
ReqFlex: Fuzzy Queries for Everyone

Grégory Smits1, Olivier Pivert1, Thomas Girault2
1IRISA-University of Rennes 1, France

{gregory.smits | olivier.pivert}@irisa.fr
2Freelance Engineer

toma.girault@gmail.com

ABSTRACT
In this demonstration we present a complete fuzzy-set-based
approach to preference queries that tackles the two main
questions raised by the introduction of flexibility and per-
sonalization when querying relational databases: i) how to
efficiently execute preference queries? and, ii) how to help
users define preferences and queries? As an answer to the
first question, we propose PostgreSQL f, a module imple-
mented on top of PostgreSQL to handle fuzzy queries. To
answer the second question, we propose ReqFlex an intu-
itive user interface to the definition of preferences and the
construction of fuzzy queries.

1. INTRODUCTION
The last decade has witnessed an increasing interest in

expressing preferences inside DataBase (DB) queries. As a
matter of fact, the first research works on this topic date
back to the late 80s, see for instance [3]. Motivations for
such a concern are manifold. First, it has appeared to be
desirable to offer more expressive query languages that can
be more faithful to what a user intends to ask. Second, the
introduction of preferences in queries provides a basis for
rank-ordering the retrieved items, which is especially valu-
able in case of large sets of items satisfying a query. Third, a
classical query may also have an empty set of answers, while
a relaxed (and thus less restrictive) version of the query
might be matched by some items.

Approaches to database preference queries may be clas-
sified into two categories according to their qualitative or
quantitative nature. In the latter, preferences are expressed
quantitatively by a monotone scoring function (the overall
score is positively correlated with partial scores), often taken
as a weighted linear combination of attribute values. Since
the scoring function associates each tuple with a numerical
score, tuple t1 is preferred to tuple t2 if the score of t1 is
higher than the score of t2. Typical representatives of this
first category are fuzzy set-based approaches [2], which use

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

membership functions that describe the preference profiles
of the user on each attribute domain involved in the query.

In the qualitative category of approaches, preferences are
defined through binary preference relations. Typical repre-
sentatives of this category are approaches based on Pareto
order, aimed at computing non-dominated answers (viewed
as points in a multidimensional space, their set constitutes
a so-called skyline), starting with the works of Bőrzsőnyi et
al [1].

In this paper, we focus on the fuzzy-set-based approach to
database preference queries, which benefits from the great
expressivity of fuzzy set theory when it comes to modeling
various types of preferences. As a typical representative of
a fuzzy query language, we consider SQLf [4], a fuzzy ex-
tension of SQL initially proposed in the 90s and completed
by different add-ons since then. This language incorporates
many fuzzy features and is thus a powerful tool for express-
ing database preference queries. However, two questions
remain somewhat open, that respectively concern: i) the
efficient implementation of a fuzzy querying system based
on SQLf, ii) the way a nonexpert user may be guided in
his/her elicitation of fuzzy queries (which are intrinsically
more complex to specify than regular queries since member-
ship functions come into play). As illustrated by Figure 1,
this demonstration proposes a semi-integrated implementa-
tion of a module with fuzzy querying capabilities on top of
PostgreSQL as an answer to the first question (Section 2),
and for the second question, we introduce ReqFlex, an intu-
itive interface for nonexpert users to the definition of pref-
erences and queries (Section 3).

ReqFlex PostgreSQL_f
predicates definition

SQLf queries Applicative
DBFuzzy relations

user profiles
query history ReqFlex

DB

Figure 1: Global view of the fuzzy querying process

1206

2. FUZZY QUERIES

2.1 Preference Model
Fuzzy sets are convenient tools to model vague criteria

and user’s preferences [2]. Using this paradigm, a prefer-
ence is represented by means of a set whose boundaries are
gradual. Thus, the satisfaction of a tuple t regarding such a
fuzzy set F is a matter of degree in the unit interval denoted
by µF (t). The underlying fuzzy set theory offers a large
panoply of connectives to aggregate these preferences from
classical conjunction (min) and disjunction (max) to quan-
tified statements (most of, at least two, around a dozen, ...)
and weighted averaging operators.

