
Comprehensive and Interactive Temporal Query
Processing with SAP HANA

Martin Kaufmann†§, Panagiotis Vagenas†§, Peter M. Fischer#, Donald Kossmann†, Franz Färber§

†Systems Group

ETH Zürich, Switzerland

{martinka,pvagenas,donaldk}
@ethz.ch

#Albert-Ludwigs-Universität

Freiburg, Germany

peter.fischer@cs.uni-
freiburg.de

§SAP AG

Walldorf, Germany

franz.faerber@sap.com

ABSTRACT

In this demo, we present a prototype of a main memory database
system which provides a wide range of temporal operators featur-
ing predictable and interactive response times. Much of real-life
data is temporal in nature, and there is an increasing application
demand for temporal models and operations in databases. Nev-
ertheless, SQL:2011 has only recently overcome a decade-long
standstill on standardizing temporal features. As a result, few
database systems provide any temporal support, and even those
only have limited expressiveness and poor performance. Our pro-
totype combines an in-memory column store and a novel, generic
temporal index structure named Timeline Index. As we will show
on a workload based on real customer use cases, it achieves pre-
dictable and interactive query performance for a wide range of
temporal query types and data sizes.

1. INTRODUCTION
Managing temporal data is of ever-increasing relevance: most

of the data we observe has temporal aspects (e.g., a history of
updates over time). For many of SAP’s customers, working in areas
like business analytics (e.g., portfolio analysis, risk evaluation in
banking scenarios) or compliance monitoring, there is high need to
maintain and query historical data. Implementing these temporal
features at the application level is cumbersome and inefficient, as
our own and also IBM’s [7] experience shows. SQL:2011 has
finally established support for some bitemporal data management
features [5] in the standard, and database vendors are slowly show-
ing interest. For instance, IBM [7] and Teradata have recently
begun adding temporal features to their products. On the academic
side, a large number of data structures and operators have been
designed, but only a small amount of that work has found its way
into the products. Furthermore, given the time frame in which that
research was performed (mostly 1990s), the focus was on disk-
based structures, optimizing for I/O behavior. Given the obvious
performance benefits of main memory databases [6] and the con-
stantly increasing amount of RAM affordable to customers (cluster
installations of SAP HANA already work in setups with 100s of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

TBs of RAM), we provide a different solution: All historical data is
kept in a main memory column store, while temporal operations are
supported by a novel index data structure, called Timeline, which
can be used to process a large variety of temporal queries. In [4],
we describe this index structure in detail, whereas in this work
we demonstrate how it can be applied to a variety of workloads
and use cases; even to some which it was not explicitly designed
for. The performance is very competitive – up to several orders of
magnitude faster than related work. For the scope of this demo, we
show that our temporal database prototype provides query results
interactively for data sets fitting into the RAM of a single machine.

2. BACKGROUND AND USE CASES
This section describes how temporal data is expressed in our

system. We describe three important query classes which have sig-
nificant relevance for real-life temporal query workloads, but only
limited support – even in SQL:2011 and state-of-the-art DBMS.

2.1 Temporal Model
Whereas traditional databases store data in its current version

only, temporal databases also keep track of the information which
was visible in the system at previous points in time. In such a
temporal database system, an update of an existing tuple is im-
plemented as an invalidation of the current value and an insertion
of a new version. In our work, we use the implicitly maintained
System Time, as introduced by Snodgrass in [8]. An extension
towards Application Time and the full bi-temporal model is an
active research direction. The temporal dimension is expressed in
SQL:2011 by defining two attributes which represent the start and
end time for each version of a tuple, as shown in Figure 1.

2.2 Time Travel
Time Travel establishes a consistent view of a (past) state of a

table. It allows the user to perform regular value queries on a single,
usually older version of the data returning the tuples which were
visible in the system at a given point in time. As an example, an
analyst might be interested in the value of his stock portfolio as of
August 1st, 2012. Time Travel is currently the most widespread use
case for temporal queries and is supported by several commercial
database management systems such as Oracle and DB2. Within
SQL:2011, the Time Travel operator has been standardized by
means of the AS OF clause.

