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ABSTRACT
We showcase QUEST (QUEry generator for STructured sources),
a search engine for relational databases that combines semantic
and machine learning techniques for transforming keyword queries
into meaningful SQL queries. The search engine relies on two
approaches: the forward, providing mappings of keywords into
database terms (names of tables and attributes, and domains of at-
tributes), and the backward, computing the paths joining the data
structures identified in the forward step. The results provided by
the two approaches are combined within a probabilistic framework
based on the Dempster-Shafer Theory. We demonstrate QUEST
capabilities, and we show how, thanks to the flexibility obtained
by the probabilistic combination of different techniques, QUEST
is able to compute high quality results even with few training data
and/or with hidden data sources such as those found in the Deep
Web.

1. INTRODUCTION
Languages for querying structured databases, e.g., SQL and

SPARQL for relational and RDF sources, are typically oriented to-
wards expert users who have to formulate queries specifying the
data of interest, and also from where the data have to be retrieved,
i.e., tables and/or attributes. This means that, in order to produce
meaningful queries, users are required to have good knowledge of
both the query language, and the data source structure and its con-
tents. On the other hand, keyword queries are user-friendlier since
they require neither knowledge of the query language nor of the
way information has been modeled in the data repository.

The Information Retrieval community has already developed ad-
vanced techniques for keyword search over documents, but direct
application of these solutions to relational data sources, where in-
formation is typically fragmented in multiple tables, is neither ef-
ficient nor effective. Full-text inverted indexes, typically used in
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IR approaches, can be useful to associate keywords with tuples in
tables, but cannot say anything about how tables have to be joined
to form a meaningful answer to the keyword query as a whole. As
a matter of fact, it could happen that no meaningful join-path ex-
ists among the tuples containing the keywords in the query. Even if
this issue can be partially addressed by applying IR techniques to
the “universal relation”, building and keeping up-to-date such a re-
lation is not feasible in practice. Furthermore, IR techniques do not
take into account the structural semantics conveyed by the source
schemas, which could largely improve the quality of the results.

Existing approaches that support keyword search over relational
databases can be classified as schema-based and graph-based [8].
Schema-based techniques exploit the schema information to is-
sue SQL queries with the same meaning as the original keyword
queries. These approaches aim to optimize some metrics coding
the relevance of tuples and joining paths among them with respect
to the input keyword query. On the other hand, graph-based tech-
niques treat relational databases as graphs, where nodes are tuples
and edges relationships between those tuples. Algorithms for solv-
ing keyword queries in this context are based on the computation of
specific structures over the graphs (e.g., Steiner trees, rooted trees,
radius Steiner graphs, etc.). In this setting, the main issues are re-
lated to the large size of the graphs induced by the database instance
that makes the problem hardly tractable.

Most of the existing approaches rely on indexes and functions
over the data values for selecting the most prominent tuples as re-
sults of queries. Only recently metadata-based approaches have
been developed [1, 2]. By not relying on data analysis, these ap-
proaches are useful when there is not direct access to the database
instance (as happens for sources that are behind data-intensive web
applications as in the Deep Web) or when frequent updates make
the process of building and updating indexes too expensive. These
approaches exploit semantic techniques to guess the database por-
tions relevant to the queries and the way the structures in these
portions may be joined to form a meaningful answer.

In this demo, we showcase QUEST (QUEry generator for STruc-
tured sources) a novel keyword search system over relational
databases implementing a three-step schema-based approach, as
shown in the following in Figure 1.

The first step is to determine how the keywords in the query can
correspond to the structural elements of the database. This type of
correspondences are referred to as configurations [1]. Of course,
each correspondence comes with some degree of uncertainty that
is typically expressed with a weight. We refer to this task as the
forward task, since its starting point is constituted by the keywords
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in the query as they were provided by the user. The forward step
provides a user perspective since it requires an analysis that tries to
unlock the intentions that the user had in mind when formulating
the query. We implement this step by means of a Hidden Markov
Model (HMM), which has the advantage of providing a solid and
effective probabilistic framework. We use the term a-priori mode
to refer to the modality of computation of the configurations which
exploits a set of heuristic rules in order to choose the relevant el-
ements without any involvement of the user. However, one can
instead exploit machine learning techniques to properly train the
HMM. We refer to this mode as the feedback-based mode.

