
Senbazuru: A Prototype Spreadsheet Database
Management System

Zhe Chen Michael Cafarella Jun Chen Daniel Prevo Junfeng Zhuang
University of Michigan

Ann Arbor, MI 48109-2121
{chenzhe, michjc, chjun, drpre, jimmyzhu}@umich.edu

ABSTRACT
Spreadsheets have become a critical data management tool,
but they lack explicit relational metadata, making it difficult
to join or integrate data across multiple spreadsheets. Be-
cause spreadsheet data are widely available on a huge range
of topics, a tool that allows easy spreadsheet integration
would be hugely beneficial for a variety of users.

We demonstrate that Senbazuru, a prototype spreadsheet
database management system (SSDBMS), is able to extract
relational information from spreadsheets. By doing so, it
opens up opportunities for integration among spreadsheets
and with other relational sources. Senbazuru allows users
to search for relevant spreadsheets in a large corpus, prob-
abilistically constructs a relational version of the data, and
offers several relational operations over the resulting ex-
tracted data (including joins to other spreadsheet data).
Our demonstration is available on two clients: a JavaScript-
rich Web site and a touch interface on the iPad. During the
demo, Senbazuru will allow VLDB participants to search
spreadsheets, extract relational data from them, and apply
relational operators such as select and join.

1. INTRODUCTION
Spreadsheets are an extremely popular data management

tool, allowing users to complete a range of data tasks com-
monly associated with relational systems: projection, sort-
ing, aggregation, and simple ETL (Extract, Transform and
Load) jobs. The sheer number and diversity of spread-
sheets is remarkable; our Web crawl using the URLs in the
ClueWeb09 corpus [4] found 410,554 spreadsheet files scat-
tered across 51,252 domains. Moreover, the data is often
the result of intense human focus and effort. These spread-
sheets should be prime targets for ad-hoc data integration
and analysis. For example,

Policy expert Fred wants to see whether the strength of the
connection between smoking and lung cancer is consistent
across all U.S. states. Fred does not have the relevant data at
hand, but assumes it is “out there” on the Web somewhere.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00..

In one sense, the user is fortunate: different branches of the
government have collected the data relevant to his task and
made them available online, likely via two separate down-
loadable spreadsheets, one for the smoking statistics and
one for the lung cancer statistics. Unfortunately, finding
such data via current search engines is quite tedious. In
our case, Fred would need to issue a text query, then re-
view all the returned documents before finding the relevant
spreadsheets. Moreover, because spreadsheets do not have
explicit relational schema, the user cannot benefit from soci-
ety’s huge investment in data integration tools that work on
relational databases. Instead, Fred will likely have to write
custom code to combine the two spreadsheets.

Extracting relational data from spreadsheets would enable
traditional database management tools, such as data inte-
gration systems, to be applied to spreadsheet data. There
is a body of recent work that performs database-style op-
erations inside a spreadsheet interface [6, 8, 11], but these
approaches are not useful for spreadsheet datasets that al-
ready exist. Other studies have attempted to transform
spreadsheet data into the relational model, making further
integration among spreadsheets possible. Some extraction
systems require explicit sheet-specific user-provided rules [2,
7], which might yield good results for a single spreadsheet
but they are not practical in our setting: the corpus is very
large and it is impractical for users to manually transform all
of them. Abraham and Erwig[1], and Cunha et al. [5] auto-
matically infer some spreadsheet structure, but they cannot
process the hierarchical spreadsheets that constitute much
of the most interesting data. Figure 1 shows a hierarchi-
cal spreadsheet downloaded from the U.S. Census Bureau.1

This type of spreadsheets is commonplace in the Web: we
have found about 32.5% spreadsheets in the Web are hierar-
chical, and more than 60% in popular Internet domains [3].

Therefore, to build a useful end-to-end spreadsheet man-
agement system, we should be able to extract relational data
from a large number of existing spreadsheets, including the
hierarchical ones. The main technical challenges are:

• Extraction – The spreadsheet in Figure 1 shows the
smoking rate among different U.S. demographic groups.
Each row describes a different smoking rate configura-
tion. For example, 13.7 in the value region represents
smoking people that are Male, White, and 65 years and
over in the attribute region, and it yields an annotat-
ing relational tuple at bottom. To construct such a re-
lational tuple is not straightforward: the spreadsheet
does not explicitly indicate which cells are attributes,

1
The U.S. Census Bureau: http://www.census.gov/

1202



which cells are values, or which attributes describe
which values. Also, the spreadsheet does not clearly
state how to assemble the attributes into coherent sets.
For example, the left-hand attributes in rows 26 and
32 belong to the same set (race), but row 25 does not.
This grouping information is critical when construct-
ing any relational format of the data. In summary,
Figure 1 shows a clean, high-quality spreadsheet, re-
covering relational data from it requires us to: (1) de-
tect attributes and values; (2) identify the hierarchical
structure of left and top attributes if any exists; (3)
generate relational tuples; and (4) assemble the tuples
into high-quality relational tables.
• Repair – Extracting metadata is brittle: even a single

extraction error can yield wrong tuples that will poi-
son any downstream applications. For example, if the
extractor fails to recognize that row 20 annotates row
26, the extracted relational tuples from row 27 to 31
will all be incorrect, as none contains any mention of
the attribute Male. Thus, it should always be possible
to manually repair any automatic extraction errors.

