluate apredictive pointquery, thequery processormod-
ule initially finds the node of interest for which the query isasking
about its predictable objects. Then, it retrieves the precomputed
predicted answersaved with this node. For apredictive range
query, where the user asks for the prediction inside a regionthat
might contain many nodes rather than single node, thequery pro-
cessorcombines the answers at those nodes of interest into a sin-
gle basket by taking the union of thepredicted answerlists associ-
ated with them. This will get ride of redundant objects. To unify
the probabilities for object that appears in the result of more than
one node of interest, we use the maximum probability among its
occurrences. Finally, according the query type, (predictive range,
KNN , aggregate), we adjust the in hand results. For example if the
combined predicted results is{<O1,0.75>,<O2,0.25>,<O3,0.35>,
<O4,0.65>}, the final answer for predictive aggregate query will
indicate that two objects are expected to show up at the nodesof
interest, while for predictiveKNN query withK = 3, the answer
will contain the three objects with highest probabilities,{O1, O4,
O3}, and for predictive range query, the four objects will be listed
in the returned final query result.

6. DEMO SCENARIOS
This section presents the demo scenarios of theiRoadframework

to illustrate its main functionalities through nicely designed set of
graphical user interfaces. During this demo, we will be wearing
two hats, the first is the users’ one to describe how they can issue
predictive queries and the formats of the results they receive, while
the second is the system one to give an insight on its internaloper-
ations and depict the hidden processing required to answer users’
queries. The demo is based on a large set of synthetic data of mov-
ing objects generated using the Brinkhoff’s generator [1] on a real
road network map extracted from the shape files of different coun-
ties in USA. TheiRoadserver is written in Java while the interfaces
are web-enabled implemented using a combination of java scripts,
HTML, and CSS. Four different scenarios will be provided during
the demonstration venue, described as follows.
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Figure 4: Reachability Tree Dynamics in iRoad Framework

6.1 Scenario 1: Issuing Predictive Queries
Initially, the audience can interact with theiRoadsystem by issu-

ing different types of predictive queries including predictive point,
range,KNN, and aggregate queries. Figure 2 gives a screen shot
for a predictive range query where a user specifies a rectangular
region that contains a number nodes on the map of San Francisco
USA, and 15 minutes as the prediction time frame. Then the sys-
tem responds by the list of objects predicted to show up inside the
boundaries of the query region within the 15 minutes. The returned
answer has three columns, objectId as identifier, latitude and longi-
tude of the current location of the predicted objects, and the proba-
bility of how likely this object will be there within the determined
time period. The resulted objects are plotted as car icons onthe
map. For predictiveKNN query, the user can select a value forK

to list only theK objects with the highest probability to appear in
the query region.

6.2 Scenario 2: Predictive HeatMap
Figure 3 provides a screen shot for predictive heatmap whichcan

be seen as a set of predictive point queries that cover every single
node in a wide area of the map. Using the predictive heat map, au-
dience can monitor the predicted objects in the area of interest and
watch the updates on the predicted result using a nice color scheme.
Heat map colors the zone around each node in the underlying map
according to the number of predicted objects to be within it.In
this example, red color refers to areas more likely to be crowded
than the blued areas. The audience will be able to deal with the
predictive heat map interactively by changing the query area, the
prediction time, color schemas, and the opacity.

6.3 Scenario 3: Tree Dynamics
In this scenario we provide an eye on theiRoadinternal gears in

general, with more focus on the reachability tree in specific, as it is
the core data structure. The map on the right hand side in Figure 4
illustrates the nodes reachable within 10 minutes, thick blued lines,
from an object current location, water icon on the map, assuming
the object follows the shortest path in its movements. The panel on
the left hand side of Figure 4 provides the equivalent reachability
tree where the root is the object present node. The audience will be
able to notice the dynamic changes happen to the reachability tree
as a reflection for the object movements. These dynamics include

shrinking the in-hand tree when the object moves further to adiffer-
ent node, uploading new reachability tree when the trip goesover
the preset maximum prediction timeT , or pruning the yet loaded
tree by cutting out some branches based on the recent trip history.
The audience also can control the system behavior by changing the
ǫ value to decide the depth of reachability trees.

6.4 Scenario 4: Stress Test
This scenario is a stress test for theiRoad framework. Its ob-

jective is to give a glance on the system efficiency and scalability
by running the system on heavy workloads. This is done by exe-
cuting batches of queries, rather than a single query, and byusing
large road networks that contain millions of nodes, insteadof small
county or city, and large numbers of moving objects preparedusing
the Brinkhoff generator. The audience will be able to examine the
size of the used data sets and choose between different workloads
of road networks, queries, and moving objects. Then they canset
the system parameters such as maximum prediction timeT , the
reachability tree bufferǫ, and the probability thresholdP . In addi-
tion, audience will be able to assess the overall system performance
through inspection of the generated charts and graphs that show the
CPU and memory costs for executing each workload.
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