
WOO: A Scalable and Multi-tenant Platform for
Continuous Knowledge Base Synthesis

Kedar Bellare

⇤

Facebook

kedar.bellare@gmail.com

Carlo Curino

⇤

Microsoft

ccurino@microsoft.com

Ashwin Machanavajihala

⇤

Duke University

ashwin@cs.duke.edu

Peter Mika

Yahoo!

pmika@yahoo-inc.com

Mandar Rahurkar

Yahoo!

rahurkar@gmail.com

Aamod Sane

Yahoo!

aamod@yahoo-inc.com

ABSTRACT
Search, exploration and social experience on the Web has re-
cently undergone tremendous changes with search engines,
web portals and social networks o↵ering a di↵erent perspec-
tive on information discovery and consumption. This new
perspective is aimed at capturing user intents, and providing
richer and highly connected experiences. The new battle-
ground revolves around technologies for the ingestion, dis-
ambiguation and enrichment of entities from a variety of
structured and unstructured data sources – we refer to this
process as knowledge base synthesis. This paper presents
the design, implementation and production deployment of
the Web Of Objects (WOO) system, a Hadoop-based plat-
form tackling such challenges. WOO has been designed and
implemented to enable various products in Yahoo! to syn-
thesize knowledge bases (KBs) of entities relevant to their
domains. Currently, the implementation of WOO we de-
scribe is used by various Yahoo! properties such as Intonow,
Yahoo! Local, Yahoo! Events and Yahoo! Search. This pa-
per highlights: (i) challenges that arise in designing, build-
ing and operating a platform that handles multi-domain,
multi-version, and multi-tenant disambiguation of web-scale
knowledge bases (hundreds of millions of entities), (ii) the
architecture and technical solutions we devised, and (iii) an
evaluation on real-world production datasets.

1. INTRODUCTION
Traditionally, we have seen three modes of information

discovery and consumption – (i) web search has focused on
a document finding experience, (ii) structured vertical por-
tals focused on search and browsing experiences around spe-
cific classes of entities (movies, businesses, products, etc.),

⇤Authors in alphabetical order. Additional authors listed in
Sec. 13. Work done while at Yahoo! Research

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Articles from this volume were invited to present

their results at The 39th International Conference on Very Large Data Bases,

August 26th - 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 11
Copyright 2013 VLDB Endowment 2150-8097/13/09... $ 10.00.

and (iii) social networks target communications and interac-
tions between people. These worlds are starting to collide,
with large web portals working to create a fully inter-linked
graph of entities [8], search companies working to apply such
graphs to the problem of semantic search [10], and social net-
works aiming to capture user interests through interactions
with real-world entities.

Realizing this ambitious goal requires technologies for the
ingestion, disambiguation and enrichment of entities from
a variety of structured and unstructured data sources. We
refer to this entire process as knowledge base synthesis. Over
time several web products within Yahoo! have faced similar
problems and devised entity extraction, disambiguation and
enrichment solutions catering specifically to their domain
(e.g., Movies, Locals etc.,) and application needs. In this
paper, we describe an ongoing e↵ort to tackle such scenarios
in a unified way: the Web of Objects (WOO) initiative—a
highly scalable and multi-tenant knowledge base synthesis
platform.

The WOO platform is designed to operate on hundreds
of millions of entities (and tens of billions of relationship
triples) ingested daily from hundreds of semi-structured data
feeds and to provide a flexible and extensible platform that
can easily support the needs of multiple tenants (the many
Yahoo! web properties such as Locals, Movies, Deals, Events,
IntoNow), while abstracting out common parts of the solu-
tion in a platform layer.

The sheer scale of the data we handle, together with the
need to cope with diverse domains, requirements from mul-
tiple tenants, the need to support multiple versions of the
knowledge bases, and to operate in specific production envi-
ronment, exposed key challenges we believe are not fully ad-
dressed (or maybe even known) today, and yet are of growing
relevance within many large web companies.

The list of such problems includes: (1) support for persis-
tent identifiers in face of constant data evolution, (2) sup-
port for multiple tenants (with di↵erent service level require-
ments, di↵erent data sizes, di↵erent semantic interpretation
of concepts), (3) handling of skew for very large scale entity
matching problems, (4) support for very rich and complex
entities, and (5) supporting human curation and algorithmic
decisions within the same pipeline.

In this paper, we will summarize (Sec. 2) the business
context and the corresponding requirements in a way that
should provide valuable insight on the characteristics of the

1114

problems faced at Yahoo! and within our industry.
We then proceed to detail the architecture of our knowl-

edge base synthesis platform (Sec. 3), and present some of
the key research challenges we faced in building and oper-
ating such a system (Sec. 4-9), such as machine-learning
based entity matching at scale, persistent ID management,
curation etc. The technical choices we present are the re-
sult of careful scientific studies, and pragmatic engineering
requirements imposed by our production settings and busi-
ness needs.

The system we describe is currently running in produc-
tion, and we thus report as experimental evaluation some of
the results we obtain on production datasets (Sec. 10).

Facets of WOO we describe is what we call a “platform-
play”, where multiple tenants leverage a common infrastruc-
ture for knowledge base synthesis in their domain. The next
step of our vision foresees the many knowledge basis (KBs)
produced by WOO to be further integrated and served by
a common infrastructures, in what would be considered a
“data-play”, with new users accessing directly a shared dis-
ambiguated KB.

2. MOTIVATION AND REQUIREMENTS
In this section, (1) we briefly describe the business con-

text within which we have designed, developed and deployed
the Web Of Objects platform, (2) we derive some of the key
requirements, and (3) we introduce some of our broad tech-
nological decisions. This will frame the rest of the presenta-
tion and help understand how challenges we face influence
our design decisions and imposed priorities in the develop-
ment of the platform itself.

2.1 Business Context
Yahoo! is one of the largest web companies in the world,

and through many years of organic growth and acquisitions
has become a complex business reality comprised of many
sites including our popular Search engine, and several verti-
cals such as Locals, Events, Sports, News, and many others.

Over the years each of the web properties of Yahoo! has
independently attempted to solve the core problem of build-
ing “high quality” knowledge bases extracting content from
disparate and noisy data sources (paid data feeds, user gen-
erated data, web crawl, etc.) The WOO project represents a
unified approach to tackle this problem systematically across
the entire company, and as such, it is subject to requirements
from multiple business units—we will refer to such units as
customers or tenants of our platform.

The ultimate goal of most of the platform customers is
to provide to Yahoo’s over 700 million users serendipitous
access to fresh, rich and authoritative content.

Desiderata. The underlying knowledge base should satisfy
the following properties:

P1 Coverage: This measures the fraction of real-world en-
tities included in the knowledge base (KB). Higher cov-
erage means that even lesser known (tail) entities are
included in the KB. This is particularly critical for sce-
narios where users care dearly about the long-tail: e.g.,
local businesses.

P2 Accuracy: The information in the knowledge base must
be accurate. For instance, a wrong home page or a
incorrect phone number associated with a restaurant
can be frustrating for a user.

P3 Linkage: This describes the level of connectivity be-
tween entities. Higher linkage means richer naviga-
tional experiences across entities. For instance, a knowl-
edge base of movies and actors is more useful to users
if actors are linked to the movies they acted in.

P4 Identifiability: One and only one identifier (e.g., URL)
should be consistently used to refer to a unique real-
world entity. This is perceived by the user as a form
of coherency of the KB with the real world, and it is
one of the key problems we tackle.

P5 Persistence / Content Continuity: Entities in the real
world change over time – actors change their mari-
tal relationships, new restaurants open in place of old
ones that close, etc. A key requirement is variants
of the same entity across time must be linked, prefer-
ably by the same identifier (e.g., URL), and their con-
tent should reflect the lifecycle of the entity in the real
world.

