
F1: A Distributed SQL Database That Scales

Jeff Shute Radek Vingralek Bart Samwel Ben Handy
Chad Whipkey Eric Rollins Mircea Oancea Kyle Littlefield

David Menestrina Stephan Ellner John Cieslewicz Ian Rae*
Traian Stancescu Himani Apte

Google, Inc.
*University of Wisconsin-Madison

ABSTRACT
F1 is a distributed relational database system built at
Google to support the AdWords business. F1 is a hybrid
database that combines high availability, the scalability of
NoSQL systems like Bigtable, and the consistency and us-
ability of traditional SQL databases. F1 is built on Span-
ner, which provides synchronous cross-datacenter replica-
tion and strong consistency. Synchronous replication im-
plies higher commit latency, but we mitigate that latency
by using a hierarchical schema model with structured data
types and through smart application design. F1 also in-
cludes a fully functional distributed SQL query engine and
automatic change tracking and publishing.

1. INTRODUCTION
F11 is a fault-tolerant globally-distributed OLTP and

OLAP database built at Google as the new storage system
for Google’s AdWords system. It was designed to replace a
sharded MySQL implementation that was not able to meet
our growing scalability and reliability requirements.

The key goals of F1’s design are:

1. Scalability: The system must be able to scale up,
trivially and transparently, just by adding resources.
Our sharded database based on MySQL was hard to
scale up, and even more difficult to rebalance. Our
users needed complex queries and joins, which meant
they had to carefully shard their data, and resharding
data without breaking applications was challenging.

2. Availability: The system must never go down for any
reason – datacenter outages, planned maintenance,
schema changes, etc. The system stores data for
Google’s core business. Any downtime has a signifi-
cant revenue impact.

3. Consistency: The system must provide ACID trans-
actions, and must always present applications with

1Previously described briefly in [22].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 11
Copyright 2013 VLDB Endowment 2150-8097/13/09... $ 10.00.

consistent and correct data.
Designing applications to cope with concurrency
anomalies in their data is very error-prone, time-
consuming, and ultimately not worth the performance
gains.

4. Usability: The system must provide full SQL query
support and other functionality users expect from a
SQL database. Features like indexes and ad hoc query
are not just nice to have, but absolute requirements
for our business.

Recent publications have suggested that these design goals
are mutually exclusive [5, 11, 23]. A key contribution of this
paper is to show how we achieved all of these goals in F1’s
design, and where we made trade-offs and sacrifices. The
name F1 comes from genetics, where a Filial 1 hybrid is the
first generation offspring resulting from a cross mating of
distinctly different parental types. The F1 database system
is indeed such a hybrid, combining the best aspects of tradi-
tional relational databases and scalable NoSQL systems like
Bigtable [6].

F1 is built on top of Spanner [7], which provides extremely
scalable data storage, synchronous replication, and strong
consistency and ordering properties. F1 inherits those fea-
tures from Spanner and adds several more:

• Distributed SQL queries, including joining data from
external data sources

• Transactionally consistent secondary indexes

• Asynchronous schema changes including database re-
organizations

• Optimistic transactions

• Automatic change history recording and publishing

Our design choices in F1 result in higher latency for typi-
cal reads and writes. We have developed techniques to hide
that increased latency, and we found that user-facing trans-
actions can be made to perform as well as in our previous
MySQL system:

• An F1 schema makes data clustering explicit, using ta-
bles with hierarchical relationships and columns with
structured data types. This clustering improves data
locality and reduces the number and cost of RPCs re-
quired to read remote data.

1068



• F1 users make heavy use of batching, parallelism and
asynchronous reads. We use a new ORM (object-
relational mapping) library that makes these concepts
explicit. This places an upper bound on the number of
RPCs required for typical application-level operations,
making those operations scale well by default.

The F1 system has been managing all AdWords advertis-
ing campaign data in production since early 2012. AdWords
is a vast and diverse ecosystem including 100s of applica-
tions and 1000s of users, all sharing the same database. This
database is over 100 TB, serves up to hundreds of thousands
of requests per second, and runs SQL queries that scan tens
of trillions of data rows per day. Availability reaches five
nines, even in the presence of unplanned outages, and ob-
servable latency on our web applications has not increased
compared to the old MySQL system.

We discuss the AdWords F1 database throughout this pa-
per as it was the original and motivating user for F1. Several
other groups at Google are now beginning to deploy F1.

2. BASIC ARCHITECTURE
Users interact with F1 through the F1 client library.

Other tools like the command-line ad-hoc SQL shell are im-
plemented using the same client. The client sends requests
to one of many F1 servers, which are responsible for reading
and writing data from remote data sources and coordinating
query execution. Figure 1 depicts the basic architecture and
the communication between components.

F1 Client

Load Balancer

...

Spanner

CFS

F1 
Server

Slave
Pool

Slave
Pool

Spanner

CFS

F1 
Server

Slave
Pool

Slave
Pool

F1
Master

F1
Master

Figure 1: The basic architecture of the F1 system,
with servers in two datacenters.

Because of F1’s distributed architecture, special care must
be taken to avoid unnecessarily increasing request latency.
For example, the F1 client and load balancer prefer to con-
nect to an F1 server in a nearby datacenter whenever possi-
ble. However, requests may transparently go to F1 servers
in remote datacenters in cases of high load or failures.