2.3 Temporal Join
A Temporal Join of two tables returns the tuples for which

predicates in both value and time domain are satisfied. In addition
to the value condition of a traditional join, the time dimension is

1210

added to a Temporal Join: Tuples match if a) their value predicate
is fulfilled and b) their time intervals overlap. The semantics of the
temporal condition is that the tuples were valid at the same time.
For example, we retrieve all orders that customers placed last year
while living in New York (customers may have lived in another
place earlier). SQL:2011 provides rudimentary support for such
joins by placing an explicit join condition on the temporal columns,
but does not offer any advanced expressions for temporal joins.

2.4 Temporal Aggregation
In contrast to Time Travel, which goes back to a single point

in time, Temporal Aggregation considers a sequence of versions to
compute an aggregated value for a temporal range. This aggregated
value can be evaluated using different aggregation functions such
as SUM and MAX. Some aspects of Temporal Aggregation are well-
explored in terms of dedicated data structures and algorithms [1, 9].
The support in SQL:2011 is limited to simple cases in which a sin-
gle aggregation period is explicitly specified by selection predicates
on the start and end columns. Given this restricted support and
the large number of use cases requiring more expressive semantics,
we have opted for an extension of the SQL syntax and seman-
tics, providing explicit, higher-level control over the aggregation
parameters. For this extension, we need to consider two orthogonal
aspects: defining the temporal range and the aggregation locality.

2.4.1 Temporal Range Selection
Many queries such as the value of an inventory for each version

or the average number of pending orders for each week require
repeated aggregations over time. Currently, no formal classification
of such temporal ranges exists, and only the simplest case (temporal
grouping [2]) has been investigated in detail. Given the task of
defining ranges over data ordered by time, we utilize the window
concepts from data stream systems [3] and define four types of
temporal ranges: (1) Point in Time. (i.e., temporal grouping
[2]). The aggregate is computed for each version or point in time.
(2) Tumbling Window. The time-intervals are non-overlapping
(e.g., the number of all orders shipped per calendar week). (3) Slid-

ing Window. The intervals are overlapping (e.g., the value of all
orders shipped within the previous 7 days, computed each day).
(4) Landmark Window. The windows are overlapping, but have
the same start point (e.g., the number of orders shipped up to each
day for this year).

2.4.2 Aggregation Locality
On top of these temporal ranges we can apply a number of ag-

gregation functions. The first, most common approach of aggregate
computation only depends on versions within a specified range. In
this type, which we call range-local, we compute aspects such as
the maximum inventory of a specific item during a period of time.

The second approach of aggregate computation is specific to
temporal workloads, but has so far not been investigated much.
Instead of considering only the version within the target range, the
“history” of a row up to the end of the target temporal range is
required. We refer to this use-case as a Non-local Aggregate. This
concept is best explained with examples: a) We are interested in the
point in time at which a state change occurs (i.e., an order is marked
as shipped) and b) we want to measure the state duration (i.e., how
long the order was in the state “unshipped”). Since for many typical
applications, states of data items are stored (like “unshipped” or
“shipped”), but not state changes, we need to inspect previous
versions for both cases.

The concrete syntax proposals for Temporal Aggregations and
Temporal Joins are currently undergoing evaluations at SAP.

Name Balance
Carl $100
Ellen $700

(a) Current Table

ROW_ID
1
2
3
4
5
6

Name Balance Start End
Alice $200 101 103
Bob $300 102 107
Carl $100 103
Alice $500 103 106
Ellen $700 105
John $400 105 106

(b) Temporal Table

Figure 1: Example Current and Temporal Tables

Version
101
103
105

6 5 4 3 2 1
Visible Rows

0 0 0 0 0 1

0 0 1 1 1 0

1 1 1 1 1 0

Version Events
101 +1
102 +2
103 -1 +3 +4

+
Figure 2: Timeline Index

3. SYSTEM DESCRIPTION
In this section, we outline the prototype’s architecture and give

insights into data structures and algorithms of the Timeline Index.