P6 Multi-tenant: The KB that is constructed must be
useful to multiple portals. Multiple tenants might
have di↵erent freshness and quality requirements, care
about a di↵erent aspect of the KB, and even have vary-
ing interpretations of common entity types.

Challenges. The features above are deemed to be crucial
by our customers in order to drive user engagement and
creating coherent user experiences. Meeting these require-
ments helps us frame the key challenges we need to address.
Specifically, we need to scale in three important dimensions
– size, domains, and across time. Recent work [9] has shown
that constructing a KB of entities and their attributes with
high coverage requires integrating information from a num-
ber of sources (specifically, tens of thousands of sites). This
means handling:

C1 Large Data size: handling graphs of hundreds of mil-
lions of entities with hundreds of attributes for each
entity.

C2 Heterogenous Input Formats/Schemas: importing data
from highly heterogeneous input formats and schemas

C3 Diverse Data Quality: adapting to both high quality
data sources (e.g., clean feeds from advertisers) and
noisy ones (e.g., user generated content or content ex-
tracted from text and html pages).

Next, the multi-tenancy and linkage requirements moti-
vate the need to build solutions that can easily work across
multiple domains. This creates the following challenges:

C4 Multiple Domains: allowing to easily customize the
solution to handle new domains, and cross-domains
operations.

C5 Heterogenous Output Formats/Schemas: allowing cus-
tomizable export functionalities is vital to cope with a
complex business reality.

Finally, the real world changes over time. Therefore, we
need to ensure that the knowledge base we synthesize reflects
the life cycle of the data in the real world. Hence, we need
to cope with:

C6 History-aware KBs: ensuring that historical versions
of the entities in the knowledge base are used for syn-
thesis and are exposed to the users.

1115

C7 Persistence: ensures that di↵erent temporal versions of
the same entity are linked (preferably using the same
identifier). This is an important challenge, especially
in a Web portal setting, where entities in a knowledge
base are exposed to users. These users associate in-
formation (search queries, tags, photos, reviews, book-
marks etc.), which we call eyeballs, and persistence en-
sures that these eyeballs are correctly associated with
the right entities despite changes to the entities in the
real world.

C8 Incremental Maintenance: is required instead of bulk
processing when the number of updates to the real
world are continuous and need to be reflected in real-
time.

In summary, we are interested in “scalable, multi-tenant,
and continuous knowledge base synthesis”, the process of
continuously extracting, disambiguating, curating and con-
sistently maintaining massive collections of linked entities
extracted from potentially noisy and heterogeneous data
sources on behalf of multiple tenants. This problem is closely
related to a series of classic problems such as data integra-
tion and data exchange [23], entity de-duplication [11], data
archival and schema evolution [19], yet it introduces certain
novel aspects such as scalability, multi-tenancy, and tempo-
ral continuity or persistence.

2.2 Design Decisions
In the rest of this section, we briefly discuss main design

decisions and how they were driven from the requirements
and challenges mentioned previously. The rest of the paper
dives more deeply in the architecture and describes in detail
system design and building.

Entity Resolution on Hadoop. Many of the data sets we
encounter at Yahoo! contain hundreds of millions of enti-
ties with hundreds of attributes. Entity resolution at such a
scale fundamentally requires distributed computation frame-
work. In the future, we expect our system to be applied to
larger corpora with billions or hundreds of billions of enti-
ties. Therefore, we leverage the access to a internal massive
shared Hadoop infrastructure for performing large-scale dis-
tributed computations. Our approach is similar to many of
the recently proposed approaches to large-scale entity reso-
lution using MapReduce [14, 18].

Plugin-based Architecture for Multi-tenancy. Many of
our challenges (especially, C4 and C5) arise due to the fact
that our knowledge base is used to synthesize entities from
many di↵erent domains. WOO is designed as a platform
which allows for domain level customization as required by
our internal products. Our platform handles the overall pro-
cess flow and scaling of algorithms while allowing clients to
customize certain modules by way of plugins. Customers
can focus on implementing their own plugins to handle nu-
ances of their data without getting distracted by scaling for
grid which is managed by the platform. This design eases
the deployment and evolution of the platform by decoupling
customer and platform code bases by means of clear inter-
faces.

Batch and Incremental Processing of Updates. Our sys-
tem must handle updates to the entities in the knowledge

base (typically impacting a few thousand entities a day) un-
der stringent service level agreements (SLAs). The combi-
nation of high quality matching and the need to support
stringent SLAs force us to provide both a batch pipeline,
and a mechanism to incrementally integrate changes, called
Fastpath. The latter allows rapid entity resolution leverag-
ing the output of the batch deduplication as a reference KB,
thus satisfying the SLAs. However, this incremental resolu-
tion can result in errors since it does not have a global view
of the data. Such errors are fixed by periodically running
the batch de-duplication algorithm.

Scalable Editorial Judgments Tools. Our pipeline makes
two type of algorithmic decisions: (a) matching, that is,
which objects to merge because they are duplicates, and
(b) content continuity, which is how to assign persistent
ids to object clusters across time. Since our algorithms
are statistical, they can make mistakes in these decisions.
Hence, we need a way that editors can override both of
these decisions. For these reasons, we provide a mecha-
nism for the editors to explicitly say whether two objects
should be merged or not. It also provides a way of ty-
ing certain objects to persistent IDs. One approach is to
add speciality override hooks in di↵erent system compo-
nents, but this adds even more complexity to an already
complex system. Instead, we annotate source objects with
additional attributes such asmust-merge-with-target-objects,
should-not-merge-with-target-objects and desired-persistent-
ID. These annotations are then used as very strong evidence
while deciding to merge or split entities and during assign-
ment of persistent IDs.

3. ARCHITECTURE OVERVIEW
In this section, we describe the system architecture, the

overall data flow in the system and briefly introduce the
design of each functional component.

Figure 1 provides a pictorial representation of the archi-
tecture of our platform. Boxes with round corners represent
software components (yellow boxes are used to distinguish
customizable parts), arrows represent data flows and are la-
belled using (document-like) rectangles describing the type
of data exchanged between software components. Colored
backgrounds are used to group of software components in
functional subsystems or “phases” of our pipeline.

Each software component depicted here constitutes a set
of map-reduce jobs, written in PIG with generic UDFs, that
run over Hadoop. With support from the WOO team the
platform is customized to match the needs of each internal
customer, and is run for such customer on a shared grid.
Resulting KBs are shared (and integrated) across customers
whenever relevant, and leveraged to create a unified KB.

Input / Output. The input of the platform is a collection
of structured or semi-structured data sources. Their data
formats can include XML feeds, RDF content, Relational
Databases, or other custom formats. The output is a fully
integrated and de-duplicated KB, both in a format consis-
tent with the WOO data model/schema and in any custom
format required by the platform customers.

Importer. In the first step of our pipeline the importer,
whose aim is to provide uniformity, converts each data source
to a common format called the WOO schema. The abstract
data model of our system is conceptually equivalent to RDF

1116

WOO Platform
BUILDER

Woo
Schema

Importer

plugin1plugin1plugin

Blocker
Woo

Parcel
a,a',d,e

Pairs
a-a'
a-e

Group
Refiner{a,a',b}

{e}
{c,f}

PID
Assign. Clusters

{a,a',b,e}
{c,f}

BlenderExporter
Woo

Schema
{A'B,E,

CF}

Custom
Format
{A'B,E,

CF}

FINALIZEREXPORTER

Woo
Parcel
b,c,e,f

plugin1plugin1plugin

plugin1plugin1pluginplugin1plugin1plugin
plugin1plugin1plugin

plugin1plugin1plugin

b-e
c-f

PairsMatcher

plugin1plugin1plugin
Woo

Schema
A,B,C,
D,E,F

Connected
Component
Generator

Woo
Schema
{A'B,E,

CF}

IN
PU

T
DA

TA
 S

O
UR

CE
S

O
UT

PU
T

KB
s

Previous KB

IMPORTERCURATION
Editorial
Tools

a,a',b,
c,d,e,f

Woo
Parcel

Clusters

E,F
Schema3

A,B
Schema1

C,D
Schema2

Figure 1: The WOO Architecture

as further detailed in Section 4.1, but its physical repre-
sentation is optimized for e�ciency. This includes native
compression, and de-normalization to reduce random seeks
during processing. The importer is customizable and can
be easily extended to ingest new data sources. In order to
reduce I/O requirements of the many intermediate stages
of our pipeline the importer provides, together with the
full representation of the rich input entities (often hundreds
of attributes), a more compact representation – containing
only the attribute strictly needed for matching – called a
WOO Parcel. As Figure 1 shows, only the WOO Parcel is
pushed through the pipeline, while the complete entities are
used only in the later stages.

