
GroupFinder:
A New Approach to Top-K Point-of-Interest Group Retrieval

Kenneth S. Bøgh
Department of Computer

Science
Aarhus University

u071354@cs.au.dk

Anders Skovsgaard
Department of Computer

Science
Aarhus University

anderssk@cs.au.dk

Christian S. Jensen
Department of Computer

Science
Aarhus University

csj@cs.au.dk

ABSTRACT
The notion of point-of-interest (PoI) has existed since paper road
maps began to include markings of useful places such as gas sta-
tions, hotels, and tourist attractions. With the introduction of geo-
positioned mobile devices such as smartphones and mapping ser-
vices such as Google Maps, the retrieval of PoIs relevant to a user’s
intent has became a problem of automated spatio-textual informa-
tion retrieval. Over the last several years, substantial research has
gone into the invention of functionality and efficient implementa-
tions for retrieving nearby PoIs. However, with a couple of excep-
tions existing proposals retrieve results at single-PoI granularity.
We assume that a mobile device user issues queries consisting of
keywords and an automatically supplied geo-position, and we tar-
get the common case where the user wishes to find nearby groups of
PoIs that are relevant to the keywords. Such groups are relevant to
users who wish to conveniently explore several options before mak-
ing a decision such as to purchase a specific product. Specifically,
we demonstrate a practical proposal for finding top-k PoI groups
in response to a query. We show how problem parameter settings
can be mapped to options that are meaningful to users. Further,
although this kind of functionality is prone to combinatorial explo-
sion, we will demonstrate that the functionality can be supported
efficiently in practical settings.

1. INTRODUCTION
Many online services exist that support the retrieval of points-

of-interest (POIs), including international services such as Google
Maps [3] and country-specific services such as the Danish Krak [4].
In addition, vehicle navigation services offer category-based PoI
search functionality bases on the user’s current location. Services
such as these retrieve nearest-neighbor PoIs relative to the user’s
location. Further, they do this at single-PoI granularity, meaning
that they consider each PoI in isolation and return results consist-
ing of k single PoIs, each of which is a result object. In many use
cases, this functionality is what users expect. For example, this can
occur when a driver is looking for the most convenient gas station
in order to re-fuel the vehicle. In contrast, we support the common
browsing behavior use case, where users prefer to explore several

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

options prior to making a decision. Such behavior can occur when
a tourist is looking for a place to get dinner. In this case, the user
may wish to look at the menu options and prices at several restau-
rants prior to making a dining decision, and seating availability may
cause the user to consider additional options. Here, the standard k
nearest neighbor functionality falls short: While the nearest neigh-
bor is close to the user’s location, it may be relatively far from
the next nearest neighbor, which may again be relatively far from
the third nearest neighbor. In the above browsing behavior case,
the user is better served by a group of relevant PoIs that are both
near the user’s location and near each other. We support the re-
trieval of k such groups. To improve the utility of single-object
granularity results, previous research has tried to incorporate scor-
ing functions to take the quality of each PoI into account [6], thus
returning the best PoIs in terms of both distance and quality. While
this does hold the potential for retrieving better results, they still
have single-object granularity. For example, a nearby, high-quality
restaurant may be too expensive, and the next nearest neighbor may
still be relative far away. One study considers two instance of a
collective query that treat a set of PoIs as a single object [1, 2].
Both return only a single set (i.e., k = 1), and both apply Boolean
matching to the keyword part of the queries and apply only ranking
to the spatial parts of the queries. These queries support the dif-
ferent kind of use case where the PoIs in a result set complement
each other and where a user wishes to visit every single PoI in the
result set. In our use case, the PoIs in a result compete against
each other, and the user intuitively wishes to find the best one. We
demonstrate GroupFinder, a web-based service that returns top-k
groups of PoIs according to a scoring function. In addition to tak-
ing into account the user’s current location and user-supplied query
keywords, the function takes into account transportation-mode in-
formation that captures how the user intends to travel to a group
of PoIs and how the user intends to travel between the PoIs in a
group. Groups are retrieved by means of a new type of index called
a Group-Extended R-tree (GER-tree). Query results are displayed
using the Google Maps infrastructure, and the responsive web de-
sign front end Twitter Bootstrap is leveraged in order to make the
service equally useful on traditional desktops and new devices such
as tablets and smartphones. The remainder of the paper is orga-
nized as follows. Section 2 introduces the indexing technique that
is the basis for GroupFinder. Section 3 presents an overview of the
communication and architecture of GroupFinder. Then Section 4
presents the user interface and describes how results are displayed.
Finally, Section 5 details the demonstration setup.