3.1 System Architecture
Our prototype is modeled after SAP HANA, a main memory

column store database which exploits large cluster setups and
compression to handle large-scale data. HANA not only supports
analytical workloads, but also works well for update-heavy, trans-
actional scenarios, utilizing a delta-main merge approach.

For the management of historical data, current and temporal data
are separated in different structures; temporal tables contain addi-
tional columns for the validity intervals as outlined in Figure 1. The
prototype extends the main memory column store with a special
index data structure (a Timeline Index [4]) to improve the efficiency
of temporal operations. It contains different implementations of
temporal operators (with and without making use of the Timeline
Index). Our prototype is currently working on a single node until
we have completed the scale-out for the temporal data structures.

3.2 Timeline Index
The Timeline Index is a unified index data structure which sup-

ports various temporal operators and different attributes. Only one
index is required per table (see Figure 2). The idea of the Timeline
Index is to keep track of all the visible rows of the Temporal Table
at every point of time. This is achieved by recording the ROW IDs
of invalidations (i.e., deletions) and activations (i.e., insertions) for
each version, in version order. By scanning this information, oper-
ators can determine the changes between versions and/or establish
the set of active tuples for a specific version. Using Timeline as a
secondary index (by storing the ROW IDs of the tuples) decouples
the value storage from temporal aspects. As a result, the values in
the temporal tables can be stored in any order, allowing for better
compression and partitioning.

The reconstruction of all tuples of a single version still requires
the complete traversal of the index. In addition, removing old
versions for archiving or garbage collection is not possible. To
overcome this problem, we augment the difference-based Timeline
Index with a number of complete version representations at partic-
ular points in the history, called checkpoints. By controlling the
number of checkpoints, an administrator can perform a trade-off
between query cost and storage overhead. As we show in [4], the
space overhead of this index in minimal. Index creation and index
maintenance are very fast, in the order of (a few) seconds for tables
with several hundred million rows.

1211

ROW_ID

1
2
3
4

Name Balance …
Alice $200 …
Bob $300
Carl $100
Alice $500 …

Temporal Table

+$200
+$300
-$200+$100+$500

Timeline Index

Version
101
102
103

Li
ne

ar
 s

ca
n

Lo
ok

up
B

al
an

ce

Version Events
101 +1
102 +2
103 -1 +3 +4

sum
$200
$500
$900

Figure 3: Temporal Aggregation: SUM

3.3 Temporal Operators
In this section, we outline how the Timeline Index supports effi-

cient temporal query processing for the common temporal operator
classes we found in our use cases, sketching the general ideas of
[4] and describing the extensions developed since then.

Time Travel. The Time Travel operator retrieves those tuples that
are visible for a given version VS. This set of visible tuples can
be computed by going to nearest previous checkpoint (if it exists)
or otherwise the beginning of the index. Next, the active set of
this checkpoint is copied to an intermediate data structure. We
then perform a linear traversal of the Timeline Index and stop when
the version considered becomes greater than VS. The cost for Time
Travel is linear with respect to the distance to the nearest previous
checkpoint or the size of the temporal table if no checkpoint exists.

Temporal Join. A Temporal Join returns all tuples from two tables
which satisfy a spatial predicate and whose time intervals overlap
(i.e., are valid at the same points in time). For each input table a
Timeline Index has to be available. The output of the join operator
is itself a Timeline Index, slightly extended, in the sense that its
entries refer to pairs of ROW IDs, one for each partner in the
respective table. To execute the join of two tables, we do a merge-
join style scan of both Timeline Indexes, yielding cost linear with
respect to the temporal range of the inputs. The result can either be
materialized or taken as an input for other temporal operators.

Temporal Aggregation. A Temporal Aggregation operator selects
the temporal ranges and applies an aggregate function on them,
exploiting specific properties of the aggregation to achieve optimal
performance. To explain how Timeline supports Temporal Aggre-
gation, we use a point-in-time range and a SUM function, which
is a cumulative aggregate. For this combination, a new aggregate
value can be computed directly by knowing the previous aggregate
and the change. Using a single variable, sum, that keeps track of
the aggregate value, we perform a linear scan of the Timeline Index
determining the new tuples that were activated for each version and
the tuples that were invalidated. In the example shown in Figure 3,
we look up the balance values for all of these tuples and adjust the
value of the sum variable accordingly for each version (subtract the
balance for the invalidated tuples and add the value for the activated
tuples). As a result, the execution of this operator is very efficient,
especially if the overall aggregation range is bounded by a temporal
ranges. In this case, we can exploit checkpoints. More complex
aggregate functions introduce a modest overhead, since more state
needs to be kept.