Builder. The next phase performs the actual entity de-
duplication.

• Blocker. Since we operate in the hundreds of millions
of input entities it is not practical to perform N2 com-
parisons to test matching of each pair of input enti-
ties. Therefore, to reduce the number of needed com-
parisons we exploit a (user-defined) blocking function
aimed at bucketing the data in a way that does not
harm recall, yet heavily reduce the complexity of the
downstream operators.

• Matcher. In this step, a combination of machine-learned
and rule-based algorithms are used to decide whether
a pair of entities match or not. Customers of our plat-
form can either leverage library of matching algorithms
included in the platform or supply their own matching
plugin. The output of this phase is a set of pairs of
entities together with their matching scores.

• Connected Components. Next connected components
are computed to generate “clusters” of entities that are
likely to be matching. This is accomplished by lever-
aging the Giraph bulk synchronous graph-processing
system. This procedure computes the transitive clo-
sure of the matching defined above in a distributed
fashion.

• Group Refiner. This optional stage can further re-
fine potentially large clusters created during connected
components. More collective approaches suggested in
previous literature can be applied at this stage. The
output of this stage is a clustering of the entities.

Blender. At this point the full entities (we now operate not
on a WOO Parcel but on the entire source data) are blended
according to a user defined function. A simple scenario is
taking the union of the values for each attribute, but more
complex functions are used to increase quality and respect
contractual agreements with our source providers (e.g., paid
feeds have priority over crawled data, and editorial curated
content has an even higher priority).

Persistent ID Assignment. The previous steps produce a
clustering decision based on the source object content, which
we call an “equivalence over space.” On the other hand, as
the object content as well as the matching algorithm evolve
over time, the clustering decision might change. Hence, it
is necessary to maintain the correspondence over successive
versions of the clusters to make sure that identity continu-
ity is consistent with the content continuity. We call this
an “equivalence over time.” These two dimensions of equiv-
alences capture the life cycle of a real world entity. This
step assigns persistent identifiers for objects in the KB while
making an e↵ort to keep identifiers as stable as possible over
time. We note that identifier stability in spite of evolving
data was a major request from internal customers.

Exporter. The final step is the Exporter component, which
allows the customer of our platform to retrieve the over-
all KB in any output format. Several default exporters
ship with the platform (targeting the key serving platforms
within Yahoo!, and standard formats such as RDF).

Curation. In order to enable editorial curation of the con-
tent we provide a set of GUIs that enable domain experts
to influence the system behavior, for example, by forcing or
disallowing certain matches between entities, or by editing
attribute values. These judgements flow into the system as if
they are an additional input data sources. However, they are
handled with particular care by the system (e.g., as higher
priority inputs overriding some of the algorithmic decisions).
By treating editorial judgments as yet another data source,
editorial and algorithmic decisions are handled uniformly,
and this allows for potential mistakes in the editorial judge-
ments. As an example, during the group refiner stage we
can detect and resolve conflicts among editorial suggestions,
such as disagreement between editors on whether two input
entities are duplicates or not. Editorials tools influencing

1117

the input and custom plugins for some of the stages of the
pipeline enable for complete editorial control.

Two important functionalities not shown in the figure are
FastPath, i.e., an incremental version of this pipeline that
allows fast modifications to the KB (i.e. additions, deletions,
updates), and a Serving layer, that enables users to browse
and search KBs.

The rest of the paper provides further details of each soft-
ware component introduced above.

4. INPUT/OUTPUT
Our data model builds on graph-based representations of

knowledge as commonly used in the field of the Semantic
Web. Graph-based data models are a natural choice for
capturing knowledge of real world entities, their attributes
and their relationships. More specifically, they allow a fine-
grained representation of knowledge at the level of individual
facts (statements of attribute values or relationships) that
are necessary for integration tasks.

Our data model is an extension of RDF with additional
metadata beyond the built-in datatype and language at-
tributes for literals. It allows provenance tracking of indi-
vidual facts (both attributes and relationships) by keeping
metadata about which publisher produced a particular as-
sertion and in what context. Recall that this is necessary
because an individual entity may accrue information from
a variety of sources and we would like to keep track of the
source of individual assertions. This is helpful in tracking
lineage and many other reasons, foremost among which is
the support for fine-grained content licensing.

We assign namespace-based UUIDs to entities. It is up
to the consumers of the data to assign one or more human-
readable aliases and publishing URIs to entities, e.g. to map
the UUID of the entity corresponding to the movie “Red
Dawn” to the user- and SEO-friendly URI http://movies.
yahoo.com/movie/red-dawn-2010-2/.

This abstract data model is represented on disk using an
internal format called the Common Content Model. CCM
is a JSON-based document format with a schema language
(Common Content Schema, CCS) similar to Avro and an
e�cient binary serialization. Each document captures in-
formation about a single entity.

4.1 Schema
Formal schemas (ontologies) are a key component of our

integration platform even though our data model could cap-
ture data without a schema. Di↵erent actors in our sys-
tem may have di↵erent conceptualizations: even within a
single domain (e.g. local business listings) di↵erent pub-
lishers would use slightly di↵erent structure and semantics
(e.g. restaurants vs. eating establishments) when publishing
data. Likewise, individual consumers have their own target
representations. With n publishers and m consumers, with-
out a shared schema we would potentially need to maintain
n⇥m mappings between input and output schemas. Shared
schemas also protect the system and consumers of the data
from changes in the source schemas. This is particularly
important for reusing rules and editorially created training
data. Our system also has the future goal of supporting
an integrated knowledge base when there are overlaps in
datasets across domains e.g. venues of events in an event
data set may also appear as locations in a Local dataset.
Our schema captures such connections across domains.

The WOO schema is formally represented using the Web
Ontology Language (OWL), a powerful schema language
supported by multiple tools (e.g., Protégé). Unlike with
entities, we assign HTTP URIs to all schema elements and
publish the documentation on our intranet. From a practi-
cal perspective, this means that an engineer inspecting the
data can copy the URI of a class or property to retrieve
a machine- or human-readable definition. Before publish-
ing we check that the ontology is consistent and look for
common editorial mistakes such as missing labels or descrip-
tions. We use OWLDi↵ to compute semantic di↵s between
di↵erent versions of the schema, e↵ectively auto-generating
a changelog of schema changes. Since OWL is based on De-
scription Logic, we are also able to determine when schema
changes have been introduced that are potentially backward
incompatible. Last, OWL allows data validation and infer-
ence. We can perform limited validation by translating the
OWL definition of the classes to CCS. This has obvious lim-
itations in that only local constraints can be checked. In a
separate work, we transform SPARQL queries to PigLatin,
and thus validate the SPARQL axiomatization of the ontol-
ogy [17].