The second step of the process is to identify the structure of the
queries that can be generated from a given configuration. In partic-
ular, this step requires all the database elements discovered during
the first task to be combined together to form a join-path. Each
join-path is a materialization of certain semantics that likely rep-
resents the semantics that the user had in mind when formulating
the keyword query, but not explicitly stated in the keywords due
to its vague nature. We refer to these join-paths as interpretations.
Hence, while the forward approach can be seen as a translation of a
user-provided query into a set of elements described in terms of the
database vocabulary, the second step can be depicted as a backward
translation from the database vocabulary to a “structured” version
of the initial query. For the above reason, we refer to the latter as
the backward task. Steiner Tree discovery is a typical technique
for implementing the task of finding a path joining a predefined set
of elements. In contrast to other works, we use an extension of
a previous algorithm [3] that works at the schema level instead of
the instance level, and that has in place a mechanism for efficiently
discarding Steiner Trees that are sub-trees of others that have been
previously computed. Note that the starting point of the backward
task is the database structure, since it specifies which path is or is
not possible among the database elements identified by the config-
urations. Intuitively, in such a way the backward step is incorporat-
ing in the process the perspective of the database designer. How-
ever, this is not enough since we want to consider only join-paths
actually existing in the database instance. QUEST implements a
mutual information-based metrics to select the most informative
join-paths, i.e., the ones which are likely to contain tuples in the
database. As a consequence, the backward step introduces in the
process a database instance perspective, mirror of the actual tuples
stored in the database.

The third step is to decide which combination of keyword map-
pings into data structures and which paths connecting these data
structures are the most likely to lead to structured queries repre-
senting the semantics that the user had in mind when formulating
the keyword query. We refer to these combinations as explanations,
since they provide the results of a keyword query in terms of data
and its semantic interpretations. For the combination, we adopt
a probabilistic framework based on the Dempster Shafer Theory
(DST), for merging the scores associated with the configurations
generated from the first step and the interpretations generated by
the second. The DST combiner allows users to specify a confi-
dence parameter denoting the importance they pay to the forward
or backward approach. The same probabilistic framework, in addi-
tion, is employed in the forward approach for combining the con-
figurations discovered by the a-priori and feedback-based operating
modes.

Finally, every technique implemented in QUEST relies on a
function that, given a keyword and the database attributes, ranks
the attribute values on the basis of their importance. QUEST is
conceived as a tool working on top of a traditional DBMS, how-
ever, it does not rely on a specific implementation of that function:

a wrapper has been implemented for cases where this function is
not available (because the DBMS does not support it or there is
not a full access to the extension of the source). The wrapper ex-
ploits regular expressions, schema annotations, database metadata
and external ontologies to guess the attributes that can be associ-
ated with each keyword. This makes QUEST able to query owned
databases or hidden data sources such as the Deep Web, a feature
which is not provided by any other existing approach.

Summarizing, the main contributions we showcase in this
demonstration are: (i) the combination of two approaches, one
taking into account the “user” perspective, and other considering
the “database” perspective; (ii) the combination of two operat-
ing modes for the forward approach, one exploiting semantics and
heuristic rules and the other based on machine learning techniques;
(iii) the flexibility of the system to adapt to the different working
conditions; and (iv) the ability to query full accessible databases
and databases which provide a reduced access (via endpoints, web-
services or forms).

2. BACKGROUND
QUEST is theoretically founded on two basic frameworks, the

Hidden Markov Model and the Weighted Steiner Tree discovery,
which are combined according to the Dempster-Shafer theory.

