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ABSTRACT
This paper gives an overview of Turn Data Management
Platform (DMP). We explain the purpose of this type of
platforms, and show how it is positioned in the current dig-
ital advertising ecosystem. We also provide a detailed de-
scription of the key components in Turn DMP. These com-
ponents cover the functions of (1) data ingestion and integra-
tion, (2) data warehousing and analytics, and (3) real-time
data activation. For all components, we discuss the main
technical and research challenges, as well as the alternative
design choices. One of the main goals of this paper is to
highlight the central role that data management is playing
in shaping this fast growing multi-billion dollars industry.

1. INTRODUCTION
Over the last decade, a number of radical changes have

reshaped the worlds of digital advertising, marketing, and
media. The first is an innovation called programmatic buy-
ing, which is the process of executing media buys in an au-
tomated fashion through digital platforms such as real time
bidding exchanges (RTB exchanges) and demand-side plat-
forms (DSPs). This method replaces the traditional use of
manual processes and negotiations to purchase digital me-
dia. Instead, an ad impression is made available through an
auction in an RTB exchange in real time. Upon requests
from RTB exchanges, DSPs then choose to respond with
bids and proposed ads on behalf of their advertisers for this
impression. The entire end-to-end buying process between
RTB exchanges and DSPs typically takes less than 250 ms
including the network time, leaving less than 50 ms for DSPs
to run their runtime pipelines. It is well understood that in
order to make such dynamic buying decisions optimal, all
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data, including user data, advertiser data, contextual data,
plays a central role.

The second major shift is the prolific use of mobile devices,
social networks, and video sites. As a result, marketers have
gained powerful tools to reach customers through multiple
channels such as mobile, social, video, display, email, and
search. There are numerous platforms dedicated to single
channel optimization. For example, video channel platforms
aim to maximize the user engagements with video ads, while
social ad platforms aim to increase the number of fans and
likes of a given product. Regardless of channel, data driven
approaches have been proven to be very e↵ective to lift the
campaign performance there.

With all the advance of these technologies, one major chal-
lenge to the marketers today is that the marketing strategy
becomes a lot more complicated than ever before. While a
lot of work has been done to optimize each individual chan-
nel, how di↵erent channels interact with each other is little
understood. This is however very important as customers
often interact with multiple touch points through multiple
channels. One main obstacle is that while there are abun-
dant data to leverage, they are all in di↵erent platforms and
in di↵erent forms. As a result, it is a non-trivial task to
create global dashboard by extracting aggregated reporting
data from di↵erent platforms. Performing even finer grain
analytics across channels is virtually impossible, which is
the key to campaign e↵ectiveness, accurate attributions, and
high return-on-investment (ROI) for the di↵erent channels.

Recently, data management platforms (DMPs) have been
emerging as the solution to address the above challenge. It is
a central hub to seamlessly (and rapidly) collect, integrate,
manage and activate large volumes of data. In summary, a
DMP needs to provide the following functionalities:

1. Data integration: a DMP should be able to cleanse
and integrate data from multiple platforms or channels
with heterogeneous schemas. More importantly, the
integration has to happen at the finest granular level
by linking the same audience or users across di↵erent
platforms. This is the only way that a deeper and more
insightful audience analytics can be obtained across all
campaign activities.

2. Analytics: a DMP should provide full cross channel re-
porting and analytics capabilities. Examples include
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aggregation, user behavior correlation analysis, multi-
touch attribution, analytical modeling, etc. Further-
more, DMP should be delivered through cloud-based
software-as-a-service (SaaS) to end users and provide
them the flexibility to plug in their own analytical in-
telligence.

3. Real-time activation: a DMP should be able to not
only get data in, but also send data out in real time.
In other words, it needs to make the insights action-
able. For example, it should be able to run models
and perform scoring tasks in real time by combining
online and o✏ine data, and to send the output data
to other platforms to optimize the downstream media
and enhance the customer experience.

In this paper, we will give an overview of a DMP that
Turn, a digital advertising startup, has built recently. We
hope this overview may provide some support for the fact
that DMPs are fine examples of how to handle big data in
batch mode as well as real time, unifying techniques from
multiple fields of data science, including databases, data
mining, streaming, distributed systems, key-value stores,
machine learning, etc.

The rest of this paper is organized as the high-level overview
of Turn DMP and its three main components: data integra-
tion, analytics, and activation. The paper ends with our
conclusions and a summary of future work.

2. OVERVIEW

2.1 Audience and Nested Data Model
A user is the central entity in the schema of any DMP.

Users in the digital advertising industry are usually referred
to as the audience (for ads). From a business perspective,
advertisers wish to learn everything about their audience:
their demographics, psychographics, online and o✏ine be-
havior, and how they respond to the di↵erent types of ads
across several channels. Perhaps even more importantly,
they wish to understand how all these variables can be cor-
related. Such a holistic view of the audience data is key
to the deign of highly targeted ad campaigns that would
maximize their ROI.

From a technical perspective, there are multiple ways in
which this data can be captured inside the DMP. The ob-
vious approach is to use the Relational Data Model, where
each entity type, including users, will be modeled as a sepa-
rate table in the relational schema. The main problem with
this design arises from the fact that some tables (containing
transactional or behavioral data) can be extremely large.
With the Internet-scale, the impressions table, for instance,
can quickly reach hundreds of billions of records. In this
case, correlating variables spanning multiple such enormous
tables can be prohibitively di�cult.

Fortunately, this type of analysis is typically meaningful
only when performed at the user-level. For example, study-
ing the correlation between the frequency of visiting news
sites and the likelihood of clicking on stocks-related ads re-
quires evaluating the two variables for each user, joining on
the user id, and then computing the correlation. So if all
the information related to each individual user was already
grouped into one big nested record, or user profile, the com-
putation would be a lot easier. This observation makes it

clear how a Nested Relational Data Model is a better alter-
native for the types of analysis and the scales involved in
a DMP. Even beyond the digital advertising domain, the
nested relational data model has already gained wide adop-
tion in the field of big data analytics (e.g., [17]).