2. PRELIMINARIES
GroupFinder exploits a new indexing technique, the GER-tree,

that indexes PoIs with a geo-location and a text description. First,

1226



a vocabulary of searchable keywords is built based on the text de-
scriptions of the PoIs. For each such word, an R-tree is built on
the location of each PoI that contains the word in its text descrip-
tion. This yields a forest of R-trees that each enable spatial queries
against the PoIs with descriptions that contain a particular word [5].
Next, to support the retrieval of groups rather than single objects,
each R-tree is extended with purposefully designed, compressed
histograms in all non-leaf nodes. The histogram in a node con-
tains information on how densely grouped the subtrees of the node
are, how many objects the groups contain, and give the minimum
bounding rectangles of the subtrees. Further, a score is calculated
for each PoI in a tree, to indicate its relevance to the tree’s keyword.
These scores are averaged for groups and added to the compressed
histograms. The resulting index enables efficient retrieval of groups
in the vicinity of a location.

3. SYSTEM ARCHITECTURE
GroupFinder is completely web based and is thus accessible from

any web browser. To provide the best user experience, we em-
ploy a client-based approach to retrieve the current location of the
user, while we use the conventional client/server approach to pro-
cess queries.

3.1 Geo-Locating a User
We apply several techniques to accurately and non-invasively

geo-locate users in a generic, platform-independent manner.
We first use the ClientLocation tool of the Google Maps infras-

tructure to geo-locate a user based on the user’s IP. This approach
allows us to identify the current city of the user in many cases, thus
providing a rough estimate of the user’s geo-location. When the
user’s approximate location is found using this approach, we use
the location to position the map at the user’s location at an overview
zoom level.
Next, we ask the user for permission to use the HTML5 geo-

location API. Having obtained this permission, we apply a finer
zoom level to the map to better display the user’s more accurate lo-
cation. It is also possible for the user to indicate a preferred position
by simply clicking on the map. This functionality adds flexibility
and can be used to correct positioning errors.
Since modern browsers, including those of tablets and smart-

phones, support the geolocation API, we can always locate the user
if given permission. We do not need to use any native apps that may
be available on different mobile platforms. The resulting device in-
dependence is very attractive. The approach taken also allows us
to provide users with a good experience while affording the users
control of whether or not to reveal their actual location.

3.2 Client-Side Querying
To explain the process of retrieving the k most relevant groups,

we consider the case where a user is standing at the central railway
station in the city of Aarhus, Denmark. This location is shown in
Figure 1.

3.2.1 Keyword Handling
To query for groups of PoIs, the user types a query keyword. In

particular, when the web service is loaded, the available keywords
are generated server side and sent to the client so that the client
has an up-to-date set of keywords. When the user starts to type,
Google-style suggestions are presented to make it as easy as possi-
ble for the user to formulate a query.
In the demonstration, we use a dataset derived fromGoogle Places,

since this is one of the best sources of PoIs. In Figure 2, the user
searches for restaurants.

Figure 1: Before Querying

Figure 2: A Query In Progress

3.2.2 Distances To and Within Groups
A user may prefer different transportation modes when traveling

from the current location to a group. Likewise, a user may prefer
different transportation modes when traveling between the PoIs in
a group. For both types of travel, GroupFinder allows a choice
among three transportation modes: by car, by bicycle, by foot.
These settings are used to set problem parameters in the ranking
function that control which groups are returned to the user. Specifi-
cally, when scoring a group, the ranking function takes into account
the distance to the group and the group’s density, and both aspects
have a weighting parameter that takes a value in the range [0, 1].
Each transportation mode is then mapped to a value for the two pa-
rameters. The result is that nearby or dense groups are preferred
when the turtle icon (by foot) is selected for the distance to groups
and the intra-group distance. If the car icon is selected, spatial
proximity and density are less important, and preference is instead
given to groups with high average text relevance to the query and
with many PoIs. In the query covered in Figure 3, the car icon has
been chosen for both distances. Consequently, the result contains
relatively large groups with textually very relevant objects, at the
expense that one group being relatively far from the query location.