In our context of DB querying, users define fuzzy sets to
model their preferences that are associated with linguistic
labels like ‘recent’, ‘low’, ‘very cheap’, etc. Moreover, in
accordance with the imprecise nature of the concepts they
represent, membership functions associated with the fuzzy
sets behind these properties introduce some graduality when
checking the satisfaction of the items wrt. the user’s prefer-
ences. The satisfaction degree in [0, 1] provides the necessary
information to rank-order the items that somewhat satisfy
the user’s requirements. As illustrated in Figure 2 (top),
membership functions defined over numerical attributes are
most of the time of a trapezoidal shape, that clearly ex-
hibit a range of ideal values (maximal satisfaction degree
of 1) and another of acceptable values (satisfaction degree
greater than 0). Over categorical attributes, categories of
interest are individually associated with satisfaction degrees
taken in the unit interval as illustrated in Figure 2 (bottom).

2.2 Fuzzy DB Queying
The language called SQLf described in [4] extends SQL so

as to support fuzzy queries. The general principle consists in
introducing gradual predicates wherever it makes sense. The
three clauses select, from and where of the base block of SQL
are kept in SQLf and the from clause remains unchanged.
The principal differences concern mainly two aspects: i) the
calibration of the result since it is made with discriminated
elements, which can be achieved through a number of de-
sired answers (k), a minimal level of satisfaction (α), or both,
and ii) the nature of the authorized conditions as mentioned
previously. Therefore, the base block is expressed as:

select [distinct] [k | α | k, α] attributes
from relations where fuzzy-cond ;

where fuzzy-cond may involve both Boolean and fuzzy pred-
icates.

The operations from the relational algebra — on which
SQLf is based — are extended to fuzzy relations by consid-
ering fuzzy relations as fuzzy sets on the one hand and by
introducing gradual predicates in the appropriate operations
(selections and joins especially) on the other hand [4]. As
an illustration, the fuzzy selection operator is defined as:

µselect(r, cond)(t) = >(µr(t), µcond(t))

where r denote a fuzzy relation, cond is a fuzzy predicate
and > is a triangular norm (most usually, min is used). A
typical example of a fuzzy query addressed to a database
containing information about employees is:

select 20 0.6 * from employees where age is ‘young’ and job

is ‘low skilled’;

where ‘young’ and ‘low skilled’ are two fuzzy terms defined
by the membership functions that appear in Figure 2.

2.3 PostgreSQL f
In the absence of a commercial RDBMS capable of inter-

preting fuzzy queries, it was necessary to perform a so-called
derivation step [4] in order to generate a regular Boolean
query used to prefilter the relation concerned and then to
use a third party programming language to build the fuzzy
relations on the basis of the results returned by the derived
Boolean query. We now propose PostgreSQL f1, an exten-
sion of PostgreSQL that implements the functionalities nec-
essary to the evaluation of fuzzy queries. The interests of
such a mild coupling architecture lies in the fact that the
fuzzy resulting relation is directly computed during the tu-
ple selection phase which improves the overall performance
of the fuzzy query execution process. Moreover, the defi-
nition of PostgreSQL f as an external module that can be
loaded at runtime by PostgreSQL makes easier the main-
tenance and code distribution. Implemented with functions
and procedures written in C or PL/PGSQL, the current ver-
sion of PostgreSQL f offers the following functionalities:

Definition of fuzzy predicates over numerical attri-
butes using the function create numerical predicate that takes
as arguments the attribute concerned, the linguistic label
and the bounds of the trapezoidal membership function,
select create numerical predicate(‘year’, ‘recent’, 2005, 2006,

2008, 2010);

Definition of fuzzy predicates over categorical at-
tributes using the function create categorical predicate that
takes as arguments the attribute concerned, the linguistic
label and associations between categories of interest and sat-
isfaction degrees:
select create categorial predicate(‘job’, ‘high skilled’, [‘seller’, ‘tech-

nician’, engineer’], [0.4, 0.3, 0.5]);

Introduction of fuzzy conditions in the selection clause
using the operator ∼=:
select * from cars where year ∼= ‘recent’;