In Turn DMP, a user profile covers all available informa-
tion for a given anonymized user, including demographics,
psychographics, campaign, and behavioral data. User pro-
file data is typically collected from various sources. It could
be first party data (i.e., historical user data collected by
advertisers in their own private customer relationship man-
agement (CRM) systems), or third party data (i.e., data
provided by third party data partners, typically each spe-
cializing in a specific type of data, e.g., credit scores, buying
intentions, etc.). In that sense, user profiles are treated as a
first class citizen and are the basic units for o✏ine analytics
as well as for real time applications.

Based on the functionality, Turn DMP maintains two ver-
sions of the user profiles. First, the analytical user pro-
file (AUP) is designed for the purpose of o✏ine analyt-
ics and data mining. It is stored in Hadoop File System
(HDFS) [13]. Second, the runtime user profile (RUP) is
stored in a globally replicated key-value store to enable fast
and reliable retrieval in few milliseconds for real time appli-
cations.

2.2 Real-Time Online Advertising
Figure 1 shows the main players involved in real-time on-

line advertising (the online advertising ecosystem). When-
ever a web page of a web site (owned by a publisher) is about
to be viewed by a user (a member of the audience) on the
user’s browser, an ad request is sent to an RTB exchange
(public or private) directly or through intermediaries (called
supply-side platforms) to find an ad to display on that page.

RTB exchanges serve as the market between the demand
side (the side of advertisers and their helpers such as DSPs
and DMPs) and the supply side (the side of publishers and
their helpers such as supply-side platforms) [4, 6]. RTB
exchanges match ads to ad space as well as determine the
price of each match. Since RTB exchanges do not have ads,
they pass ad requests to multiple DSPs to ask for an ad and
the corresponding bid price. Each ad request contains the
numerical id for the user and the URL for the web page.

Advertisers use the web console of DSPs to create their
advertising campaigns. An illustrated view of the web con-
sole is shown in [3]. Each campaign contains at least the
following properties: goal (e.g., optimize for impressions,
clicks, or actions), budget (total money to spend), spending
schedule (e.g., spend evenly per day), targeting constraints
(e.g., reach only females in California who have visited a
fashion site more than twice in the last month), and ads.
Advertisers also use the web console of DMPs to manage
the data for their campaigns and the audience they (want
to) reach.

When a DSP gets an ad request, it uses the user id and
URL in the request to extract the corresponding profiles
from its profile servers. It then scans through each ad in the
system, filters out those ads whose constraints are violated,
and computes a bid for each remaining ad. Finally, it runs an
internal auction (usually the first price auction) and submits
back to the RTB exchange the winner ad of the internal
auction and its bid.
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Figure 1: High-Level Design of Turn DMP and Positioning in the Online Advertising Ecosystem
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Figure 2: Interactions between a DSP (left) and a DMP (right).

Once the RTB exchange receives responses to its ad re-
quest after some set time limit, it runs an auction (usually
the second price auction) and sends back to the web page
the winner ad. The web page then redirects to an ad server
(part of a DSP or independently operated) to get the actual
image (called a creative) associated with the winner ad.

The real-time aspects of this entire process is astonishing:
The process takes at least three roundtrips through the in-
ternet, each one taking up to 80 milliseconds. The time left
to each DSP is up to 50 milliseconds, during which the best
ad for a given user on a web page (or other online contexts
or channels such as video, social, mobile, and search) is se-
lected from millions of ads. The number of ad requests per
second, as Turn handles, has recently surpassed a million.

2.3 DMP Architecture
Figure 2 shows the interface of a DSP and a DMP as well

as how they interact with each other. Each platform has a
web-based console to interact with their respective users.

Inputs to a DSP consist of ad requests from RTB ex-
changes, events (for impressions, clicks, actions, or data
events) from user browsers or external servers, campaign
and/or segment data from DMPs, and requests from the
console. Outputs of a DSP consist of ads/bids to RTB ex-
changes, events to user browsers or external servers, and
data for the console. Here external servers may belong to
the same DSP residing in a di↵erent data center or other
advertising entities.

Figure 3 details the interface and internals of Turn’s DMP.
The event tra�c (also called front-end or web tier) servers
ingest online events fired from browsers or sent from other
external servers (e.g., an advertiser’s web server indicating
that a user has made a purchase). Collected events are sent
to the RUP-Store in real time as well as to the AUP-Store in
bulk (at regular intervals). The AUP-Store represents the
data layer of Cheetah [10], the warehousing and analytics
engine in Turn DMP.

Datahub is the component responsible for ingesting o✏ine
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Figure 3: Internal Architecture of a DMP.

(file-based) data from first and third party providers, resolv-
ing heterogeneity at schema and data levels (e.g., disparate
user ids), and performing the necessary sanity checks. Data
ingested by Datahub also end up both in the AUP-Store
(directly) and in the RUP-Store (through what we refer to
as the repletion bus – for global distribution).

A relational database is used to store campaign and seg-
ment definitions, campaign performance and insight caches,
etc. Query servers are used an an intermediate layer be-
tween the relational database and the Cheetah servers on
one side and their di↵erent clients (e.g., the web console) on
the other side. The relational database is replicated to other
data centers via the replication technology that comes from
the database vendor (e.g., Oracle’s advanced data guard).

The external and internal movement of data is managed
using dedicated servers such as the data sync servers (to pass
the campaign and segment data to DSPs) and the replication
bus servers (to pass the collected online and o✏ine data to
RUP-Stores).

The data integration engine (first high-level component
of Turn DMP in Figure 1) involves all the subcomponents
related to the collection, ingestion, cleaning, and transfor-
mation of both online and o✏ine data, such as event tra�c
servers and Datahub servers.

The analytics engine (second high-level component of Turn
DMP in Figure 1), or Cheetah, provides data analysts with
a custom, nesting-aware, SQL-like query language called
Cheetah Query Language (CQL) in addition to a library

of data mining methods and machine learning models to ex-
tract useful insights from the campaign and user raw data.