5. IMPORTER
The importer is a data feed specific component that nor-

malizes the input data to abstract the input schema conno-
tations and changes from the subsequent processing of the
entities. This tackles the well understood problem of schema
mapping and data exchange [12].

However, solving this problem in a production setting
was more challenging than expected. Many of the exist-
ing tools only handle relational or XML data models, and
only tackle specific types of mappings. The class of schema
matching/exchange we tackle calls for rather generic func-
tionalities (support for arbitrary input data models, support
for complex structural matching, support for attribute-value
manipulations). This forced us to take a pragmatic approach
and tackle this problem manually. Ongoing work is devoted
to automate this phase as well.

The current solution requires our customer to export their
data in the CCM format mentioned above. Next we pro-
vide platform support for individual customers to build per-
sonalized importers that map their private schemas into
the shared WOO schema. Platform users write XSLT and
Javascript when needed. This choice was very well received
by our internal customers since they were already familiar
with XSLT. The Hadoop based design is very scalable dur-
ing the data exchange phase once the mapping is manually
defined.

The importer is broken into multiple steps:

Schema Normalization: performs arbitrarily complex map-
pings (many-to-many attributes and entity mappings are al-
lowed) that are specified by the user.

Attribute Normalization: is executed using a series of user
specified heuristics (e.g, for address attributes “St.” strings
are converted into “Street”).

Validation: checks entities and attributes according to a set
of business and domain rules (e.g., February has 28-29 days).

Parcel Creation: ensures that the data format is amenable
to high-performance execution. The KB that adheres to
a highly normalized ontological schema is represented in a

1118

http://movies.yahoo.com/movie/red-dawn-2010-2/
http://movies.yahoo.com/movie/red-dawn-2010-2/

heavily de-normalized fashion (e.g., movies will “contain”
all the actors that acting in the movie), and we project out
(temporarily) all the attributes not useful throughout the
pipeline for entity reduplication. This heavily contributes
to performance by reducing data volumes and making most
data accesses sequential.

While each of the above steps is currently manually de-
vised by the tenants of our platform we provide significant
infrastructural support to help the customization (e.g., the
denormalization step is expressed declaratively by the users,
while the platform provides scalable transitive-closure logic
that transforms the data according to the user specification).

The output of the importer is a WOO schema-compliant
KB that is generated in both a full and a projected format
(i.e., a WOO Parcel) and used throughout the platform.

6. BUILDER
This section describes the builder component of the pipeline

which handles entity de-duplication and normalization. It
operates on the WOO parcels created by the importer. Each
entity type has its own builder (e.g. BUSINESS, VENUE,
PERFORMER) and multiple builders can run simultane-
ously or consecutively in the platform. The steps involved
in the builder as described earlier in Section 3 include: (i)
blocking, (ii) matching, (iii) connected component genera-
tion and (iv) refining. We describe the default behavior for
many of these plug-ins below.

6.1 Blocking
As discussed earlier in Section 2.2 entity de-duplication is

based on pairwise comparison of KB entities. This can be
computationally expensive for large KBs since O(n2) com-
parisons are needed for a KB with n entities, while proper
blocking reduces the complexity to O(Bm2) where B is the
total number of blocks and m is the user-configurable max-
imum block size with small or no impact on recall (more
details in our experimental section). Users control the block-
ing function, where single entities are allowed to appear in
multiple blocks (for recall). The blocking plug-in takes as
input the WOO parcel and outputs a set of block identi-
fiers or hashes. Entities with the same identifier or hash are
then grouped together. Blocks that contain a single entity
or too many entities (e.g., block size > 1000) are ignored.
It is desirable that hash function(s) used in the plug-in cap-
ture some notion of similarity between two entities. Many
similarity functions are known to have corresponding hash
functions that approximate them. In separate work [22], we
have also built an automatic blocking mechanism for learn-
ing hash functions that maximize recall while minimizing
number of pairwise comparison required in the downstream
phases. At the end of blocking, the blocks produced are
given to the pairwise matching module.

6.2 Pairwise Matching
The next step in the process compares all pairs of en-

tities within a block and outputs whether an entity pair
matches or not. Optionally, a real-valued score can also
be produced for each pair to indicate the strength of the
match. Firstly, given an entity pair a matcher computes a
set of real-valued features using feature functions. These
feature functions can range from generic similarity metrics

to more domain-specific ones. Next, these real-valued fea-
tures are combined using a rule-based, machine-learned or
a hybrid model. Many common feature functions (e.g., Jac-
card similarity, Edit distance, etc.) and machine learning
models (e.g., AdaBoost, Logistic Regression and Random
Forests) are implemented in a library written specifically
to handle WOO parcels. A machine-learned model also re-
quires a “golden” data set (GDS) consisting of matching and
non-matching entity pairs. Such a data set is curated man-
ually and frequently updated based on errors observed after
running the pipeline (more details in Section 6.5 below). Fi-
nally, the result of applying the model to each entity pair
(i.e., score and boolean match decision) are passed on to the
next stage in the pipeline.

6.3 Connected Components (CC)
This phase connects matching pairs distributed across blocks

since an entity can be placed in multiple buckets due to
hashing. For example, entities A and B can be in the block
because they share a common phone number and entities A
and C in block because they have identical names. After
running CC, we may find that {A,B,C} are in one compo-
nent and also that they are part of a single entity. CC is pro-
vided as part of the platform and uses Giraph (a Pregel-like
parallel graph processing system) to accomplish this task at
scale.

6.4 Refining
In the final phase of the builder, the goal of the refiner

is to fine-tune the entity connected components, if needed,
to produce entity clusters. We occasionally observe that
CC produces very large components that consist of multi-
ple entity clusters. Refining provides users the opportunity
to refine or break such components into more sensible en-
tity clusters. As with previous algorithms, this step is also
plug-in based. The plug-in takes as input a single connected
component, the pairwise match decisions and match scores
and outputs a set of entity clusters. The user may choose to
return the connected component itself as a cluster, return
cliques in the component as entity clusters or adopt a mid-
dle ground that accounts for errors made by the matching
algorithm.

One common plug-in used in this step is based on a cor-
relation clustering algorithm by Ailon et. al. [1]. This al-
gorithm represents the middle ground as stated above and
is robust to errors made during matching. In correlation
clustering, we are given a graph with {+,�} edges and the
objective is to find a clustering that minimizes the number of
� edges within clusters and + edges between clusters. Here
the + and � edges correspond to match and non-match
decisions between entity pairs. Although this problem is
NP-hard in general, we leverage the randomized algorithm
described in [1]. It randomly picks a vertex and creates a
cluster out of the vertices connected to it with + edges. It
then recurses on the remaining graph (i.e. after removing
previously clustered vertices). We have observed that this
algorithm is both fast and produces reasonably good entity
clusters. In practice, we find that it is beneficial to run the
algorithm multiple times with di↵erent random seeds and
then return the clustering with the highest matching score.
The score of a clustering is given by the di↵erence of match-
ing scores within clusters and those between clusters. It also
corresponds to the log-probability of a clustering if a logis-

1119

tic regression model is used during matching. An additional
benefit of this algorithm is that it can easily incorporate
both soft and hard rules provided by editors and additional
business rules regarding matches.

6.5 Expanding to new domains
The employment of plug-in based architecture makes it

easy to expand the entire system to add new domains from
an engineering point of view. However, many data charac-
teristics and match definitions may vary from one domain
to the next. The engineering harness is in place to sup-
port faster pace evolution, but much research is still needed
to automate such process. To respond to new domains,
and to guarantee quality is maintained over time a serious
framework for quality evaluation is required. In the rest of
this subsection we summarize the creation, maintenance of
“golden data sets” (i.e., manually curated data set we use
for quality evaluation) and the related scalability challenges.