3.2.3 The Number of Groups
While the underlying techniques allow the retrieval of any num-

ber k of groups, GroupFinder allows the user to retrieve from 1 to
5 groups. We expect that if a user is facing a light-weight deci-
sion (e.g., buy milk), one nearest group is enough (e.g., to find a
store that is open and has milk), while the user may want to see
several groups if facing a more “complex” decision (e.g., finding a
restaurant to have dinner at). As the underlying techniques return
groups progressively, the service displays groups as soon as they
are available. Figure 2 shows a query in progress: two groups have
been found, and a blue progress bar above the map indicates the
percentage of the query that has been completed.

1227



Figure 3: Query Result

3.3 Query Processing
Query processing as seen from the client is outlined in Algo-

rithm 1. Tomaximize the amount of concurrent users, all communi-
cation is asynchronous. The first request in Line 3 simply sends the
collected information to the server that responds with a searchid .
The client then repeatedly requests additional groups with a small
delay between requests until it has the desired number of groups.
While several factors have an influence on the query time, a query
typically runs at 300-1500 milliseconds on an Intel(R) Core(TM)
i5-2520M CPU at 2.50Ghz. To offload the server, a group only
contains a set of coordinate pairs, while the bounding region and
the pan and zoom instructions are calculated on the client using
JavaScript. Information about the individual PoIs in a group is ob-
tained by a separate call when the user clicks on the group. On

Algorithm 1: Search from client
begin1

amountRecieved ← 0;2
searchID ← HTTP GET:3
[lat , lng , term, amount , distIGR, distTGR];
while amountRecieved < amount do4

group ← HTTP GET: [searchID ];5
if group! = NULL then6

amountRecieved ++;7
PanAndZoom(group);8
Hull ← ConvexHull(group);9
DisplayGroup(Hull , group);10

end11

the server side, the web service is implemented using a Tomcat
server and Java. The indexing and query processing are also im-
plemented in Java, and they are deployed directly in the server to
minimize response times. When a query is initiated, a new thread
is started to query the index, and a mapping between the thread and
searchId is created. The query thread finds the tree to query and
initiates a search in the tree. The threads that query the same tree
share the same buffer. Thus, different threads that access the same
nodes benefit from the shared buffer and save disk reads, which im-
proves performance. When the client requests the next group, the
server simply looks up the thread handling the query in the map and
checks if new groups are available. If so, the top group is returned
to the client.

4. THE GROUPFINDER WEB SERVICE
We proceed to cover the web service prototype and its platform

independence.

4.1 User Interface
The user interface consists of two parts—see Figure 4. On the

Figure 4: GroupFinder Interface, Desktop Version

left side, the user can provide the query parameters, as described in
Section 3.2. We have chosen to use discrete options for the travel
preferences. These options map well to different transportation
modes, and this approach makes it easy to obtain query results.

Figure 5: GroupFinder Interface, Tablet Version

The fields for keywords and the number of groups are self explana-
tory. It should be mentioned that the quality of the groups found
is independent of the number of groups to be retrieved. The best
group is found solely based on the keyword and distance parame-
ters. On the right side, we use Google Maps to let the user choose
their location if the user wants to use a location different from the
one found automatically.

4.2 Querying
Once a query has been issued, the client side scripts start to re-

quest results from the server. When the first group is received, it is
displayed on the map by zooming and panning so that the user’s lo-
cation and the group fit on the map. The pan and zoom adjustment
of the map is done in a smooth animation, so that the user does
not loose track of their location. When the next group is received,
we again zoom and pan to display the user’s location and the two
groups on the map. This process terminates when all groups have
been presented. A progress bar indicates the degree of completion
and disappears when the search is complete. Figures 1–3 depict the
process of searching for three groups of restaurants near the central
train station in the city of Aarhus, Denmark.