The real-time activation engine (third high-level compo-
nent of Turn DMP in Figure 1) runs on top of the RUP-
Store. It enables di↵erent types of computations performed
in real-time, such as segment membership evaluation, bid
calculation, etc. This is where the extracted insights drive
decision making in real-time, or in other words become ac-
tionable.

In the following sections, we will explain each of the three
components in detail.

3. DATA INTEGRATION
We mentioned earlier that the data stored in a DMP is

obtained from multiple sources, including online and o✏ine
sources. Integrating all this data incoming at very high rates
while meeting the latency and accuracy requirements poses
some serious challenges.

Note that in this paper, we use the term “data integra-
tion” loosely to cover the tasks of ingesting data from the
di↵erent input sources, performing the necessary data clean-
ing, and finally linking and merging the data before it gets
stored into the data warehouse with the integrated schema.
This is di↵erent from how the term is sometimes used in the
literature (e.g., [16]) to denote the ability to answer queries
posed over a virtual mediated schema by rewriting them
on the fly to sets of other queries that can be run on the
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underlying physical data sources.

3.1 Integrating Online Data
Online data is collected through front-end servers getting

events in real-time about users viewing ads, clicking on ads,
making some online actions (e.g., purchase, signup, etc), or
visiting a partner’s web page and getting a new cookie. On-
line events can also include RTB requests processed by a
partner DSP to bid for placing an ad for a particular user
viewing a particular page.

Scalability: The integration of online data poses multi-
ple challenges, starting with the scalability challenge. The
front-end servers collecting online data are normally spread
across multiple data centers around the globe – to be as close
as possible to their client-base. They have to process hun-
dreds of thousands of events every second. They also need to
ship their collected data back to the central data warehouse
of the DMP in a highly accurate and timely fashion.

These requirements are addressed by using a carefully de-
signed topology, dedicated high-speed links, and applying
various WAN optimization techniques [22] to connect the
network of data centers. The design can be scaled up as
tra�c increases by adding more hardware into the data cen-
ters or adding new data centers altogether.

Data Quality: Another challenge is related to the quality
of online data. For example, click fraud detection techniques
(e.g., [18]) are applied to eliminate duplicate (or fraudulent)
click events. This step is important to avoid over-charging
advertisers for clicks determined not to have any impact on
their ROI. It is also an important step to ensure the quality
of the data maintained in the DMP, and consequently the
quality of the generated analytics from this data.

Event Reconciliation: A third challenge has to do with
reconciling di↵erent-yet-correlated events, which normally
occur at di↵erent points in time. The most common exam-
ple is reconciling a user action along with the click event
that led to such an action, and in turn with the impression
that marks the beginning of the whole chain of events. Es-
tablishing these links is essential to give the credit to the
publishers where the ads were viewed and clicked, leading
to users ultimately taking action.

In general, this type of data linkage is achieved through
tracking ids passed within the HTTP requests and responses.
An exciting version of the problem is what is known as
multi-touch attribution (MTA), whose goal is to link (or to
attribute) a user’s action to multiple click and impression
events that took place prior to the action, potentially on
multiple publishers’ websites. This is in contrast to giving
the full credit to the last click/impression alone. MTA will
be described in more detail in Section 4.5.

3.2 Integrating Offline Data
O✏ine data refers to any information that third party

providers may have about users, and would like to make
available for advertisers to better target their audience. Part
of o✏ine data can also be first-party data that is supplied
by advertisers for their own customers; i.e., coming out of
their own private CRM systems.

Scalability: Turn DMP is connected to tens of data providers

providing hundreds of types of information to characterize
users from many di↵erent angles, leading to billions of in-
coming data records everyday. In addition, all these num-
bers are growing at a very high rate. It follows that having
a scalable infrastructure that can ingest and process these
vast amounts of data is crucial.

To address this challenge, Turn DMP enables multiple ex-
ternal and internal FTP connections so that data providers
can upload their data sets on a daily basis. Once uploaded,
multiple concurrent jobs are launched to copy the data files
to HDFS on the Hadoop cluster. Then another set of concur-
rent map-reduce jobs are started to link the incoming data
records to the existing user profiles in the data warehouse,
as will be described next. By exploiting the fact that the
ingestion and linkage tasks are highly parallelizable, this de-
sign can scale well with the data size by making use of more
hardware, and hence more parallelism.

Schema Heterogeneity: Clearly, the biggest challenge in
integrating o✏ine data is that it can potentially be about
virtually anything! In technical terms, this means it can
be drawn from any arbitrary domain, have any arbitrary
schema, and use any arbitrary vocabulary. Data diversity
can span anything from user demographics; to buying, view-
ing, browsing, and sporting habits; to financial information;
to political inclination; to interests in all sorts of subjects;
to intensions about, say, buying a new pair of shoes, car,
house, etc – to name just a few.

With the increasing number of data providers, and their
supplied data sets, a naive solution would attempt to man-
ually create a global schema for the DMP’s data warehouse
incorporating the individual schemas of all incoming data
sets, and then incrementally update the global schema when-
ever a new data provider/data set is added. This solution
will simply not scale.

Instead, Turn DMP requires partner data providers to
ensure that their supplied data sets follow a generic schema
that can be seamlessly integrated into the data warehouse.
The key insight is that all incoming data is meant to cat-
egorize users, so by definition it is categorical data. Based
on this observation, data providers are required to build
a taxonomy of categories for each data set. The main at-
tributes for each node in a taxonomy are: category id,
category name, parent category id, and taxonomy id. As
a result, all data sets will be then in the form of lists of user-
category assignments. This scheme greatly simplifies the in-
gestion process of external data without the need for adding
any special extensions to the data warehouse schema. At in-
gestion time, data sanity checks are performed to filter out
any data records not conforming with their associated tax-
onomies, thus shielding Turn DMP from dirty o✏ine data.