6.5.1 Golden Data Set
When a new domain is provided to us by a customer,

the first step involved is exploring the data characteristics
such as the number of input sources, size of the sources,
quality of attributes in each source (e.g. manually curated
or automatically extracted) and other relevant statistics. In
addition, we also require the definition of what it means for
entities to match along with specific use cases to help during
editorial judgments.

Often a key challenge in learning a new match model is
the absence of a “golden data set” (GDS) – a labeled dataset
for training the matcher models. A naive way of obtaining
such a dataset for our matcher is to randomly select pairs
from the input sources, and manually judge them to check
whether a pair of records refer to the same entity. However,
when the size of the input ranges in millions, it is highly
likely that a sample of size even in hundreds would yield
pairs that are mostly mismatches, and there would not be
enough labeled data to train a matcher. Instead, we boot-
strap our GDS using a heuristic blocker and matcher that
uses simple blocking functions (to have almost 100 percent
recall), and fast matching to hunt for probable matches. We
use an approach similar to the one proposed by [4] in which
a heuristic matcher outputs four kinds of pairs: (i) exact
matches, (ii) high-confidence heuristic which has high pre-
cision but low recall of matches, (iii) low-confidence heuris-
tic which has low precision but high recall of matches and
lastly, (iv) non-matches which are randomly sampled pairs
from the input sources. We are careful to include example
pairs of di↵erent qualities and ensure that they cover all or
many of the input sources. These pairs are then judged by
editors based on the provided guidelines. These judgments
are used to bootstrap a machine-learned matching model.
Once a match model has been bootstrapped, we can rapidly
iterate by sampling new pairs for judgment from the data
on which the machine-learned model is uncertain.

The process described above is facilitated by editorial
tools that we integrated in the builder. The editorial tool
has two phases: (i) a local operation phase in which the
editor continuously refines the blocking and matching spec-
ifications (e.g. weights, features, thresholds, etc.), and, (ii)
a grid (HDFS) phase in which the current specifications of
blocking and matching are used to sample new examples
from datasets on HDFS for the local phase.

We also explored active learning for entity de-duplication [3].
One simple technique for active learning is based on the ob-
servation that examples should be sampled proportional to
their uncertainty. This technique is implemented in the grid
phase of the editorial tool by sampling more examples that
are closer to the match threshold.

6.5.2 Evaluation
Operating at scale also makes the evaluation of the builder

precision and recall challenging.
We first evaluate the grid output after each stage (i.e.

blocking, matching, CC, refining) on the current GDS and
ensure that pairwise precision and recall are reasonable and
meet standards proposed by the customer. By construction
the GDS contains cases that are most likely “hard” and both
machine and humans would find confusing. Such pairs, how-
ever, constitute a minor fraction of all the matching pairs
since a majority of the matching pairs are easy to detect.
Hence, we also adjust for counts of high vs low confidence
matches in actual data while reporting the final quality of
the builder. An example of this evaluation for local busi-
nesses is provided in Table 3 (see Section 10).

We also use other approaches to evaluate the precision
and recall of the builder output. To evaluate precision, we
sample record pairs (e.g. 100 pairs) from clusters in the
final builder output and present them to the editors for
judgments. The proportion of matching pairs constitutes
an unbiased estimate of the precision of our matcher. If this
does not meet the required standards then further iterations
of GDS pipeline are executed. Similarly, for recall, we load
the builder output into a search index and ask editors to
search for a variety of businesses. If they find duplicates in
the search results (e.g. top 20 results) these are reported as
recall errors. Again, if the recall across all queries does not
meet the requirements it triggers further iterations of GDS.

7. FINALIZER
The finalizer is the last stage of the KB building pipeline.

This stage is responsible for handling the persistence of ob-
ject identifiers and the blending of the attributes of the (po-
tentially many) entities that are being merged.

7.1 Persistency Problem
Persistence is one of the requirements we received from

our internal customers, and captures the implicit expecta-
tion from human users that a real-world entity will be per-
petually represented by a single persistent identifier (PID).
While natural evolution of the content (such as the update of
a phone number, or change in address) is acceptable, there
is a strong expectation of stability for identifiers. For in-
stance, having a persistent identifier allows maintaining sta-
ble URLs for objects in a Web portal. This very reasonable
requirement is actually rather hard to achieve in the face of
evolving input data and evolving matching logic.

Another motivation for PIDs is the problem of correctly
maintaining the association between output objects and user
generated annotations – e.g., photos, reviews, ratings, clicks,
searches and tags. These annotations, which we call eye-
balls, constitute a very important form of enrichment for an
output object. Over time source objects change leading to
new entities (a new build of the KB, newKB), and eyeballs
from old entities (previous build of KB, prevKB) must be
correctly associated with new entities.

1120

Example 1. Consider a scenario where the prevKB has
a cluster P of the following supposedly duplicate listings –
(i) [ABC Cafe, 10 Main St, CA], (ii) [AB Cafe, 10 Main
St, San Francisco, CA], and (iii) [AB Cafe, 10 Main Street,
San Francisco, CA]. Suppose, users have associated 5 photos
and 120 reviews with entity P .

Now, if we get an update to listing (i) as [ABC Cafe,
10 Main St, Berkeley, CA], then this gives evidence that
AB Cafe and ABC Cafe are indeed two distinct entities in
di↵erent cities. Hence, newKB may choose to split P into
two – C1 containing [ABC Cafe, 10 Main St, Berkeley, CA],
and C2 containing (ii) [AB Cafe, 10 Main St, San Francisco,
CA], and (iii) [AB Cafe, 10 Main Street, San Francisco,
CA]. We need to now decide how to split the eyeballs (photos
and reviews) across the two new entities.

Persistent identifiers provide a simple solution for carrying
over eyeballs from old to new entities. In the above example,
if C2 is given the same PID as P , then all eyeballs associated
with P are associated with C2.

Formally, the persistent identifier assignment problem is
defined as following: In the successive builds B

old

and B
new

,
let S

old

and S
new

denote the source object sets respectively,
which share some common source objects, but also have ex-
clusive ones. In the preceding build B

old

, the source objects
are clustered and persisted as P

old

= {o
i

}p
i=1, in which o

i

de-
notes the persisted cluster id, which contains source objects
from S

old

, while in the current build B
new

, the clustered
result is C

new

= {n
j

}q
j=1, in which n

j

denotes the cluster
id which contains source objects from S

new

. The persistent
identifier assignment problem is to find an optimal cluster
mapping M from P

old

to C
new

, such that if o
i

and n
j

are
mapped according to M , then the share the same persis-
tent ID and most likely must represent the same real world
entity.

7.2 Source Persistence Assumption
Conceptually, computing the optimal cluster mapping across

builds is identical to the record linkage problem across two
databases. This can be done by (a) computing the pairwise
similarity between every pair, and (b) finding a bipartite
matching that maximizes the total similarity. However, the
complexity of the naive pairwise comparison algorithm is
O(N2). Instead, WOO makes the following assumptions to
ensure e�ciency:

• SID Continuity: If two source objects (from the same
feed) have the same identifier (but with di↵erent con-
tent), then they correspond to information about the
same real world entity.

