

Microsoft SQL Server’s Integrated Database Approach for
Modern Applications and Hardware

David Lomet
Microsoft Research
One Microsoft Way

Redmond, WA 98052

lomet@microsoft.com

ABSTRACT

Recently, there has been much renewed interest in re-architecting

database systems to exploit new hardware. While some efforts

have suggested that one needs specialized engines (“one size does

not fit all”), the approach pursued by Microsoft’s SQL Server has

been to integrate multiple elements into a common architecture.

This brings customers what they want by reducing data impedance

mismatches between database systems that they are using for

multiple purposes. This integration is, of course, more easily said

than done. But this is, in fact, precisely what the SQL Server team

has done.

1. INTRODUCTION

1.1 The Present Challenges
There have been two technical threads in the database community

that have an impact on the way that database engines are built.

1. Modern hardware makes the classic approach to building

database systems obsolete. This classic approach assumed

that data resided on disk, accessed via a buffer pool of disk

pages. Access was controlled via a pessimistic lock manager.

Recovery was page oriented. Data was row oriented to enable

rapid record update. Etc.

2. The diverse tasks to which database systems are now applied

means that they need to be good at more than OLTP, the

classic database workload. OLAP, data mining, etc. all put

more demands on query processing. Further, the data volumes

keep increasing far beyond what the original database system

designers could possibly have anticipated.

1.2 A Path Not Taken
A frequent approach to dealing with the challenges our field faces

is to design specialized database engines that are tailored, for

example, to transaction processing. Another engine then would be

designed to handle analytic queries. This is a very convenient

dichotomy in some respects, as we more or less understand how to

solve these problems in isolation.

Unfortunately, our customers have data that they wish to flexibly

process, in several potential ways. They would rather not learn how

to deal with multiple pieces of technology—preferring to simplify

administration and management of their database infrastructure.

Data that may start as transaction processing data can become the

basis for subsequent data analysis. So customers have data

management needs that are not so easily partitioned.

1.3 SQL Server’s Unified Approach
At Microsoft, we decided to take an integrated approach, because

our assessment is that, other things being equal, that is what

customers would prefer. The “other things being equal” is, of

course, the “fly in the ointment”. The SQL team knew what

technologies needed to be employed at the 40,000 ft. level.

1. Main memory focused row store for transaction processing.

2. Column store for compressing and efficiently processing huge

volumes of analytic data.

3. Mixed (perhaps conventional) techniques for queries that are

not so conveniently separated.

So the technical challenge was to build this collection of

technologies so as to integrate them into a single database engine.

Further, of course, since SQL Server has a very large base of

existing customers, we needed to avoid disrupting these customers.

So compatibility in some form for existing customers was essential.

The rest of this short paper outlines the new technologies that we

added to SQL Server “classic edition”, and sketches how they were

integrated into a single database engine. Section 2 describes the

SQL column store data analysis focused facilities, while section 3

describes the main memory transaction processing focused

facilities. Section 4 then briefly describes how they are integrated

to give our customers a “unified experience”.

2. COLUMN FORMATTED DATA

2.1 The Data Analytics Problem
So what is the problem that needs to be solved in the data analysis

space? It is data volumes and their impact on the cost and

performance of the systems that process what is mostly analytic

data. The amount of this data is now growing at a furious pace.

Column formatted data attacks this problem in two fundamental

aspects.

1. Only the attributes of relational data that play a role in a query

need be accessed by the query as the attributes are stored and

can be accessed independently of other attributes.

2. In addition to isolating the data involved to only the attributes

needed, column formatted data enables data compression to

squeeze down the bytes that are moved and compared and

processed by another significant factor.

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post

on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Articles from this volume were invited to present their results at The 39th

International Conference on Very Large Data Bases, August 26th - 30th 2013,

Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 11
Copyright 2013 VLDB Endowment 2150-8097/13/09... $ 10.00.

1178

2.2 The SQL Apollo Approach
In SQL Server, we wanted columnar data to be integrated with row

data, as even analytic queries can access data that is more

conveniently stored as rows. This resulted in SQL Server’s design

in which columns are treated as index data [2, 3]. This means that

queries can access data in both column and row format. The query

optimizer will then choose a plan that optimizes across this now

expanded physical database design space.

The columns can be compressed when stored, with run length

encoding being an option that can drastically reduce data footprint.

Microsoft has unique technology, adopted from its BI group, which

produces astounding levels of compression. Further, it is possible

to process column data in “batch mode”, where aggregates can be

computed directly from the compressed data.

3. MAIN MEMORY ROW DATA

3.1 The OLTP Problem
The nature of the OLTP problem is different in kind from the data

analysis problem. There, the sheer volumes of data made it difficult

for conventional database systems to provide any reasonable

support. In the transaction processing space, database systems have

been very nicely handling customer problems for 40 plus years.