It is worth mentioning, that while some data providers
may be providing the same type of information about users,
Turn DMP intentionally leaves their data sets independent.
This approach enables advertisers to choose the data sets
of their favorite providers for use in building their ad
campaigns. That said, we are also exploring the option of
building new clearly-marked data sets that are the outcome
of merging multiple data sets from di↵erent providers.
These derived data sets would potentially have a higher
user coverage compared to any of the individual input data
sets. Of course achieving this goal involves tackling some
hard problems mosty related to ontology matching [20].
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Record Linkage: Another challenging problem with
the integration of o✏ine data is related to record linkage.
Data providers typically use their own user ids in their
supplied data records, and hence these records need to be
linked to their corresponding user profiles inside the data
warehouse. Since the incoming data records usually do not
contain any uniquely identifying information beyond the
provider’s user ids, the problem of record linkage is then
resolved using mapping tables.

Fortunately, a number of companies in the digital adver-
tising ecosystem, called match partners specialize in build-
ing and maintaining such mapping tables across the di↵er-
ent data providers and DMPs. Match partners can obtain
Personally Identifiable Information (PII) (e.g., email, mail-
ing address, phone number) about users by partnering with
publishers having large registration databases. This way
they can create records containing their own cookie ids along
with the corresponding user’s PII. The next step is to link
those records to the user records maintained by both data
providers and DMPs.

Linking with DMPs is usually done via an online process
called cookie synching. In this process, whenever the user’s
browser sends a request to the DMP (e.g., during ad serv-
ing), another request is created in the background and sent
to the match partner. This second request will have the
DMP’s user cookie id as a parameter. The match partner
will then be able to retrieve its own cookie id from the user’s
browser (or create a new one if it didn’t exist), thereby es-
tablishing the mapping to the DMP for that user. As a final
step, the match partner can create a third request back to
the DMP with its own cookie id as a parameter for the DMP
to also establish the mapping with the match partner. All
these requests are processed in the background before the
user’s originally requested web page is returned.

Linking with data providers can be di↵erent, especially if
they don’t have their own cookies (e.g., businesses with large
o✏ine databases in the retail or financial sectors, etc). Un-
like DMPs, these data providers have the users PII. Thus,
linkage is achieved by matching the PII available to both
match partners and data providers. Privacy-preserving tech-
niques can be used (e.g., [7]) to ensure that only the minimal
information needed for linkage is shared and nothing else.

Problems arise when the mapping tables provided by
multiple match partners are in conflict. Reasons may in-
clude the inaccuracy or outdatedness of the PII used by
some match partners. They may also include the fact that
some match partners use PII at the household level rather
than the individual level; e.g., mailing address or home
phone. Turn DMP can be configured to use one of mul-
tiple resolution strategies for this type of conflicts such as:
earliest-match, latest-match, majority-voting, and weighted-
majority-voting.

Note that in some cases, o✏ine data is keyed o↵ informa-
tion beyond just the user id. For example, it can be based on
the user ip, or it can be location-specific data (e.g., weather
data). In these cases, data ingestion is performed directly
without the help of external match partners, since the join
key information is already available to the DMP.

4. ANALYTICS
As mentioned in Section 2.3, the Analytics engine essen-

tially refers to Cheetah, which is a high-performance data
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Figure 4: Part of the Nested Schema Layout and
Sample Data for the AUP-Store

warehousing software developed by Turn. It resides at the
heart of Turn DMP. An earlier version of Cheetah was cov-
ered in [10]. It was also mentioned that the data store that
Cheetah manages is denoted by the AUP-Store. Therefore,
we might be using the terms “Cheetah” and “AUP-Store”
interchangeably in the following discussion.

In this section, we overview some of the key features and
optimizations in Cheetah, with an emphasis on the new ad-
vances since [10]. For example, the nested relational data
model was only briefly mentioned in [10]. In what follows,
we will highlight how choosing this model impacts all the
di↵erent layers involved in Cheetah. In particular, we will
describe the schema design, storage format, and data load-
ing aspects of Cheetah. We will also discuss the Cheetah
query language and some query optimization methods in-
cluding the extensive use of materialized views. Finally, we
will describe how Cheetah can support custom and built-in
machine learning methods for data analysis.

4.1 Schema, Storage, and Loading
Schema: As explained in Section 2.1, we adopt the
nested relational data model for the AUP-Store. Figure 4
partially shows the schema and the nested table structure
representing the AUP-Store. It can be seen that every AUP,
which represents a single record in the AUP-Store, has some
basic attributes (e.g., user id, ip address, browser type,
etc) and some nested tables (e.g., impressions, clicks,
etc). Recursively, each nested table has its own basic
attributes and potentially some inner nested tables too.
For example, in Figure 4, the impressions nested table has
an inner nested table, data provider attributions, which
keeps track of all the data providers whose data sets were
used during targeting, ultimately leading to the impression
event. The targeting and provider attribution processes
will be explained in more detail in Section 5. The actual
nested schema for the AUP-Store has tens of inner nested
tables, and hundreds of attributes.

Storage: The storage layer in Cheetah is currently
being switched from the standard row format to the record
columnar storage format, similar to [15]. The columnar
format (e.g., [12, 15, 17, 21]) is known to bring a lot of
benefits, such as higher compression ratios and the ability
to skip disk scanning for entire columns once deemed irrele-
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vant to the query being processed. With the nested model,
the implementation of the columnar format gets more
challenging compared to the relational model, particularly
because in the former case, not all columns are at the same
level in the schema hierarchy.

To overcome this issue in our design, the storage of each
column is divided into two parts: a header followed by a
payload. The payload simply contains the list of values in
the column (with some compression technique applied as
configured by the user). The header contains information
on how these values are distributed across each record in the
higher schema levels. More precisely, for each higher level
in the schema, there is a sub-header with as many entries
as there are records at that level. Each entry points to the
location of the first value in its corresponding record, and
also stores the number of values contained in that record.