• Surjection: Each source object is mapped to one (and
only one) persisted object

Based on the above id assumptions, the source identifier
could be regarded as a strong signal about the object con-
tent. For instance, if we take the SID as proxy for the con-
tent, we can infer that if two content clusters have the same
SIDs, they are considered stable. Therefore a full content
comparison is only applied for clusters that have di↵erent
SIDs. The cluster comparisons are categorized as follows:

1. Identical: both old and new cluster contain the same
source objects;

2. Delete: all the source objects of the old cluster are
marked as deleted;

old new

S1#

S2#
S3#

S1#

S2#
S3#

S4#

S5#

S4#

S5#

C1 P1

P2

(a) Merge

new old

S1#

S2#
S3#

S4#

S1#

S2#
S3#

S5#

S4#

S5#

P1 C1

C2

(b) Split

new old

S1#

S2#

S3#

S4#
S7#

S1#

S2#
S3#

S4#

S5#

S6#

S7#
S8#

S5#

S6#

S8#

S9#

P1

P2

P3

C1

C2

(c) Shu✏e

Figure 2: Patterns: Merge, Split, and Shu✏e

3. New: all the source objects of the new cluster are ob-
served for the first time in the new build;

4. Merge: all the information from source objects in mul-
tiple old clusters are merged into a single new cluster;

5. Split: all the information from source objects in the
old cluster are spread across multiple new clusters;

6. Shu✏e: mixture of merge and split patterns;

Figure 2 illustrates some examples of the patterns de-
scribed above. In the figure, source objects are denoted as
atomic ball tagged with s⇤, deleted objects are crossed out
in red, and new objects are highlighted in yellow.

7.3 Persistence Algorithm
Persistence pattern identification step uses the source id as

a bridge to separate the clusters into the aforementioned per-
sistence patterns. In a gradually evolving knowledge base,
the majority of entities do not change at all, as a result, the
Identical pattern covers most of the entities. Merge, Split
and Shu✏e patterns are handled in a unified way and can
be treated as a single Connected pattern.
Mapping Table Construction: In the case of Identical,
New, Deleted patterns the mapping is obvious. For Con-
nected pattern the problem is transformed into a bipartite
graph matching problem, where the disjoint sets represent
the old and new clusters. First, we calculate the pairwise
cluster similarity, and filter out those pairs with low scores.
We then generate direct mapping pairs using a greedy bipar-
tite graph matching algorithm, these pairs belong to Mapped
category and are directly persisted. For those old clusters
which are not in the direct mapping pairs, we find the best
matching new cluster and redirect the old cluster to the new
one. If there is no such best matching new cluster found,
we mark the old cluster as (soft) deleted. Finally, for the
new clusters which are not in the direct mapping pairs, we
assign new persistent identifiers.

7.4 Blending
A final step in the pipeline is blending, or the problem of

computing canonical attribute values for the entity repre-
senting an output cluster. WOO allows user-defined plugins
to construct a canonical attribute value either using simple
heuristics (e.g., longest string for names, or union), using
voting, or by computing a centroid value [6]. WOO also
maintains the historical versions of each source object, and
thus we have also developed techniques for computing the
canonical values that leverage these historical attribute val-
ues (described in separate work [20]).

1121

8. EXPORTER
The very last step of our pipeline is the exporter, which

is responsible for the final data transformation, and output
of the KBs. Once again this component is plug-in based
and allows for customizations based on business or domain
knowledge, it is implemented as a MapReduce job, where
the input is a full scan of the KB.

The second step of the exporter allows arbitrary transfor-
mations of data formats, fundamental to support the dis-
parate needs of our internal customers. While the transfor-
mation logic is typically provided by the users, the platform
supports dereferencing of entity references, where the user
can select which attributes to de-normalize on and over how
many hops. This simplifies the user code and allows it to
operate over arbitrary “neighborhoods”. This is convenient
when the output format should be heavily denormalized for
serving purposes (e.g., our export of actors for the IntoNow
application had to contain a list of movies and tv-shows they
appeared in).

The WOO system ships with few built-in exporters: RDF,
HBase/HFile, Vespa (Yahoo’s internal search index), MG4J
(open source IR toolkit).

9. MORE SUPPORT FOR MULTI-TENANCY
To further support multi-tenancy in our system we pro-

vide two more useful features: (1) FastPath, i.e., an incre-
mental fast version of our pipeline, and (2) general purpose
serving infrastructure.

FastPath. While batch oriented computation like the one
we discussed so far provides more stable results (since the
algorithms have a consistent global view of the data), they
are not compatible with one important use case imposed by
our customers: low-latency integrations of small deltas.

To address this need we built a FastPath component in the
WOO platform which simulates an incremental matching
approach to provide consistent, millisecond level response
times while trying to make the same matching decisions that
the batch system would.

FastPath is built using a search engine to identify match-
ing records, based on a simplifying assumption that a new
record introduced via the FastPath would not alter the merge
and split decisions already made by the builder. That means
a new record will either (1) merge with an existing entity
cluster, or (2) form a new entity cluster.

In the FastPath, we index each WOO entity by its block-
ing keys using the same blocking functions as the batch build
process, and store the corresponding WOO parcel for each
entity. To identify matches for a query record, the search
engine applies the same importer schema transformations
and blocking functions to the record. The resulting block-
ing keys form a query which is executed against the search
index to identify candidate matching entities. A candidate
entity is more likely to be a good match for the new record
if it shares several (yet less common) blocking keys, which
allow us to use fairly standard techniques in the inverted in-
dex to rank the candidates and inspect only a small subset
of the possible matches.

The top k candidates are ranked and then compared against
the query record using the retrieved WOO parcels and the
same pairwise comparison functions of the batch system.
If a candidate has a su�ciently high similarity score, it is

returned as the match. Otherwise, the query record is as-
signed a new identifier and inserted into the FastPath index
as a new entity. The decisions made by the FastPath are
then passed into the batch system to maintain continuity in
subsequent runs, as the batch build may later override the
decision made by the FastPath. As each batch run com-
pletes, the exporter process generates a set of updates for
the FastPath index. Many more details on the FastPath
implementation are discussed in [26].

General purpose serving. Another common requirement
we observed emerging was the one of a general purpose
browsing and querying interface. While our current tenants
tend to heavily customize the exporting and serving of the
KBs, developers, current tenants, editors, and future tenants
have the frequent need to access the content of this large
KBs through some general purpose querying and browsing
interface that promotes a serendipitous exploration.

The key requirements for a general purpose browsing sys-
tem are: (1) storing and serving tens of large KBs (equiva-
lent to hundreds of billions of triples), (2) fast bulk loading
(minutes for multi-billion triples KBs), and (3) provide fast
point lookups, browsing, and structured queries.

After considering several existing RDF endpoint we de-
cided to roll our own HBase + MG4J solution. To this pur-
pose we leverage the HBase + MG4J exporter, that builds
in parallel HBase index files (bulk-loading functionality of
HBase), and MG4J indexes—for more details on the RDF
indexing see [5]. The resulting indexes are loaded in a clus-
ter of 40 nodes, supporting loading times in the order of tens
of minutes for KBs in the billions of triples and fast serv-
ing. A HTML5 browsing and querying interface facilitates
unstructured interactions with the data.

10. EXPERIMENTS AND EVALUATION
We ran our experiments on a typical Hadoop/Linux grid

with 3009 map slots and 1672 reduce slots, with 2GB main
memory heap per slot.

We present results on two datasets for entity matching:
events and locals. These are production datasets that
power web portals in Yahoo!, namely beta.local.yahoo.

com and local.yahoo.com. Each of these datasets come
with their own set of challenges. locals is the larger of the
two datasets with over 100 million input business listings
coming from more than 50 di↵erent sources (feeds), where
each source object has over 50 attributes. events dataset
contains 4 types of source objects (events, venues, perform-
ers and occurrences) with references across these objects.
Details of these datasets are presented in Table 1.

Metric Events Local

source objects > 200 K > 100 M
input feeds 30+ 50+
entity types 4 1

Table 1: Datasets in production.

10.1 Brute force matching
If we were to resort to brute force (O(n2)) matching,

where we compare each pair of source objects, for locals

dataset that would need > 1016 comparisons. Our best pair-
wise matching algorithm (as we will see later) takes 450µs
per comparison. Thus, it would take more than 142,000

1122

beta.local.yahoo.com
beta.local.yahoo.com
local.yahoo.com

years on a single machine, and over 45 years even on our
largest grids.