Hidden Markov Model (HMM): A HMM models a stochas-
tic process that is not directly observable, but, however, can be
indirectly observed through the observable symbols produced by
another stochastic process. Assuming a time-discrete model, the
process starts from an initial state based on an initial state proba-
bility distribution. Then, at each time step, a new state is entered
based on a transition probability distribution, and an observation is
produced according to a state-depended emission probability distri-
bution. The list Viterbi Algorithm [5] applied to a HMM computes
a list of top-k state sequences that have the highest probability of
generating a particular sequence of observations given an input.

Weighted Steiner Tree (ST): Given a graph with weighted
edges, a Steiner Tree is the minimum-weight tree connecting a des-
ignated set of vertices, called terminals. The tree may include non-
terminals, called Steiner points. Even if finding the optimal Steiner
tree is NP-complete in general, several approaches build weighted
graphs from database instances and adopt Steiner trees as a tech-
nique for finding the tuples answering a given keyword query [8].

The Dempster-Shafer theory (DS) [6]: This probabilistic
model allows to combine evidences coming from different sources
under uncertainty conditions. The foundation of the theory is a
probability mass function m(X) that represents the belief commit-
ted to an evidence X . Given a set of base elements of interest Θ,
called the frame of discernment, the elements of the power set of Θ
with positive mass function values constitute the body of evidence.
In addition, for each source, we associate a further mass to the uni-
verse denoting the degree of uncertainty specified for that particular
source. The Dempster’s rule of combination allows the aggregation
of two independent bodies of evidence with the respective degree
of uncertainty into one body of evidence.

3. THE FRAMEWORK
From an architectural point of view, QUEST has been designed

as an add-on to existing databases, allowing users to express
keyword query not only on owned databases, but also on virtually
integrated data sources and on-line databases available on the
Deep Web. The functional architecture of the system is depicted in
Figure 1, where we show how the three steps in which we divide
the process for solving a keyword query are implemented by
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Algorithm 1 QUEST Search Process

Input: a keyword query q;
maximum number of results k
a set of uncertainty degree OCap , OCf , OC , OI

Output: the top-k explanations E

Cap ← ∅, Cf ← ∅, C ← ∅,
I ← ∅, E ← ∅, E ← ∅;

Cap ← HMM a priori(q, k) |
Cf ← HMM feedback(q, k);
C ← CombinerDST (Cap, Cf , OCap , OCf );
I ← ST (q, C, k);
E ← CombinerDST (C, I, OC , OI);
E ← QueryBuilder(E);

Function: CombinerDST()
Input: a set of evidences X1, X2

a set of uncertainty degree O1, O2

Output: the combined evidences E
W1 ← ∅, W2 ← ∅;
for i := 1 to 2 do

for j := 1 to Xi.size() do
Wi ← addEvidence(Xi,j)

end for
setUncertainty(Wi, Oi);
normalize(Wi);

end for
E ← apply DS rule of combination(W1, W2);

Algorithm 2 Combine Results

Input: a set of partial queries H1, H2, S1, S2

a set of ignorance values OH, OS , OE1, OE2

Output: the top-k SQL queries T
E1 ← ∅, E2 ← ∅

E1 ← CombinerDS(H1, S1, OH, OS)
E2 ← CombinerDS(H2, S2, OH, OS)
T ← CombinerDS(E1, E2, OE1, OE2)

Function: CombinerDS()
Input: a set of partial queries Q1, Q2

a set of ignorance values O1, O2

W1 ← ∅, W2 ← ∅
for i := 1 to 2 do

for j := 1 to Qi.size() do
Wi ← addEvidence(Qi,j)

end for
setIgnorance(Wi, Oi)
normalize(Wi)

end for
E ← combineEvidenceWithDS(W1, W2)

1

Figure 1: The keyword search process in QUEST.

means of three main software modules: the forward, the backward
and the combiner. On top of this, a wrapper module manages the
interactions with the data source.