This design is best illustrated by an example. Consider
there are two users (U1, U2), where U1 has one impression
(I11) and U2 has two impressions (I21, I22). Consider fur-
ther that I11, I21, and I22 have two records each in their
nested table data provider attributions (or dpa for short)
with providers: (P111, P112), (P211, P212), and (P221,
P222) respectively. In this case, a simplified version (e.g.,
compression is ignored for clarity) for the storage of the
column aup store.impressions.dpa.provider id can be rep-
resented as follows. The payload will be composed of the
following list of fields: (6, P111, P112, P211, P212, P221,
P222). The header will be of the form: (2, [2, loc(P111),
loc(P211)], [3, loc(P111), loc(P211), loc(P221)]), where
[. . . ] denotes a sub-header for a certain schema level
(aup store and aup store.impressions in this case). In gen-
eral, each list with multiple items is preceded with the num-
ber of items in the list.

Note that the information in the header is su�cient to re-
construct the nested records, mainly by aligning the pointers
in each higher level with the pointers in the lower levels to
build a hierarchy for the column values.

Since the AUP-Store is stored in HDFS, this large nested
table is split into multiple shards, where each shard is
a separate file containing a subset of the user profiles.
These profiles are stored using a PAX-like [9] format,
where individual columns are stored sequentially following
a file header that has pointers to the start location of each
column. Each individual column is stored using the format
described above. Similar to Trevni [5], each file occupies
a single HDFS block, whose size is set to a large value of
1GB or more. This guarantees the co-location of columns
and, at the same time, columns will span a large number of
user profiles leading to bigger compression ratios and I/O
benefits.

Loading: As discussed in Section 3, Turn DMP re-
ceives billions of data records every day both from online
and o✏ine sources, representing di↵erent types of entities.
The data integration engine performs the necessary sanity
checks, establishes the required links between certain
entities (e.g., impressions, clicks, and actions), and ensures
that each incoming record can be associated to a specific
Turn user id. The output of the data integration engine is a
set of sanitized and properly-linked records for each entity
type.

At the end of each day, such records are loaded into the
AUP-Store in a two-step process. In the first step, a delta

AUP-Store is created for that day. The delta AUP-Store
has exactly the same nested structure as the current AUP-
Store. In particular, all the data records belonging to a
given user are used to populate the di↵erent nested tables
in an initially empty AUP for that user. Similar to the
current AUP-Store, the delta AUP-Store is also sharded. It
is crucial for the correctness of the second step, as will be
shown next, that the sharding strategy used to build the
delta AUP-Store is identical to the one used for the current
AUP-Store. The default sharding strategy in Cheetah is a
uniform distribution, where for n shards, user i is stored in
shard (i%n).

The second step is responsible for merging the two stores,
delta and current, to create the new current AUP-Store. For
this purpose, a merge-join is used. Since each shard in both
input stores cover the same range of users, and since we
also guarantee during the creation process that user profiles
in each shard are sorted by user ids, the merging process
becomes straightforward – each pair of corresponding shards
are merged in a single linear scan. Merging two user profiles
involves copying all data records from the two input profiles
into the proper nested tables of the newly created profile.
The entire process is implemented using map-reduce jobs,
exploiting the fact that it is inherently parallelizable.

4.2 Cheetah Query Language
The Cheetah Query Language (CQL) was first described

in [10]. CQL is an SQL-like query language, where one of
its key goals is to be as simple as possible for analysts (es-
pecially in the digital advertising world) to quickly grasp
and use. In this section, we focus on CQL’s extensions to
query nested relational data, which was not covered in [10].
Even though CQL can query nested data, its output is still
relational and not nested. The key features can be demon-
strated through some sample queries.

Consider the example mentioned in Section 2.1 about
measuring the correlation between the frequency of visiting
news sites and the click-through-rate (CTR) for ads related
to stock trading. This analysis can be performed using the
following nested CQL query (say for 2012’s data).

Q1: SELECT (subquery 1a / 365) news visits per day,
(subquery 1b / subquery 1c) stock trading ads ctr,
count(*)
FROM aup store
DATES [2012 01 01, 2012 12 31]

where,
subquery 1a = SELECT count(*)

FROM aup store.impressions
WHERE url type = ‘news’

subquery 1b = SELECT count(*)
FROM aup store.clicks
WHERE ad type = ‘stock-trading’

subquery 1c = SELECT count(*)
FROM aup store.impressions
WHERE ad type = ‘stock-trading’

Q1 builds a two-dimensional histogram with one dimen-
sion representing the average daily frequency at which a
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user visited news sites in 2012, and the other dimension rep-
resenting the user’s CTR for ads related to stock trading.
The histogram counts the number of users falling into each
bucket defined by one of the possible combinations for the
two dimensions. The correlation between the two variables
can then easily be computed from Q1’s answer.

Note that each subquery in Q1 operates on one of the
nested tables in the user profile. In general, a subquery
in CQL can operate on arbitrarily deep nested tables (e.g,
aup store.impressions.dpa). Also, the scope of subqueries
in CQL is implicitly limited to individual user profiles. This
is the commonly desired semantics, as can be seen in the
example of Q1. Furthermore, if we relaxed this constraint
by allowing the correlation of nested tables across profiles
rather than only within profiles, the performance can become
extremely slow.

In terms of CQL’s succinctness, some simplifications were
already described in [10] such as the omission of the GROUP
BY clause (where all queries implicitly group by the non-
aggregate columns in the SELECT clause), and the use of
the DATES clause to easily specify the date range of interest.

Along the same lines, CQL provides a simple option
to express subqueries using what we refer to as list
functions. For example, subquery 1a can be expressed
as “list count(aup store.impressions, url type, ‘news

0)”.
Other list functions include list sum(), list min(),
list max(), and list has(). Using list has(), whose return
type is boolean, corresponds to using the exists keyword
with subqueries in SQL. Since many of the CQL queries
that run in Turn DMP require several subqueries, users
were generally appreciative of the simplification o↵ered by
list functions.