4.3 Result Presentation
The results are returned and displayed as groups. To clearly out-

line a group, we calculate the convex hull of the group on the client

1228



Figure 6: GroupFinder Interface, Smartphone Version

and then color the polygon that represents the convex hull. This is
seen in Figures 2 and 3. Each vertex of the convex hull is marked
by a circle to ensure that the group is always visible, even when
the objects in the group lie on a line. We overlay a text that de-
scribes each of the groups to help the user decide which group is
most desirable. The text includes the rank of the group in the list of
all results along with the number of objects in the group. Since a
group can contain many objects, it can be difficult to see how many
objects a group actually contains when using normal maps markers.
To provide at better overview, we have replaced the normal mark-
ers with rings. This ensures that objects close to each other can be
told apart. If a user clicks on a group, the map automatically pans
and zooms onto that group while keeping the user’s location on the
map. That way, the user can get a better look at a specific group
without losing track of where they are in relation to the group. An-
other click on the group makes the map zoom back out to again
show all result groups.

4.4 Effect of Distance Settings
To show the impact of the distance settings, Figure 7 shows the

result of the query considered so far (shown in Figure 3), but with
the distance indicators set at the other end of the scale. The groups

Figure 7: Effect of Distance Settings

found now are more dense, contain fewer PoIs, and are closer to
the query location. The result matches the intuitive semantics well,
since a person on foot is unlikely to want to walk far to visit a group
where the objects are also not in close proximity of each other.
This result is “opposite” to the result in Figure 3, where the groups
contain more objects, are further away from the query location, and

contain objects that are further apart from each other. Although
we are aiming to support browsing behaviour, by providing groups
of PoIs we do not ignore single PoIs. As such, if there is a very
relevant PoI close to the user, but not close to other PoIs it may be
returned as a group containing a single object.

4.5 Cross Platform Support
As mentioned, we use the Twitter Bootstrap front end framework

to display our data. This allows for the same interface to be used
across different client platforms without the need for any native
apps on special devices such as tablets or smartphones.
Thus, a user is always presented with the same, familiar inter-

face when using GroupFinder from different platforms. Figure 4
shows the desktop interface, while Figure 5 shows the interface on
a tablet, and Figure 6 displays a possible smartphone look at the
interface, although orientation and device resolution can affect the
experience.
The responsive design of Twitter Bootstrap moves the individual

parts of the interface around, but it is still easy to find the buttons
needed, thus making the web service useful across platforms.

5. DEMONSTRATION
GroupFinder offers new functionality for PoI querying. This

functionality targets use cases characterized by browsing behavior
where users wish to explore several competing PoIs prior to mak-
ing a decision such as choosing a restaurant for dinner or choosing
which shoes to buy. We are not aware of any other services that
target this behavior.
The demonstration is done in two parts. First, we introduce the

underlying indexing and query processing techniques in more de-
tail, showcasing how we rank groups of PoIs and how the query
parameters affect the query processing.
Second, we give the participants the chance to experience the

system themselves in a live demonstration with a publicly available
web service. We provide data for Aarhus and other cities to make
the demonstration as relevant as possible. The attendees are able to
chose from a huge set of keywords and will be able to quickly get
an overview of where in their vicinity to go for food, entertainment,
or a drink.
The web based interface allows users to use the web service re-

gardless of operating system, device hardware, or browser prefer-
ence. This demonstration therefore allows the attendees to not only
experience GroupFinder during the demonstration sessions. They
can also use GroupFinder on their own at any time to explore the
surroundings of the conference location.

6. REFERENCES
[1] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective
Spatial Keyword Querying. In Proc. SIGMOD, pp. 373–384,
2011.

[2] X. Cao, G. Cong, C. S. Jensen, J. J. Ng, B. C. Ooi, N.-T. Phan,
and D. Wu. SWORS: A System for the Efficient Retrieval of
Relevant Spatial Web Objects. PVLDB, 5(12):1914–1917,
August 2012.

[3] Google. Google Maps. https://maps.google.com/.
[4] Krak. Krak. http://www.krak.dk/.
[5] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørvåg.
Efficient Processing of Top-k Spatial Keyword Queries. In
Proc. SSTD, pp. 205–222, 2011.

[6] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and
K. Nørvåg. Efficient Processing of Top-k Spatial Preference
Queries. PVLDB, 4(2):93–104, November 2010.

1229