Interacting with databases: the wrapper. In the setup phase,
QUEST requires to know the database schema, which can be
extracted from the metadata stored in the source catalogues, and to
have full-text indexes instantiated over all the database attributes.
If this is not possible, the user is supported in the definition of
a schema enriched with the specification, for each attribute, of
metadata such as data-type, and regular expression of admissible
values. At run-time, the wrapper is in charge of executing the SQL
queries generated by QUEST and computing the results.

Discovering Configurations: the forward module. The forward
module implements the method described in [2] for discovering the
top-k configurations associated with the user keyword queries. The
process is modeled by means of a HMM that contains a state for
each database element, i.e., there is a state for each table, attribute
and attribute domain. If we consider the keyword query as a se-
quence of observations, the application of the list Viterbi algorithm
to the HMM computes the top-k sequences of states (each one with
an associated confidence value ) with the highest probability of gen-
erating that sequence of observations. Therefore, by modeling in
this way the search process, the emission probability distribution
describes the likelihood for a keyword to be “generated” by a spe-
cific state, while the transition probability distribution describes the
likelihood for two keywords to be associated with adjacent states.
The emission probabilities are computed for each keyword and for
each database attribute by applying the search function over full
text indexes provided by the DBMS. We consider the value returned
by this function as a probability, so we need to normalize it to add to
1 by means of a coefficient (different for each attribute) computed
in the setup phase. In sources where the application of full-text
indexes is not possible, similarity measures, domain compatibili-
ties and semantic matchings are used to establish the admissible
domains for each keyword in a query.

The probability distributions are usually computed by means
of training algorithms. In the “feedback-based” operating mode,
QUEST applies an Expectation-Maximization (E-M) [4] on-line
training algorithm to a dataset composed of previous searches
validated by the user. In addition, we implemented the “a-priori”

operating mode that defines the parameter values by exploiting
semantics collected from the data source metadata independently
of the user feedback [2]. In this case, the transition probabilities
are computed by using heuristic rules that take into account
the semantic relationships that exist among the database terms
(aggregation, generalization and inclusion relationships). The goal
of these rules is to foster the transition between database terms
belonging to the same table and belonging to tables connected
through foreign keys.

Formulating Interpretations: the backward module. The
backward module adopts a Steiner Tree-based technique (ST) to
select, for each configuration, the top-k paths joining the involved
database schema elements. Nevertheless, in QUEST, conversely to
other systems based on Steiner Trees, the tree structure is built over
a graph representing the database schema instead of the database
tuples. In particular, we model the relational schema as a weighted
graph where there is a node for each attribute in the database and
edges connecting (i) the node representing the primary key of a
table with all the other attributes in the same table, and (ii) nodes
associated with couples of primary-foreign keys. Using a Steiner
Tree over such a database graph offers advantages with respect
to traditional approaches: a graph over a schema (i) is typically
smaller and hence the approach is more scalable, (ii) is less subject
to changes due to updates than a graph over the database instance,
(iii) has uniform semantics for edges, i.e., primary/foreign key join,
and (iv) can be computed even in cases where the database instance
is not directly accessible. These advantages are related to critical
issues in real scenarios where the database size gives rise to graphs
with millions of vertices and edges, thus making the problem of
finding Steiner Trees intractable. Adopting graphs over database
schemas requires to address a new issue: the obtained Steiner
Tree does not provide any direct result (i.e., no actual tuple is
returned), but only the specification of a join-path that could result
in an empty set of tuples. This happens because the configurations
discovered in the forward approach map keywords into database
terms in isolation. Therefore, we are not assured a configuration
to correspond to a tuple actually existing in the database instance.
To create Steiner Trees consistent with the database content and
the user keywords, we use a mutual information-based distance
for computing the weights of the edges (see [7] where a similar
measure has been adopted for database summarization).
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Combining partial results and providing Explanations. The
combiner module based on the Dempster-Shafer’s theory (DS) of
evidence is used in two steps along the process of generation of
explanations. Firstly, it is used for aggregating the results of the
forward approach running under its two operating modes, i.e., a-
priori and feedback-based. After that, it is employed to combine
the results provided by the two different approaches – i.e., forward
and backward – and to generate the explanations. In the former, for
each operating mode, the union of the sets of top-k configurations
is considered as the universe. Besides, a mass function is added by
taking into account the configurations obtained, together with the
parameters OCap and OCf , specifying the degree of uncertainty of
the a-priori and feedback-based operating modes, respectively. For
each operating mode, the scores associated with the configurations
are used to approximate the probability that the correspondent con-
figuration describes the intended meaning of the user query. For
this reason, they are normalized to add to 1, as the Algorithm in
Figure 1 shows. The specific values of the parameters OCap and
OCf change as the system performs, making QUEST a tool eas-
ily adaptable and reacting to changes in the working context. For
example, when QUEST is used to query a new database, little feed-
back is available. Thus, the feedback-based mode is less reliable
than after a long time queried data source. Consequently, the pa-
rameter OCap must be increased in order to obtain a better perfor-
mance. On the other hand, as the amount of feedbacks increases,
the related parameter OCf must be incremented. Moreover, this
same parameter should be decreased when “negative” feedbacks
are obtained in order to re-configure the system accordingly.