A first important extension beyond [4] is using flexible and
overlapping temporal ranges, as described in Section 2.4.1. Time-
line can still be exploited in the same manner as before since
these overlapping ranges can be derived from the version-ordered
activation/invalidation data in Timeline, utilizing the same efficient
access patterns. Keeping track of the individual aggregation state
and sharing some of the computation on overlapping ranges in-
curs additional complexity. A second extension is the support of

...

lineitem

Temporal Join

Temporal
Selection

supplier

Temporal
Selection

Temporal
Aggregation

[sum, l_extended_price,
interval 10 days, AS total,
GROUP BY s_nationkey]

[l_suppkey=s_suppkey]

linestatus = 'O'
AND time

BETWEEN
2012-03-04 and

2012-10-19

s_nationkey
IN {7, 18, 24}
AND time
BETWEEN
2012-03-04 and
2012-10-19

(total, s_nationkey) Projection

Output

Figure 4: Plan of a Temporal Join and Aggregation Query

non-local aggregates. In these cases, a full scan of the index is
always needed, since both state change and state duration require
determining the preceding state change. This information is not
found necessarily in the (target) temporal range, but in possibly any
previous area. Checkpoints are not beneficial in this case. However,
the index scan is still fast and predictable.

Temporal Selection. In order to support generalized temporal
query processing (see next section), we introduce a temporal se-
lection operator in addition to the operators defined in [4]. Like a
Temporal Join, it works on top of Timeline-indexed temporal tables
and applies temporal as well as value-based predicates. The result
is also a Timeline Index (containing the ROW IDs of the tuples
fulfilling the selection criteria), providing composability and the
means for late materialization.

3.4 Generalizing Temporal Query Processing
Given the range of operators described in the previous section,

we have all the means not only to support queries with a one-
to-one correspondence to the operators, but to freely combine the
operators towards generic, yet effective temporal queries. We study
several classes of temporal operators with different properties:
Temporal Selections and Temporal Joins maintain the temporal
nature (including a Timeline Index) of the data, allowing them to
serve as an input for any temporal operator. Temporal Aggregations
and Time Travel translate temporal data into regular, non-versioned
data, which can be processed by regular operators of the relational
algebra. Figure 4 shows an example how these operators can been
arranged in a complex temporal query plan (based on a temporal
query discussed in Section 4), combining Temporal Selections,
Join and Aggregation followed by non-temporal operators. As
noted, all temporal operations are supported by Timeline Indexes,
ensuring efficient execution. Temporal operations are typically
placed towards the leaves of the query plan, for accessing and
processing Timeline-indexed temporal tables. Given their generic
nature, these operators can participate in query optimization.

4. DEMO

4.1 Overview and Setup
We plan to demonstrate our prototype in two ways: 1) Interac-

tive, graphical temporal data exploration on a range of predefined,
real-life workloads and 2) In-depth investigation and customization
of generic, comprehensive temporal queries.

Figure 5 shows the demo setup: We run a single-system instal-
lation of the prototype on a standard laptop with 32 GB RAM

1212

and an Intel Core i7 processor. The prototype is connected to a
Servlet container hosting the web GUI. We use an Ajax-based web-
interface to guide the data exploration, visualize the query results
(using Highcharts1) and display the history of response times, along
with a table mapping the measurement number to the respective
query parameter settings.