The OLTP problem is one of missed opportunities. Modern

hardware has not been exploited effectively to improve the

cost/performance of transaction processing. This translates directly

into customers bearing unnecessarily large costs and system

management complexity.

If we can achieve an order of magnitude performance gain in

transaction processing, we can simultaneously reduce

infrastructure costs, improve query responsiveness, and reduce the

complexity of managing large “scaled-up systems”.

3.2 The SQL Hekaton Approach
The Hekaton design goal was a system where threads never block.

Thread blocking introduces overhead in multiple ways. First, the

code to perform a context switch can be substantial. Second, each

thread has a thread context whose data is then expelled from the

memory caches. This cache thrashing then degrades performance

even more.

Several recent main memory database efforts have recognized this

thread/memory hierarchy problem. Their starting point was to treat

a large server with its multiple cores and memory hierarchy as if it

were a “distributed system on a board”. The appeal of this approach

is that data can be isolated so as to be accessed only by a single

core, leading to a “latch free” system by partitioning. But the

Hekaton team considered such systems to be inherently fragile,

with difficulty responding adequately to users whose transactions

resisted any clean partitioning.

Thus, Hekaton [1] adopted a “classic” latch-free approach, wherein

threads never block, but this is achieved using optimistic methods.

The latch-free part of never blocking is to use latch-free data

structures that employ “compare and swap” (CAS) instructions to

make state changes to shared data. This led to the incorporation of

the latch-free Bw-tree as Hekaton’s key-ordered index [5].

But latch-free is not sufficient to eliminate all thread blocking, as

blocking can occur at the transaction level via user access patterns

in a traditional lock manager approach to concurrency control.

Hekaton’s concurrency [4] control differs from a traditional lock

manager in four respects. (1) It is multi-version (MVCC) so that

read-write conflicts are frequently avoided by satisfying the read

with an earlier version. (2) There are no separate locks, the data

versions themselves recording information needed for CC. (3) The

lock manager data structure is the same latch-free hash table used

to access the data. (3) The method is optimistic, so no blocking

occurs during transaction execution, but validation can lead to

aborts. (4) The validation phases is itself non-blocking by

exploiting transaction dependencies.

4. THE INTEGRATED ENGINE
There is no shortage of database systems, both research prototypes

and commercial systems, which attack some market segment, e.g.

OLTP or OLAP, with a carefully selected technology that works

well in that segment. But it is rare to find a system, commercial or

otherwise, that handles a breadth of market segments with a breadth

of technologies, all of which are integrated into a single system that

preserves customers’ existing database applications. That is what

SQL has done.

There is no shortage of clever technology used in SQL Server, its

data compression technology for columnar data, its latch-free Bw-

tree, its non-blocking multi-version concurrency control. But as

remarkable is that it has all been integrated into a single database

engine that preserves compatibility for existing customers.

5. CONCLUSIONS
Column format data is already supported in SQL Server. Main

memory row data support will appear in the impending release of

SQL Server. We believe these new and integrated capabilities will

make SQL Server a stronger and more attractive option in the very

competitive database market.

A final word. The inspiration, the technology, the integration, the

enormous effort were parts of a shared and challenging endeavor

that included highly skilled and insightful developers and

researchers. This effort is a great example of how a company can

benefit by being able to bring developers and researchers together

to produce outstanding results.

6. REFERENCES
[1] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke

Larson, Pravin Mittal, Ryan Stonecipher, Nitin Verma, Mike

Zwilling: Hekaton: SQL server's memory-optimized OLTP

engine. SIGMOD Conference 2013: 1243-1254

[2] Per-Åke Larson, Cipri Clinciu, Eric N. Hanson, Artem Oks,

Susan L. Price, Srikumar Rangarajan, Aleksandras Surna,

Qingqing Zhou: SQL server column store indexes. SIGMOD

Conference 2011: 1177-1184

[3] Per-Åke Larson, Cipri Clinciu, Campbell Fraser, Eric N.

Hanson, Mostafa Mokhtar, Michal Nowakiewicz, Vassilis

Papadimos, Susan L. Price, Srikumar Rangarajan, Remus

Rusanu, Mayukh Saubhasik: Enhancements to SQL server

column stores. SIGMOD Conference 2013: 1159-1168

[4] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig

Freedman, Jignesh M. Patel, Mike Zwilling: High-

Performance Concurrency Control Mechanisms for Main-

Memory Databases. PVLDB 5(4): 298-309 (2011)

[5] Justin J. Levandoski, David B. Lomet, Sudipta Sengupta:

The Bw-Tree: A B-tree for new hardware platforms. ICDE

2013: 302-313

1179