In the latter case, the inputs of the combination function are the
configurations resulting from the previous combination process and
the interpretations computed by the backward module. Also in this
case, users need to specify two parameters to indicate the uncer-
tainty of the two approaches (OC and OI related to the forward
and backward approach, respectively). Finally, the results of this
module are the top-k explanations, i.e., the SQL queries which, ex-
ecuted, are the answers for the user keyword queries.

4. THE DEMONSTRATION
In this demonstration, we intend to show the use of QUEST

against a number of real application scenarios, such as the
IMDB database (www.imdb.com), the DBLP collection (dblp.uni-
trier.de) and the Mondial database (www.dbis.informatik.uni-
goettingen.de/Mondial). These databases provide a wide range of
different scenarios to demonstrate QUEST: IMDB has a simple
star schema but contains millions of instances, Mondial has few
instances but a very complex schema where tables are connected
through many paths, and DBLP contains many instances (e.g., 1
million people, 8 hundred thousand papers, and more than 2 million
instances in the “is author” relation) in a non-trivial schema. The
demonstration will consist of two phases. In the first phase, we will
run a number of chosen keyword queries against these sources, and
demonstrate how the system handles ambiguous queries that gen-
erate multiple possible mappings, each one with multiple possible
paths associated. During the second phase, the participants will be
free to run their own queries and the system will display the dif-
ferent explanations (i.e., the possible SQL queries) along with the
results obtained by querying the real databases. By browsing these
explanations, as allowed by the system GUI shown in Figure 2, the
users will be also able to get a taste of the parts of the sources that
are related to their interest (as described in the keyword query).

There are five main messages we intend to communicate to the
audience through this presentation. First, we will demonstrate that

Figure 2: The QUEST user interface.

a schema-based approach for transforming keyword queries into
SQL is really effective in querying large-size databases. Second,
we will show that the different types of semantics implemented in
the modules provide different results when applied to the same key-
word query. For this purpose, we will compare and explain the
partial results provided by each module separately to each query.
Third, the analysis of the partial results will be also useful for
demonstrating that Steiner trees are effective in computing answers
to keyword queries even if applied to graphs representing database
schemas. This is an original use of Steiner trees that other ap-
proaches have not adopted yet. Fourth, we will show how the par-
tial results provided by each module can be effectively combined by
exploiting the Dempster Shafer’s theory. We will show how, setting
different levels of uncertainty to each module and operating mode,
we obtain different results and we can adapt the behaviour of the
system to different scenarios. Fifth, we will show a new paradigm
for visualizing query answers, by coupling the list of tuples with a
graphical representation of the portion of the database involved by
the query.
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