We demonstrate that Senbazuru, a prototype spreadsheet
database management system (SSDBMS), is able to extract
relational information from a large number of spreadsheets;
doing so opens up opportunities for data integration among
spreadsheets and with other relational sources. Senbazuru
consists of three functional components we view as critical
for a useful SSDBMS:

• Search – Using a textual search-and-rank interface,
the search component allows a user to quickly locate
relevant datasets in a huge Web spreadsheet corpus.

• Extract – The extract component is composed of a
background extraction pipeline that automatically
obtains relational data from spreadsheets, and a re-
pair interface that allows users to manually repair
extraction errors. Moreover, this component automat-
ically exploits commonalities among errors to proba-
bilistically reapply one user fix to other similar mis-
takes, thereby minimizing explicit manual interven-
tion.

• Query – The query component supports basic rela-
tional operators, especially selection and join, which
the user can apply to spreadsheet-derived relations.

We have a working prototype of Senbazuru, available as
a desktop Web application and also as an iPad application.
Recall our policy expert Fred, now newly equipped with
an SSDBMS. Fred can use Senbazuru’s search component
to rank datasets by relevance to his text query, smoking by
state. He then picks the best hit. The extract component au-
tomatically generates a relational table for the spreadsheet,
allowing Fred to fix an extraction error with a single drag-
and-drop. Fred can also use the query component to select
a portion of the data about smoking by states, and join with
another dataset about cancer by states. Overall, Senbazuru
requires only a few clicks and two text queries, and yields a
new dataset that is exactly what Fred wants.

In the rest of this paper, we will give an overview of the
backend framework of Senbazuru (Section 2), describe how
the end-user can interact with Senbazuru’s interface during
the demonstration with a walk-through example (Section 3),
and conclude with a brief summary of technical problems the
system addresses (Section 4).

Le
ft 

A
ttr

ib
ut

es

Top Attributes

Values

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Male, total White, total 65 years 
and over

Total 
smokers 13.71990Relational

Tuple:

Figure 1: A screenshot of a spreadsheet with im-
plicit hierarchical attributes in its left-hand column.
At bottom, the relational tuple corresponds to the
highlighted value 13.7.

2. SYSTEM FRAMEWORK
In this section, we describe the backend software frame-

work that allows Senbazuru to offer the standard SSDBMS
services: search, extract, and query, as shown in Figure 2.

Search – The search component helps the user to retrieve
relevant datasets in a potentially enormous corpus via Web
search-style relevance ranking. Currently, Senbazuru has
indexed more than 1,800 spreadsheets collected from the
U.S. Census Bureau. For each spreadsheet in the corpus, the
indexer uses the Python xlrd package to extract text from
each cell, then uses Apache Lucene to index the text. When
a query arrives, the searcher uses the inverted index and
TFIDF-style ranking to sort the datasets by relevance. As
with a standard Web search, the results of search comprise
a list of potentially useful objects for the user to examine.

Extract – The extract component consists of a sequence
of pipeline components that convert the data in each spread-
sheet into the relational model. Most of the extract takes
place when the corpus of spreadsheets is first added to the
system, before any query arrives. A small portion of the ex-
tract is deferred until the user provides manual error repairs.

1. Frame Finder – First, each raw spreadsheet is sent
to the frame finder. This module identifies data frame struc-
tures in each spreadsheet. A characteristic data frame layout
is shown in Figure 1: a rectangular value region of numeric
values (outlined with the dashed rectangle), with additional
rectangular attribute regions above (labeled top attribute and
outlined with a solid rectangle) and to the left (labeled left
attribute, similarly outlined). We use a conditional random
field (CRF) [9] to assign a semantic label to each non-empty
row in the spreadsheet, thus finding the data frame. The
module passes the data frame to the next step and discards
everything else in the raw spreadsheet.