The arguments for a list function start with the input
nested table followed by a number of filters. In the case
of independent subqueries (e.g., subqueries 1a, 1b, and 1c),
each filter is in the form of an attribute name followed by
a single constant value or a list of of alternative values. In
the case of dependent subqueries, at least one filter is in the
form of a pair of attributes: the first being from the input
table of the subquery, and the second being from the outer
query.

To show an example for queries with list functions
capturing dependent subqueries, consider Q2 below. This
query shows the distribution of the number of unique
US users broken down by advertiser, and further, by the
frequency of viewing ads from each such advertiser in 2012.

Q2: SELECT advertiser id,
list count(aup store.impressions,
advertiser id, outer.advertiser id) frequency,
count(distinct user id)
FROM aup store.impressions outer
DATES [2012 01 01, 2012 12 31]
WHERE country = ‘USA’

Clearly, list functions can only express certain classes of
subqueries, and not any general subquery. For instance,
filtering is limited to conjunctions of disjunctions. How-
ever, our experience with Turn DMP shows that they have
been su�cient to fulfill the vast majority of business require-
ments in the context of digital advertising analytics. It is
also worth mentioning that while CQL does not currently

support explicit joins, much of the needed join functionality
(also in the context of digital advertising analytics) can be
achieved through the use of dependent subqueries (or list
functions).

4.3 Query Processing and Optimization
Query Processing: In Cheetah, query processing is per-
formed using the map-reduce programming model. Each
query is executed using a single Hadoop job. The details of
query planning and execution for relational data were de-
scribed in [10]. In a nutshell, mappers are responsible for
the selection and projection operations in addition to partial
aggregation over their input data splits. Reducers, on the
other hand, are responsible for final aggregation and poten-
tially final selection based on the HAVING clause. More-
over, if required, reducers perform local sorting of output
records, and then the sorted sublists output by each reducer
are merged at a central location before the final answer is
returned.

The same principles apply when processing nested queries
over nested data. The two main di↵erences are the intro-
duction of: (a) the unnest operator, and (b) the list function
operators.

• The unnest operator: Since the FROM clause of a CQL
query can refer to nested tables that are arbitrarily
deep in the schema hierarchy, and at the same time
query results should be relational, it was necessary to
introduce the unnest operator during query process-
ing. This operator takes a nested record as input and
generates multiple output records from some nested
table inside that input record. It also expands each
output record with attribute values inherited from the
upper-level enclosing record. After unnesting, the ex-
panded records then flow into other operators in the
query plan for full processing.

• The list function operators: Processing a given list
function is somewhat similar to processing the outer
query itself. The usual steps of scanning, selection,
projection, and aggregation are performed for the
specified input nested table. However, all these steps
are fully performed in memory given that the scope of
each list function is limited to the user profile, which is
already loaded in memory by the time a list function is
processed. For some list functions, such as list has(),
scanning may stop early – as soon as it is determined to
return true. Also, independent list functions are com-
puted once for each user profile and then cached. De-
pendent list functions, on the other hand, which take
attribute values from the outer query as parameters,
potentially need to be re-computed for each record pro-
cessed in the outer query.

Query Optimization: In addition to using the nested data
model and columnar storage to improve performance, Chee-
tah also employs a number of optimization techniques to
speed up CQL query processing. To name a few,

• Lazy unnesting: A naive approach for unnesting is to
always fully unnest input records down to the level of
the queried table in the schema hierarchy, and then
apply selection and other operations. A better ap-
proach is to interleave unnesting with selection. Before
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unnesting to a deeper level, we first check all selection
predicates that are applicable at the current level. If a
predicate fails for some upper-level record, then we can
safely filter out its lower-level nested records without
having to unnest and check each of them individually.
We call this approach lazy unnesting.

• Pre-computation of dependent list functions: Queries
with dependent list functions are usually among
the most expensive (and hence optimization-worthy)
queries. We considered three possible implementations
for processing a dependent list function: (a) nested
loop, where for each record in the outer query, the list
function is computed from scratch, (b) cached nested
loop, which is similar to the previous approach except
that for each parameter combination, the list function
is computed once and then cached (in a hashtable) –
to be looked-up by subsequent records in the outer
query with the same parameter combination, and (c)
hash-join, where the list function is pre-computed for
all possible parameter combinations in a single pass –
also resulting in a hashtable to be looked-up by records
in the outer query. Note that if the outer query table
has p records with pu unique parameter combinations
and the inner query table has q records with qu unique
parameter combinations, then the complexity of the
above three approaches can be shown to be as follows:
(a) O(pq), (b) O(puq+p), and (c) O(p+q). This clearly
shows the superiority of the pre-computation/hash-
join approach, which is used in Cheetah.

• Predicate re-ordering: For queries (and subqueries)
with multiple selection predicates, Cheetah re-orders
those predicates based on their estimated selectivity
and processing complexity. This way, highly selective
and low-cost predicates are checked first, which lowers
the probability of having to check the other predicates
at even higher costs.

• Multi-query execution: Cheetah allows multiple
queries to be submitted simultaneously and executed
in a batch mode, given that they operate on the same
input data. This data is scanned only once for all
those queries. Also the deserialization cost, as well as
the setup cost for mappers and reducers, is incurred
once. In addition, if some of these queries share the
same list functions, then they share their computation
too.

• Materialized views: Cheetah makes extensive use of
materialized views to improve query performance. The
following subsection is dedicated to explaining the dif-
ferent types of materialized views used in Cheetah.