Application of modifiers to alter the definition of fuzzy
predicates. Pre-defined modifiers available by default are
very (strengthening modifier) and rather (weakening mod-
ifier). They are defined as follows: µmod P (x) = (µP (x))n

where n = 2 (resp. 0.5) if mod is very (resp. rather):
select * from cars where year ∼= ‘very recent’;

Conjunctions and disjunctions. As in the classical case,
a selection condition can be defined as a conjunction or a
disjunction of fuzzy or Boolean predicates. The SQL connec-
tives and and or have been respectively extended by means
of the operators && and || . The triangular norm and conorm
underlying these operators can be selected among predefined
ones. A function that converts Booleans to real numbers is
used to combine Boolean and fuzzy predicates:
select * from cars

where year ∼= ‘very recent’ && km ∼= ‘low’ && brand = ‘BMW’;

1https://github.com/postgresqlf/PostgreSQL_f

1207

Calibration of the results with thresholds. Specified in
the select clause, qualitative (α) and quantitative (k) thresh-
olds can be defined so as to control the satisfaction level or
cardinality of the answers returned:
select set alpha(0.4); select set k(20);

Aggregation of predicates with fuzzy quantifiers. Be-
sides conjunction and disjunction, fuzzy quantifiers such as
most or at least two may be used to combine fuzzy (and/or
Boolean) predicates. Different interpretations of fuzzy quan-
tifiers are available:
select * from cars

where most(year ∼= ‘very recent’, km ∼= ‘low, brand = ‘VW’);

Gradual operators. Provided that distance functions have
been defined on the attribute domains, gradual operators
can be used to perform comparisons with scalars (operator
∼) or sets of values (operator in ∼):
select * from cars

where year ∼ 2008 && brand in ∼ (‘Peugeot’, ‘Renault’);

3. REQFLEX
Obviously, formal languages such as SQL and SQLf for

fuzzy queries are not so easy to use for novice users. This
is why it is necessary to propose intuitive user interfaces to
help them formulate their queries. All the functionalities
offered by PostgreSQL f cannot be easily managed graphi-
cally, especially by inexperienced users, this is why ReqFlex
focuses on the intuitive definition of queries composed of
a projection and a selection part addressed to a universal
relation that may be a view over joined tables.

As illustrated in Figure 1, the research prototype named
ReqFlex2 we developed acts as an RDBMS query interface.
This interface generates SQLf queries that can be directly
executed by the PostgreSQL f extension. The user interface
is connected to an application DB that stores user profiles. A
user profile is composed of authentication information and
also stores the previously defined fuzzy sets and queries.
This way, it is possible to build a personal vocabulary com-
posed of fuzzy sets and previously executed fuzzy queries.
This DB also stores the connection details of the accessible
databases and the list of searchable attributes.

3.1 An Intuitive Definition of Fuzzy Predicates
Since the semantics of a fuzzy term relies on its mem-

bership function, any fuzzy querying system must provide
the users with a convenient way to define the membership
functions of the fuzzy terms that they wish to include in a
query.

The query interface we have developed proposes an intu-
itive and user-friendly method to define personalized fuzzy
sets. As illustrated in Figure 2, the fuzzy predicate edi-
tion panel lets users easily define their fuzzy predicates on
numerical (top) and categorical attributes (bottom). For
predicates on numerical attributes, the membership function
can be defined using the two sliders to set the ideal and ac-
ceptable value intervals or using its graphical representation
directly by dragging the boundaries of the trapezoidal func-
tion. For categorical attributes, users can drag the different
values of the concerned attributes to a scale of satisfaction

2http://thomas.girault.fr/reqflex/ using the login
smits

Figure 2: Fuzzy predicates on numerical (top) and
categorical (bottom) attributes

degrees. To help the users construct their own predicates,
the interface suggests to refine fuzzy predicates defined by
other users on the concerned attribute (bottom-right part
of Figure 3). Users can save the fuzzy predicates they have
defined in their profile in order to reuse or refine them in
future queries.