Metric Events Local

Precision 0.98 0.95
Recall 0.91 0.92
of M/R Jobs 68 68
Batch run time 5 hrs 24 hrs
of blocks containing more
than 1 object (blocking)

19,950 4⇥107

Parallel Reducers 400 800
Total Mappers 98,111 245,433
Total Reducers 6,001 30,812
Map heap size 4GB 4GB
Reduce heap size 4GB 4GB
Giraph Mappers 100 200
Giraph heap size 2GB 4GB

Table 2: Overall Results

10.2 Overall WOO Pipeline Results
Table 2 shows the overall performance numbers for the

WOO system on our two datasets. The entire WOO work-
flow, from the import to the finalize stage, took 24 hours in
the case of locals and 5 hours in the case of events. The
table also provides information about the number of map-
reduce tasks in the workflow, and the maximum number of
mappers and reducers across all the tasks.

As described in Section 6.5.2, we evaluate the result of the
WOO workflow using the following adjusted precision-recall
measure. Note that the GDS was constructed by picking
samples from four strata – exact matches, high/low confi-
dence matches, and obvious non-matches, which were then
editorially evaluated (Sec. 6.5.1) . Precision is computed
as the fraction of pairs in the GDS that are identified as
matches and are truly a match. Recall is the fraction of
matches in the GDS that are correctly identified as matches.
The adjusted precision and recall are computed by account-
ing for the sampling rate from each of the 4 strata. Table 2
shows that the adjusted precision and recall are quite high
for both datasets.

10.3 Characteristics of the Builder
Events dataset required 4 bootstrap iterations with final

sample size of 1500 sample points while Local dataset needed
15 bootstrap iterations with final sample size of 6K data
points. Table 3 illustrates the precision and recall (on a
fixed held-out GDS) after each of the steps in the builder
workflow for the locals dataset. The last row shows the ad-
justed precision and recall of the final output. All other rows
report the actual precision/recall on the GDS. After block-
ing, less than 2% of the pairs which are labeled as matches
do not occur in any block together. The initial bootstrap of
matching uses a GDS constructed by a standard method-
ology [4] and consists of editorially judged pairs that have
been randomly sampled and those matching high-confidence
and low-confidence heuristics (see Section 6.5). The GDS is

Builder Stage Precision Recall F1

Blocking – 0.981 –
Matching (initial bootstrap) 0.895 0.812 0.851
Matching (final) 0.876 0.923 0.899
Connected Components 0.842 0.970 0.901
Refining 0.900 0.886 0.893
Adjusted 0.952 0.923 0.937

Table 3: Quality measures after each stage of the
builder for locals dataset.

Method locals events

Logistic 450 µs 220 µs
AdaBoost 610 µs 390 µs
Random Forests 860 µs 420 µs

Table 4: Average time taken to compute the prob-
ability of match for one pair of records.

updated further to include pairs that the matcher is uncer-
tain about and also based on error analysis after precision
and recall evaluations. This improves the F1 of the final
matcher to almost 90%.

Table 4 shows the average time take to complete one pair-
wise matching operation on the locals dataset for three dif-
ferent classifiers – Logistic Regression, AdaBoost and Ran-
dom Forests. Figures 3(a) and 3(b) show the precision and
recall (on the GDS) of the three classifiers on locals and
events datasets, respectively. While there is no significant
di↵erence in the performance of the three classifiers, logistic
is the fastest, and we use this in the production system.

10.4 PID Assignment
Persistent Identifier (PID) assignment is an integral part

of the finalize stage and acts as a key feature of WOO sys-
tem. We ran our persistence algorithm on a dataset with
over a million events and venues. We observed that across
two builds (separated by a week), less than 1% of the en-
tities changed their IDs. Quantifying the accuracy of this
algorithm requires constructing a test set with labels iden-
tifying whether pairs of entities from the old and new KBs
correspond to the same real-world object. While we do not
have such a test set at this time, we have qualitative feedback
from our customers that IDs are indeed correctly persisted.

We also implemented an alternate approach to computing
persistent IDs that does not make the source persistence
assumption. We compare pairs of clusters that were blocked
together by a hash-based blocking scheme. However, this
scheme resulted in only 30% of the entities retaining the
same ID across the two builds. This could be explained by
two reasons – (a) hash based blocking does not perform very
well with clusters of source objects, and (b) blocking does
not work well, because values of source objects change over
time, and source IDs are a better signal for persistence. A
detailed analysis of persistence is ongoing.

10.5 FastPath Processing Results
Due to space constraints, we summarize the results using

an experiment which measures the e↵ectiveness of the Fast-
Path making match decisions for previously unseen records.
A more complete evaluation of the incremental features of
our system is available in [26].

We use the events dataset for this experiment and first
construct a knowledge base using the batch processing method.
We then uniformly at random sample 1% of the events in-
put records into a subset S1%. For each record O

i

in S1%, we
identify the cluster in the knowledge base which contains O

i

as a source and remove all attribute values, relations, and
blocking keys provided to that entity by O

i

. We create an in-
verted index from this modified knowledge base and use the
records in S1% to query the FastPath. This means that, for
evaluation purposes, attribute values from those excluded
records are not present in the index for candidate retrieval
or in the WOO parcels for pairwise matching.

1123

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

o
n

Comparison of Methods on Local Businesses

AdaBoost

Logistic

Random Forest

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

o
n

Comparison of Methods on Event Venues

AdaBoost

Logistic

Random Forest

(b)

Figure 3: (a) and (b) compare various machine
learning pairwise matchers over locals and events

datasets respectively.

We evaluate the precision, recall, and F-measure for re-
trieving the top 1  k  10 candidate entities using the
search engine’s default text ranking, using the batch re-
sult as the ground truth for comparison. We consider the
returned result a positive match if the query record was
matched with the suggested cluster from the full knowl-
edge base. The other possibilities are false positive matches
(matching the incorrect cluster), false negative matches (re-
turning no result), or true negatives (if the excluded record
was the only source record for a particular cluster).

Figures 4 and 5 show the precision, recall, F1 and run-
ning time of introducing new records to the system via the
FastPath. Figure 4 shows the precision ranges from 0.904 to
0.896 as we retrieve up to 10 candidate entities, while at the
same time recall improves from 0.951 to 0.979. The average
running time for a query is approximately 20ms on a single
commodity machine.

Error type k=1 k=5 k=10
Incorrectly resolved 1.19% 1.31% 1.34%
Incorrectly non-resolved 0.57% 0.31% 0.25%

Table 5: New record misclassification rates

The results show that for applications which prefer ag-
gressive de-duplication at the potential cost of incorrectly
merging records, retrieving more candidate entities is prefer-
able, while applications which require more certainty in de-

Figure 4: Top-n retrieval performance for new
records

Figure 5: Query time new records

duplication decisions can opt to retrieve fewer candidate en-
tities. Table 5 shows the breakdown of misclassification rates
for k = 1, k = 5, and k = 10, highlighting this tradeo↵. In
either scenario, the FastPath achieves approximately 90%
precision while also finding over 95% of the matching enti-
ties in the knowledge base.

11. RELATED WORK
Entity de-duplication/disambiguation/resolution have re-

ceived increased research attention in recent years. Surveys
of entity resolution frameworks and the related notions of
data-fusion appeared in: [16, 15]. Parallel blocking and en-
tity resolution have been studied in [7, 14, 18, 24], and have
been explored in the context of noisy and heterogeneous data
in [21]. Recently [14] presented an Hadoop-based entity de-
duplication framework, that shares some of the underlying
goals with WOO, and leverage a similar cluster infrastruc-
ture.