4.2 Interactive Temporal Data Exploration
The first part of the demo focuses on interactive data exploration

using real-life queries on a temporal data set. This data set corre-
sponds to a real customer application for inventory management.
Including all relevant historical data, it consists of 25 GBs of data,
fitting well into the memory of a slightly above-standard desktop
or high-end laptop. We also keep scaled-down versions (100 MB,
1 GB, 10 GB) to demonstrate how the data size affects the re-
sponse time. This kind of application targets individual analysts (or
small teams) who wish to explore temporal properties of the data.
Fast execution is necessary for typical exploration patterns like
(temporal) drill down or temporal shifts to compare time periods
or discover trends. The predefined queries cover a wide range
of temporal analysis aspects based on real-life workloads, out of
which we list some: 1) Time Travel with conventional selections,
joins and aggregations to identify the low-on-stock items for certain
suppliers at a given point in time, 2) Range-local Temporal Aggre-
gations with Temporal Joins to trace the evolution of open orders
per country over time (shown in Figure 6, corresponding to the
query plan in Figure 4), and 3) Non-local Temporal Aggregations
to examine the order processing time over time for certain regions.

For all those queries, we achieve interactive, sub-second re-
sponse times for a full 25 GB data set, with graph rendering
times often exceeding query processing times. This expressive and
efficient temporal query support within the database is important
due to several reasons: The data volumes are too big to be handled
on the client and most of the explorations, while simple from a
visualizations side, require complex temporal operations on a large
state, which is only possible in a DB server, but not in the GUI.

To provide more freedom for exploration, users may not only
choose which predefined queries to run, but also interactively adapt
aspects like data size, version range selection, temporal ranges,
etc. These changes are immediately reflected by the execution
and visualization. We provide the history of query response times
along with the parameters to show how modification of on them
(e.g., a larger data set or different selection parameters) affects the
execution speed.

4.3 Designing Generic Temporal Queries
In the second part, we give the user insights into generic temporal

query plans and their customization. Starting from a template query
plan, together with the audience, we customize the plan in different
ways: Source tables for temporal operators can either be chosen
from a temporal table in the application domain (e.g., orders table)
or the result of a Temporal Join or Temporal Selection. For each of
these sources, we can assign a Temporal Selection, which applies

1http://www.highcharts.com/

Servlet Container

JSP

Java Servlet
Column
Store

Timeline
Index

Database Server

Web Browser
TCPAjax

HTTP

Figure 5: System Architecture of the Timeline Demo

Figure 6: Screenshot of the Web Front-End

a filter with configurable temporal and non-temporal predicates.
For the Temporal Join both the space and time correlation criteria
can be altered, affecting the respective selectivity. For Temporal
Aggregation, the aggregation function and attribute, as well as the
type and size of the temporal range are possible parameters. To
complete these customizations, standard relational operators can
be applied to the result of the temporal operators.

5. CONCLUSION
In this demo we present a highly efficient implementation of

several temporal operators in a prototype main memory database
derived from SAP HANA. This implementation utilizes a column
store in combination with a novel temporal index data structure
called Timeline Index. Building on this foundation, the tempo-
ral operators can be used to answer complex, real-life analyti-
cal queries, covering operations on both the temporal and value
domain. Performance is very competitive, providing interactive
response times for all queries on data sizes up to 25 GB.

6. REFERENCES
[1] M. H. Böhlen et al. Multi-dimensional Aggregation for

Temporal Data. In EDBT, 2006.
[2] J. Clifford et al. On temporal grouping. In Temporal

Databases, 1995.
[3] L. Golab et al. On Indexing Sliding Windows over Online

Data Streams. In EDBT, 2004.
[4] M. Kaufmann et al. Timeline Index: A Unified Data Structure

for Processing Queries on Temporal Data in SAP HANA. In
SIGMOD, 2013.

[5] K. G. Kulkarni and J.-E. Michels. Temporal Features in SQL:
2011. SIGMOD Record, 41(3), 2012.

[6] H. Plattner and A. Zeier. In-Memory Data Management: An
Inflection Point for Enterprise Applications. IT Pro. 2011.

[7] C. M. Saracco et al. A Matter of Time: Temporal Data
Management in DB2 10. Technical report, IBM, 2012.

[8] R. T. Snodgrass et al. TSQL2 Language Specification.
SIGMOD Record, 23(1), 1994.

[9] D. Zhang et al. On Computing Temporal Aggregates with
Range Predicates. ACM Trans. Database Syst., 33(2), 2008.

1213