Figure 5 gives an example that illustrates the query pro-
cessing and optimization aspects in Cheetah. It shows the
query plan for executing Q2, and how it is distributed across
multiple mappers and reducers. The lazy unnesting opti-
mization is applied since only user profiles with the correct
country (USA) are unnested further. Otherwise, they are
discarded. Also the list count() function is pre-computed
for all possible advertiser id’s and the result is hash-joined
with the filtered impression records from the outer query.
Finally the grouping and aggregation steps are performed
first locally in each mapper and then globally in the reduc-
ers.
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Figure 5: Distributed Query Plan for Q2 with n

Mappers and m Reducers

4.4 Materialized Views
The goal of building materialized views is to save some

pre-processing e↵ort during query execution. Before execut-
ing a query, the query planner in Cheetah, considers multi-
ple execution plans for that query. In particular, it decides
whether the query needs to run on the full AUP-Store, or if
one of the existing materialized views can be used to answer
the query. This step is usually called view matching. If the
query matches more than one view, then the one expected to
minimize the cost is used. At this point, a second step called
query re-writing is performed, where the query is re-written
to be expressed in terms of the materialized view instead of
the full AUP-Store. This is generally a hard problem [14],
but in our special context, it is usually feasible, as will be
shown shortly.

At a high level, two di↵erent types of materialized views
are used in Cheetah: aggregation-based and partitioning-
based. The partitioning-based materialized views are further
divided into vertical partitioning, horizontal partitioning,
and combined partitioning.

Aggregation-Based Materialized Views: These
materialized views use the relational data model. They typ-
ically summarize the performance of advertising campaigns.
Each view is defined by a collection of dimensions and
metrics. So for example, a materialized view can capture for
each advertising campaign by each advertiser in each region
on each day, and so on, the key campaign performance
metrics such as the total number of impressions, clicks, and
actions.

A query is considered to match one of these views if
its grouping and filtering attributes are a subset of the
view dimensions, and its aggregate columns match the
metrics in the view. Aggregation-based views normally get
higher priority in answering matching queries compared
to partitioning-based views. This is because in the former
case, a good amount of the query processing has already
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been done. In the latter case, the benefits mainly come
from fully processing the query over a smaller input.

Vertical Partitioning Materialized Views: Un-
like aggregation-based views, these views have a nested
relational data model similar to the full AUP-Store.
Specifically, they have a pruned version of AUP-Store’s
hierarchical schema. This leads to smaller-sized versions of
the AUP-Store that can be scanned and processed faster.

We considered two types of vertical partitioning: coarse-
grained and fine-grained. By coarse-grained, we mean
that vertical partitioning occurs only at the bound-
aries of the higher-level nested tables in the AUP-Store
schema. For example, tables like aup store.impressions or
aup store.clicks are either completely included in a given
vertical partition or completely excluded.

The fine-grained version, on the other-hand, enables the
selection of individual columns (leaves in the schema hierar-
chy) from any nested table to include in a given vertical par-
tition. To identify the best fine-grained vertical partitions
to build with respect to the query workload, we extended a
workload-aware vertical partitioning algorithm [8] to handle
nested data. The details of the algorithm are beyond the
scope of this paper.

A query is considered to match a certain vertical partition
if it includes all the columns referred to by that query. The
smallest vertical partition matching a query is used as the
input for query processing. While coarse-grained vertical
partitioning is easier to implement, fine-grained vertical
partitioning is more flexible and hence can achieve bigger
gains in query processing – given the same budget of disk
space.

Horizontal Partitioning Materialized Views: Similar
to vertical partitions, horizontal partitions also have a
nested relational data model. However, unlike vertical
partitions, they have the exact same hierarchical schema as
the AUP-Store. The key di↵erence is that the data records
themselves are partitioned based on some partitioning
attribute(s).

We also considered two types of horizontal partitioning:
deep and shallow, depending on whether the partitioning at-
tributes are at deep levels in the schema hierarchy or only
at the top level. For example, deep horizontal partitioning
can be applied on the AUP-Store based on advertiser id.
This implies creating a separate AUP-Store for each adver-
tiser. Of course, nested tables with no advertiser id will
have to be replicated in all partitions. This way, queries
interested in some advertiser-specific information can only
focus on the partition for that advertiser. Note that in this
type of horizontal partitioning, the same user may exist in
multiple partitions – as their profile will be split across all
those partitions.

By shallow horizontal partitioning, we mean that each
user profile will exist in a single partition only. One possible
way to achieve this type of partitioning is to cluster users
based on their activity life spans. Users with similar earliest
and latest activity times (top-level attributes) will fall into
the same partition together. Thus, queries interested in
certain time intervals can skip partitions whose earliest
activity time is beyond the interval of interest or whose
latest activity time is before the interval of interest.

Combined Partitioning Materialized Views: We
note that the strategies for vertical partitioning, deep
horizontal partitioning, and shallow horizontal partitioning
are all orthogonal, and hence can be combined. In other
words, it is possible to have a single partition having
a schema with only a subset of the columns in the full
AUP-Store, focusing only on a specific advertiser, and
including users whose activity life spans are very similar –
all at the same time. This combined partitioning scheme
can generally achieve the best results in terms of decreasing
the amount of data needed to process for answering queries,
and consequently in terms of the overall query performance.

4.5 Advanced Analytics
CQL allows for SQL-based aggregations and correlations

between di↵erent audience events. Sometimes, marketers
look for more advanced analytics, such as modeling and ma-
chine learning. One good example is multi-touch attribution
(MTA) [19].

MTA is a billing model that defines how advertisers dis-
tribute credit (e.g., customer purchase) to their campaigns
in di↵erent media channels (video, display, mobile, etc.). For
example, suppose a user sees a car ad on her web browser.
Later, she sees a TV commercial about the same car again,
which makes her more interested. Finally, after she sees this
ad again on her mobile phone, she takes the action and reg-
isters for a test drive. Marketers know that all these media
channels contribute to the final conversion of an audience.
However, the current common practice is last-touch attri-
bution (LTA), where the last impression, the one on the
mobile phone, gets all the credit. A better and more fair
advertising ecosystem is expected to distribute the credit to
all the channels that contributed to her final action. This
is the so-called multi-touch attribution problem. In Turn
DMP, di↵erent MTA models are incorporated as user de-
fined functions (UDFs) into CQL. This way CQL users have
the freedom to feed the MTA algorithm with any arbitrary
input data.