2. Hierarchy Extractor – The next stage is the hier-
archy extractor, which recovers the attribute hierarchies for
the data frame’s attribute regions. In each attribute region,
we want to know which attributes describe which other at-
tributes. For example, in Figure 1, the attribute at row 31

1203



Spreadsheet
Index

Searcher Relation 
Constructor

Tuple 
Builder

Hierarchy 
ExtractorIndexer Frame 

Finder

Query

Spreadsheets
Search Extract

Join

Select

Query

Mobile 
Client

Web 
Client

Figure 2: The software framework for Senbazuru.

is annotated by attributes at rows 26, 20, and 19. These an-
notations are critical in correctly extracting the relational
tuples. Our solution is based on a conditional random field
(CRF), in which each random variable represents whether
an attribute pair is parent-child. For example, consider the
hierarchy on the left of Figure 1: a variable representing an
attribute pair (20, 26) is true while variables for (20, 31)
and (24, 25) are false. We define a set of node and edge po-
tentials to capture human intuitions about which attribute
pairs are likely to be parent-child, and also global potentials
or constraints to ensure that the resulting variable assign-
ment yields a strict tree structure. Therefore, the output of
the CRF extraction is a high-quality attribute hierarchy.

The hierarchy extractor includes a small but important
step that is deferred until query time when a user interacts
with the repair interface. When a user observes the hier-
archy extractor’s initial output, she has the option to repair
the resulting hierarchy by dragging and dropping attributes,
as shown in Figure 3. We translate each repair operation
to a set of variables with observed assignments. We also
add repair potentials to the CRF to ensure the observed
assignments can be probabilistically applied to other simi-
lar variables. Every single user repair operation will trigger
Senbazuru to re-run the CRF. As a result, the hierarchy
extractor makes a single explicit repair action by the user
fix many similar extraction errors at once, yielding refined
hierarchies with little user effort.

3. Tuple Builder – The tuple builder is algorithmically
straightforward, and it generates a relational tuple for each
value in the value region, annotated with relevant attributes
from attribute regions. For example, Figure 1 shows the full
six-field tuple we want to recover for the outlined value 13.7.

4. Relation Constructor – Finally, the relation con-
structor assembles these relational tuples into relational ta-
bles. It clusters attributes in different tuples into consistent
columns and recovers a label for each column. For example,
this final step recognizes that attributes Male, total and Fe-
male, total should go into the same column, and that the col-
umn should be called gender. This clustering model exploits
information from the recovered hierarchies as well as exist-
ing collections of schema such as Freebase and YAGO [10].
Figure 4 (a) shows an example of a recovered relation.

Query – After a user searches for a relevant dataset and
repairs extraction errors, the query component allows her to
apply relational operators on the spreadsheet-derived data.
In particular, we have implemented select and join. We
will cover the two relational operators in detail as part of
our interface discussion in Section 3.1.

3. DEMONSTRATION
We plan to show an end-to-end demonstration of Sen-

bazuru to search, extract, and query spreadsheets. Users
can choose to interact with Senbazuru using either the Web
browser client or the iPad tablet client. In this section, we
first describe how to use Senbazuru’s interface, then show a
walk-through example.

3.1 User Interface
The two client interfaces for Senbazuru are shown in Fig-

ure 4. They allow users to search for data, to view and edit
the extract results, and to use query operations.

Search – As with other search-and-rank tools, a user
types keywords in the search box, and obtains a list of rel-
evant spreadsheets. She can then browse results and select
the most relevant one. For example, in Figure 4 (a), a user
enters “smoking” as the search query. She can examine the
top hit’s raw spreadsheet by clicking “Spreadsheet” or check
other relevant spreadsheets by clicking “Next.”

Extract – After selecting the most relevant spreadsheet,
a user can use extract to transform the spreadsheet data into
a relational table. She can review the extracted hierarchi-
cal metadata by clicking “Data Tree.” Figure 3 shows the
interface for viewing the extracted hierarchies. To repair
any extraction errors, she can drag and move a node of the
tree from one place to another. After observing the user’s
repair action, Senbazuru will automatically re-run extract
and display a new tree. For example, as shown on the left
of Figure 3, a user performs a repair by clicking and drag-
ging White, total so that it becomes a child of Male, total.
Meanwhile, the extract component automatically discovers
that Black, total should also be moved. Thus, the user’s one
single repair action can trigger multiple fixes, yielding the
hierarchy shown on the right. After repairing extraction er-
rors, the user can review the generated relations by clicking
“Relational Table,” as shown in Figure 4(a).

Query – Users can perform query operations on the ex-
tracted relational table. They are not required to write SQL
statements and can apply select and join via the interface:
1. Select – The select feature, also called filter, is simi-

lar to executing a selection query on the recovered relation.
Clicking “Filter,” a user can use a faceted-search interface to
specify the filter conditions. This interface is automatically
composed by Senbazuru. For example, Figure 4 (a) shows
that the user limits the displayed data to smoking statistics
for people who are Female, Black, and 18 to 24 years old.