3.2 A Drag and Drop Query Construction
Fuzzy predicates can then be dragged and dropped into

the fuzzy query edition panel. When users move their pred-
icates into the query edition panel, they can create new
groups of predicates or insert them into an existing one.
As soon as a group contains more than one predicate, the
user has to choose the connective he/she wants to use to
aggregate the satisfaction degrees related to the different
predicates. A list of connectives is proposed, which ranges
from classical conjunction/disjunction to quantified state-
ments (‘most’, ‘at least 2’, ...). A tooltip containing a short
description of the semantics of each connective is displayed
on demand. Previously executed queries are also stored in
the user’s profile as XML documents.

Figure 3 illustrates how the drag and drop system may be
used to drag the predicate age is ‘young’ to a box already
containing the predicate salary is ‘low’. As this box now
contains more than one predicate, a connective has to be
chosen among the conjunction ‘All’, the disjunction ‘One or
more’ and some predefined quantifiers, here one considers
that the conjunction is used to aggregate the predicates of
this box. Then, after choosing the disjunctive connective
One ormore to combine the two conjunctive boxes, one ob-
tains the query illustrated in Figure 4 corresponding to (job
is ‘low skilled’ and age is ‘young’) or (age is ‘young’ and
salary is ‘low’).

1208

Figure 3: Intuitive drag-and-drop fuzzy querying

Figure 4: Edition panel of the selection part of the
query

The top right part of the interface proposes a set of but-
tons to reset the query, logout, execute the query or set
some additional parameters (Figure 5) such as: i) the list of
attributes to introduce into the projection clause; ii) a qual-
itative threshold α to retrieve the items whose satisfaction
with respect to the query is greater than α, or iii) a quantita-
tive threshold k aimed at retrieving the k most satisfactory
items only.

When the execution button is clicked, the new fuzzy predi-
cates are translated into PL/PGSQL functions and the query
is translated into SQLf. The code is then submitted to the
RDBMS. The execution of a fuzzy query Q returns a fuzzy
relation where each tuple, say t, is associated with a satis-
faction degree denoted by µQ(t) or simply mu in the result
panel illustrated in Figure 6. Thanks to the fact that the
returned tuples are presented in a decreasing order of their
satisfaction degree, users may easily identify the tuples that
best satisfy their queries and may also adjust the quantita-
tive parameter k to reduce the size of the result set.

4. DEMONSTRATION

Figure 5: Additional parameters for a fuzzy query

Figure 6: Visualization of the fuzzy relation re-
turned by the query age ∼= ‘young’ && job ∼= ‘low
skilled’ with the definition of the predicate ‘young’ and
‘low skilled’ given in Figure 2

In order to prove the intuitiveness of ReqFlex, we will
let participants inexperienced in fuzzy theory to query two
datasets. The first one of a human-manageable size (about
100 tuples) concerns the description of employees and is of a
particular interest to discover the main features of ReqFlex
as well as the relevance of the returned tuples. The second
data set, composed of 80.656 ads about second hand cars
described on 15 attributes, will be used to assess the expres-
sivity of the fuzzy queries that can be defined through the
user interface of ReqFlex but also to measure the efficiency of
the mild coupling strategy implementation of PostgreSQL f.

To the best of our knowledge, the coupling of ReqFlex
with PostgreSQL f offers the first unified approach to fuzzy-
set-based preference queries that is accessible to nonexpert
users, hence to real applicative contexts.

5. REFERENCES
[1] S. Bőrzsőnyi, D. Kossmann, and K. Stocker. The

skyline operator. In Proc. of the 17th IEEE Inter.
Conf. on Data Engineering, pages 421–430, April 2001.

[2] D. Dubois and H. Prade. Using fuzzy sets in flexible
querying: Why and how? In Proc. of the 1996
Workshop on Flexible Query-Answering Systems, pages
pp. 89–103, 1996.

[3] T. Ichikawa and M. Hirakawa. ARES: a relational
database with the capability of performing flexible
interpretation of queries. IEEE Transactions on
Software Engineering, 12:624–634, 1986.

[4] O. Pivert and P. Bosc. Fuzzy Preference Queries to
Relational Databases. Imperial College Press, London,
UK, 2012.

1209