As a final remark, CQL as well as the data mining UDFs
are exposed to external clients as a data service in the cloud
so that they can perform ad-hoc analysis and obtain very
unique insights on their own. Some examples are logistic
regression, k-means clustering, and association rule mining.

5. REAL-TIME ACTIVATION
The main purpose of the real-time activation engine is to

use the data available about users (also about web pages
and other types of data) as well as the insights built on top
of this data to drive bidding decisions in real-time. This sec-
tion describes some design aspects of the RUP-Store, which
makes all these types of data available in real-time. It also
describes the di↵erent types of computations needed to sup-
port decision making at bidding time, and how these needs
are addressed.

5.1 Runtime User Profile Store
Similar to AUPs, RUPs also have a nested data model

to capture the di↵erent types of information about users.
However, the amount of information stored inside each RUP
is usually much smaller than its corresponding AUP - to
enable faster retrieval and processing. Generally, the most
recent information gets higher priority to be kept in the
RUP.
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The RUP-Store is a high-performance key-value store that
was developed by Turn, with keys being user ids and val-
ues being RUPs. It is designed to provide low-latency
read/write access, typically within a few milliseconds to sup-
port a peak 1,000,000 queries per second across multiple,
geographically distributed data centers.

The design of the RUP-Store is inspired by Dynamo [11]
and Voldemort [2]. In particular, we have built a software
layer on top of Berkeley DB (BDB) that uses consistent
hashing to achieve sharding, replication, consistency, and
fault tolerance. It also employs flash drives as physical stor-
age – since hard disks are not fast enough for our real-time
applications. The RUP-Store is replicated locally within
each data center as well as globally across data centers to
achieve high availability and local low-latency access.

Specifically, to guarantee real-time synchronization of
RUPs across data centers, we have built an infrastructure
called the replication bus (See Figure 3) that incrementally
replicates user events across data centers and distributes
them to profile stores to keep the di↵erent replicas of the
RUP-Store synchronized. The replication bus is horizon-
tally scalable and highly optimized to be able to process
tens of billions of events daily between data centers with an
average end-to-end SLA of within a few seconds.

Moreover, unlike most general-purpose key-value stores,
the RUP-Store enables the incremental update of existing
RUPs whenever new user events arrive through both online
and o✏ine data ingestion. Upon event integration, specific
business logics may be applied locally in the RUP servers,
e.g., imposing a cap on the number of events stored for each
user, or doing pre-aggregation on raw events. This approach
is much more e�cient than applying business logics on the
client side, which requires costly exchanges of full RUPs back
and forth between the clients and the RUP servers.

Finally, it is worth mentioning that the Turn-developed
key-value store can be used to maintain other types of pro-
files beyond just RUPs. For example, it can be used to
maintain profiles for web pages, weather data, stock-market
data, etc.

5.2 Real-time Processing
Recall from Section 2.2 that from the DSP’s perspective,

given a user id and a page URL, the two key decisions to
make are: which ad to display on this page, and how much
to bid for it. Making those two decisions can potentially
trigger a series of requests to the activation component of
the DMP to be answered in real-time.

In particular, since each currently running ad campaign is
defined by a user segment, then it is desired to know which
segments the user in the bid request belongs to. This re-
quires a lookup in the RUP-Store to get the user profile,
followed by multiple segment evaluations against that pro-
file. User segments are typically complex logical expressions
defined on the user attributes, and are provided by the ad-
vertisers. The user attributes used in segment definitions
can either capture the user’s online behavior or be part of
the data ingested o✏ine for that user.

Some common examples of online behavior attributes are
the frequency and recency attributes. Frequency represents
the number of, say, ad impressions the user made in, say,
the past week, while recency represents how long ago the
user made her last ad impression for instance. Note that
computing this type of attributes may require non-trivial

processing.
When segment definitions include attributes based on

third party ingested data, then the additional processing
of data provider attribution is also needed. The goal of this
attribution step is to identify how much credit each data
provider should get in case the bid is won and the ad im-
pression is made. For example if a segment is defined to
be the ANDing of the four attributes: A, B, C, and D,
where A, B, and C are provided by provider P1, while D

is provided by provider P2; and if it was determined that
a given user belonged to that segment and she was served
an ad accordingly, then P1 would get 75% of the credit and
P2 would get the remaining 25%. Making this computa-
tion is important to fairly share the revenue with the data
providers.

Another example use of real time computation on user
profile is evaluating a user against some machine-learned
models. These models can be specified by the users of the
DMP in some proprietary format or by using industry stan-
dard model specification language such as Predictive Model
Markup Language (PMML) [1]. An example model can be
something that either predicts a car buyer based on latest
online activity or a person likely to apply for a credit card.
Having such knowledge in real time is immensely valuable
to Turn clients as they can use these predicted signals to
bias the campaigns or take other actions in real time.

In addition to ad selection, which is focused on finding the
ad campaigns matching the user in the bid request, deciding
on the bid price may also require processing the user profile.
A machine learning model, for instance, may predict that a
given user is very valuable and hence worth a high bid price,
or vice versa.

All these examples highlight the intensive real-time pro-
cessing requirements, along with the high and ever-growing
rate of requests that the real-time activation side of a DMP
has to deal with. They also highlight how challenging build-
ing such systems can be.

6. CONCLUSIONS AND FUTURE WORK
Digital advertising has now reached a state where the

pipeline between publishers on the supply side and advertis-
ers on the demand site includes many technology partners to
help publishers and advertisers deal with real-time optimal
decisioning at huge scale. Among these technology part-
ners, data management platforms occupy a prominent role
as the hub where all data relevant to reaching the audience
over di↵erent channels is integrated, analyzed, and shared.
In this paper, we have given a high-level overview of Turn
DMP as an example demand side platform. We hope that
it can serve as a starting point for further exploration.

We predict that due to the e�ciencies gained through real-
time decisioning and the scales involved with more online
usage, the future of advertising will be more real-time. This
implies more data and components in real time. We are
planning to take our DMP in this direction.
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