2. Join – The join feature allows users to integrate two
arbitrary spreadsheet-derived relations. The user starts by

Before Repair: ''White, total'' After Repair: ''White, total''

Figure 3: Senbazuru recovers the attribute hierar-
chy seen in Figure 1, and makes the recovered struc-
ture available for manual user repairs.

1204



Search 
box

"Data Tree": show 
attribute hierarchies

"Raw Tuples": show 
relational tuples

"Relational Table": 
show relational tables

"Next": view the 
next spreadsheet

"Spreadsheet": show 
the raw spreadsheet

"Join": integrate with 
another spreadsheet

"Filter":

(a) (b)

Figure 4: Screenshots of two Senbazuru clients, as a desktop application (a) and an iPad application (b).

applying the search and extract features as described above.
Once the user has found a good result, she clicks “Join”
and enters a second text query. The query yields a second
ranked result list. She chooses a relevant join target from
this ranked list and obtains a correctly extracted relation.
She indicates which columns from each dataset should be
used as an equijoin key.

For example, Figure 4 (b) shows a screenshot of the join
process on our iPad client. When the user touches a column,
Senbazuru highlights it in bright yellow, as shown on the left
of the figure. Meanwhile, Senbazuru faintly highlights a col-
umn on the right-hand table to indicate a possible join. The
user can drag the column, highlighted in bright yellow, from
the left-hand relation to the right and release it. This action
indicates the join key; Senbazuru executes the appropriate
join and shows the user the resulting brand-new relation.

3.2 A Walk-through Example
We will demonstrate Senbazuru’s workflow through Fred’s

example. Recall that our policy expert Fred wants to find
the relationship between smoking and lung cancer across the
U.S. states. Using Senbazuru, Fred can obtain the requested
data through the following steps:

1. Search for “smoking by state.”

2. Browse the returned spreadsheets and select the most
relevant one.

3. Click “Data Tree” and check the correctness of the
extracted attribute hierarchies.

4. Repair the hierarchies if any extraction errors exist.

5. Click “Data Table” to review the extracted relation.

6. Repeat the process from step 1 to get the relational
table for the most relevant lung cancer spreadsheet by
querying “lung cancer by state.”

7. Specify join columns to create a new table.

8. Review the result, using the faceted select interface.

In addition to Fred’s example, VLDB attendees are wel-
come to try many other interesting queries, such as “em-
ployment statistics 2010” and “Michigan GDP.”

4. CONCLUSION
Senbazuru is a prototype spreadsheet management sys-

tem. It searches a large number of Web crawl spreadsheets,
and it automatically transforms spreadsheets into relations
while allowing users to fix the extraction errors effectively
and efficiently. Finally, it supports selection queries on the
resulting relations and join queries to integrate arbitrary
spreadsheets. We believe a demo of Senbazuru will be of
great interest to the VLDB attendees and the database com-
munity as a whole.

5. ACKNOWLEDGMENTS
This project is supported by National Science Foundation

grants IIS-1054913 and IIS-1064606, as well as gifts from
Dow Chemical, Yahoo!, and Google.

6. REFERENCES
[1] R. Abraham and M. Erwig. Ucheck: A spreadsheet type

checker for end users. J. Vis. Lang. Comput., 18(1):71–95,
2007.

[2] Y. Ahmad, T. Antoniu, S. Goldwater, and
S. Krishnamurthi. A type system for statically detecting
spreadsheet errors. In ASE, pages 174–183, 2003.

[3] Z. Chen and M. Cafarella. Automatic web spreadsheet data
extraction. In VLDB Workshop on Semantic Search over
the Web, Trento, Italy, 2013. ACM.

[4] 2009. ClueWeb09, http://lemurproject.org/clueweb09.php/.

[5] J. Cunha, J. Saraiva, and J. Visser. From spreadsheets to
relational databases and back. In PEPM, pages 179–188,
2009.

[6] P. J. Guo, S. Kandel, J. M. Hellerstein, and J. Heer.
Proactive wrangling: Mixed-initiative end-user
programming of data transformation scripts. In UIST,
pages 65–74, 2011.

[7] V. Hung, B. Benatallah, and R. Saint-Paul.
Spreadsheet-based complex data transformation. In CIKM,
pages 1749–1754, 2011.

[8] B. Liu and H. Jagadish. A spreadsheet algebra for a direct
data manipulation query interface. In ICDE, pages
417–428, 2009.

[9] D. Pinto, A. McCallum, X. Wei, and W. B. Croft. Table
extraction using conditional random fields. In SIGIR, pages
235–242, 2003.

[10] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core
of semantic knowledge. In WWW, pages 697–706, 2007.

[11] J. Tyszkiewic. Spreadsheet as a relational database engine.
In SIGMOD, pages 195–206, 2010.

1205