All of the above systems, however, mainly tackle the prob-
lem of scalable entity resolution in a batch setting. To
the best of our knowledge, no single system has addressed
the problem of “scalable, multi-tenant, continuous knowl-
edge synthesis” in its entirety. Our system has the following
advantages:

• Plugin-based Architecture: Our system has a good sep-
aration between the platform components (e.g. in-
gestion of feeds, blocking, matching, persistent ID as-
signment, etc.) and the application-specific logic (e.g.
matching functions, editorial judgments, etc.). This
allows tenants to experiment with various algorithms
(e.g. rule-based vs machine-learned matching) and
also ramp up quickly on new domains they are inter-
ested in, while the platform focuses on ensuring SLAs
and scaling computation.

1124

• Incremental and Batch Processing: Previous approaches
have mostly focused on batch processing where entity
resolution is performed on the corpus as a whole. How-
ever, many properties at Yahoo! require incremental
processing when there are thousands or hundreds of
thousands of new entities streaming in that require
resolution. The FastPath approach [25] is transparent
to the customer and handles this problem by leverag-
ing existing domain-specific plugins for blocking and
matching.

• Knowledge Base Versioning and Persistent IDs: In our
system, both entities and the algorithms to synthesize
the KB change over time. Our system transparently
handles the persistence of identifiers for the di↵erent
temporal versions of the same entity. We also store
historical versions of the KB e�ciently so that entities
and algorithm decisions can be tracked over time.

• Editorial Judgments: The notion of editorial judgments
is built into the system. Such judgments are used in
combination with statistical and rule-based approaches
at various stages of our pipeline to create an accurate
KB. We believe that the combination of editorial judg-
ments and algorithmic decisions are crucial to the con-
struction of accurate knowledge bases. Unlike previous
approaches, we handle such judgments transparently
as a core input to the system.

We are aware of at least three competing e↵orts within
other large companies (Facebook, Google, and Microsoft [2,
13]). We suspect that these companies are tackling similar
problems, and have built comparable solutions. While no
direct comparison is possible due to the lack of information,
we believe the existence of such systems testifies the growing
relevance of this topic and the clear economical potential of
e�cient entity deduplication at scale.

12. CONCLUSIONS
We presented the Web Of Objects, a platform that tack-

les Scalable, Multi-tenant and Continuous Knowledge Syn-
thesis. We detailed the key design decisions and provide
an overview of our multi-tenant plugin-based architecture.
Throughout the paper we highlighted novel aspects of known
problems, or new problems we found along the way while
building and deploying such system. We then introduced
our approach to solve such problems, motivating technical
decisions based on research e↵ort and business constraints.
While comparable systems exist today within other large or-
ganizations, at the best of our knowledge our paper is the
first to discuss the internals of a production-grade entity de-
duplication framework. We experimentally evaluated the
system on production datasets, and demonstrate high pre-
cision and recall and unparalleled scalability. We also re-
ported on the usability and extensibility of the system when
faced with multi-tenant scenarios. Finally we articulated
the challenges and requirements for a system handling con-
tinuous data deduplication, and presented our approach to
tackle this new problem.

13. ADDITIONAL AUTHORS
We list additional authors in alphabetical order: Phil Bohan-

non, Laukik Chitnis, Chris Drome, Anup Goyal, Zhiwei Gu, Ashok
Halambi, Balaji Kannan, Vibhor Rastogi, Parin Shah, Nicolas
Torzec, Michael Welch. We would also like to thank Gaurav
Mishra, Irfan Mohammad, Ralph Rabbat, and Vijaykumar Ra-
jendrarao for their e↵orts in ensuring the success of the project.

14. REFERENCES
[1] N. Ailon, M. Charikar, and A. Newman. Aggregating

inconsistent information: Ranking and clustering. J. ACM,
2008.

[2] A. Arasu, C. Ré, and D. Suciu. Large-scale deduplication
with constraints using dedupalog. In ICDE, 2009.

[3] K. Bellare, S. Iyengar, A. Parameswaran, and V. Rastogi.
Active sampling for entity matching. In KDD, 2012.

[4] M. Bilenko and R. J. Mooney. On evaluation and
training-set construction for duplicate detection. In KDD,
2003.

[5] R. Blanco, P. Mika, and S. Vigna. E↵ective and e�cient
entity search in rdf data. In ISWC, 2011.

[6] A. Culotta, M. Wick, R. Hall, M. Marzilli, and
A. McCallum. Canonicalization of database records using
adaptive similarity measures. In KDD, 2007.

[7] G. Dal Bianco, R. Galante, and C. A. Heuser. A fast
approach for parallel deduplication on multicore processors.
In SACC, 2011.

[8] N. Dalvi, R. Kumar, B. Pang, R. Ramakrishnan,
A. Tomkins, P. Bohannon, S. Keerthi, and S. Merugu. A
web of concepts. In PODS, 2009.

[9] N. Dalvi, A. Machanavajjhala, and B. Pang. An analysis of
structured data on the web. VLDB, 2012.

[10] A. Efrati. Google gives search a refresh. Wall Street
Journal, 2012.

[11] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. TKDE, 2007.

[12] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange:
getting to the core. ACM Trans. Database Syst., 2005.

[13] J. Gemmell, B. Rubinstein, and A. K. Chandra. Improving
entity resolution with global constraints. CoRR, 2011.

[14] L. Kolb, A. Thor, and E. Rahm. Dedoop: E�cient
Deduplication with Hadoop. In VLDB, 2012.

[15] H. Köpcke and E. Rahm. Frameworks for entity matching:
A comparison. Data Knowl. Eng., 2010.

[16] H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity
resolution approaches on real-world match problems.
PVLDB, 2010.

[17] S. Kotoulas, J. Urbani, P. Boncz, and P. Mika. Robust
runtime optimization and skew-resistant execution of
analytical sparql queries on pig. In ISWC, 2012.

[18] B. McNeill, H. Kardes, and A. Borthwick. Dynamic Record
Blocking: E�cient Linking of Massive Databases in
MapReduce. In QDB, 2012.

[19] H. J. Moon, C. Curino, M. Ham, and C. Zaniolo. Prima:
archiving and querying historical data with evolving
schemas. In SIGMOD, 2009.

[20] A. Pal, V. Rastogi, A. Machanavajjhala, and P. Bohannon.
Information integration over time in unreliable and
uncertain environments. In WWW, 2012.

[21] G. Papadakis and W. Nejdl. E�cient entity resolution
methods for heterogeneous information spaces. In ICDE
Workshops, 2011.

[22] A. D. Sarma, A. Jain, A. Machanavajjhala, and
P. Bohannon. An automatic blocking mechanism for
large-scale de-duplication tasks. In CIKM, 2012.

[23] B. ten Cate and P. G. Kolaitis. Structural characterizations
of schema-mapping languages. Commun. ACM, 53(1), 2010.

[24] R. Vernica, M. J. Carey, and C. Li. E�cient parallel
set-similarity joins using mapreduce. In SIGMOD, 2010.

[25] M. J. Welch, C. Drome, and A. Sane. High quality
real-time incremental entity resolution in a knowledge base.

[26] M. J. Welch, C. Drome, and A. Sane. Fast and accurate
incremental entity resolution relative to a batch resolved
corpus. In CIKM, 2012.

1125

	Introduction
	Motivation and Requirements
	Business Context
	Design Decisions

	Architecture Overview
	Input/Output
	Schema

	Importer
	Builder
	Blocking
	Pairwise Matching
	Connected Components (CC)
	Refining
	Expanding to new domains
	Golden Data Set
	Evaluation

	Finalizer
	Persistency Problem
	Source Persistence Assumption
	Persistence Algorithm
	Blending

	Exporter
	More support for multi-tenancy
	Experiments and Evaluation
	Brute force matching
	Overall WOO Pipeline Results
	Characteristics of the Builder
	PID Assignment
	FastPath Processing Results

	Related Work
	Conclusions
	Additional Authors
	References