F1 servers are typically co-located in the same set of dat-
acenters as the Spanner servers storing the data. This co-
location ensures that F1 servers generally have fast access
to the underlying data. For availability and load balancing,

F1 servers can communicate with Spanner servers outside
their own datacenter when necessary. The Spanner servers
in each datacenter in turn retrieve their data from the Colos-
sus File System (CFS) [14] in the same datacenter. Unlike
Spanner, CFS is not a globally replicated service and there-
fore Spanner servers will never communicate with remote
CFS instances.

F1 servers are mostly stateless, allowing a client to com-
municate with a different F1 server for each request. The
one exception is when a client uses pessimistic transactions
and must hold locks. The client is then bound to one F1
server for the duration of that transaction. F1 transactions
are described in more detail in Section 5. F1 servers can
be quickly added (or removed) from our system in response
to the total load because F1 servers do not own any data
and hence a server addition (or removal) requires no data
movement.

An F1 cluster has several additional components that
allow for the execution of distributed SQL queries. Dis-
tributed execution is chosen over centralized execution when
the query planner estimates that increased parallelism will
reduce query processing latency. The shared slave pool con-
sists of F1 processes that exist only to execute parts of dis-
tributed query plans on behalf of regular F1 servers. Slave
pool membership is maintained by the F1 master, which
monitors slave process health and distributes the list of avail-
able slaves to F1 servers. F1 also supports large-scale data
processing through Google’s MapReduce framework [10].
For performance reasons, MapReduce workers are allowed to
communicate directly with Spanner servers to extract data
in bulk (not shown in the figure). Other clients perform
reads and writes exclusively through F1 servers.

The throughput of the entire system can be scaled up by
adding more Spanner servers, F1 servers, or F1 slaves. Since
F1 servers do not store data, adding new servers does not
involve any data re-distribution costs. Adding new Spanner
servers results in data re-distribution. This process is com-
pletely transparent to F1 servers (and therefore F1 clients).

The Spanner-based remote storage model and our geo-
graphically distributed deployment leads to latency char-
acteristics that are very different from those of regu-
lar databases. Because the data is synchronously repli-
cated across multiple datacenters, and because we’ve cho-
sen widely distributed datacenters, the commit latencies are
relatively high (50-150 ms). This high latency necessitates
changes to the patterns that clients use when interacting
with the database. We describe these changes in Section 7.1,
and we provide further detail on our deployment choices, and
the resulting availability and latency, in Sections 9 and 10.

2.1 Spanner
F1 is built on top of Spanner. Both systems were devel-

oped at the same time and in close collaboration. Spanner
handles lower-level storage issues like persistence, caching,
replication, fault tolerance, data sharding and movement,
location lookups, and transactions.

In Spanner, data rows are partitioned into clusters called
directories using ancestry relationships in the schema. Each
directory has at least one fragment, and large directories
can have multiple fragments. Groups store a collection of
directory fragments. Each group typically has one replica
tablet per datacenter. Data is replicated synchronously using
the Paxos algorithm [18], and all tablets for a group store

1069



the same data. One replica tablet is elected as the Paxos
leader for the group, and that leader is the entry point for
all transactional activity for the group. Groups may also
include readonly replicas, which do not vote in the Paxos
algorithm and cannot become the group leader.

Spanner provides serializable pessimistic transactions us-
ing strict two-phase locking. A transaction includes mul-
tiple reads, taking shared or exclusive locks, followed by a
single write that upgrades locks and atomically commits the
transaction. All commits are synchronously replicated us-
ing Paxos. Transactions are most efficient when updating
data co-located in a single group. Spanner also supports
transactions across multiple groups, called transaction par-
ticipants, using a two-phase commit (2PC) protocol on top
of Paxos. 2PC adds an extra network round trip so it usu-
ally doubles observed commit latency. 2PC scales well up to
10s of participants, but abort frequency and latency increase
significantly with 100s of participants [7].

Spanner has very strong consistency and timestamp se-
mantics. Every transaction is assigned a commit timestamp,
and these timestamps provide a global total ordering for
commits. Spanner uses a novel mechanism to pick glob-
ally ordered timestamps in a scalable way using hardware
clocks deployed in Google datacenters. Spanner uses these
timestamps to provide multi-versioned consistent reads, in-
cluding snapshot reads of current data, without taking
read locks. For guaranteed non-blocking, globally consis-
tent reads, Spanner provides a global safe timestamp, below
which no in-flight or future transaction can possibly com-
mit. The global safe timestamp typically lags current time
by 5-10 seconds. Reads at this timestamp can normally run
on any replica tablet, including readonly replicas, and they
never block behind running transactions.

3. DATA MODEL

3.1 Hierarchical Schema
The F1 data model is very similar to the Spanner data

model. In fact, Spanner’s original data model was more like
Bigtable, but Spanner later adopted F1’s data model. At
the logical level, F1 has a relational schema similar to that
of a traditional RDBMS, with some extensions including
explicit table hierarchy and columns with Protocol Buffer
data types.

Logically, tables in the F1 schema can be organized into
a hierarchy. Physically, F1 stores each child table clustered
with and interleaved within the rows from its parent table.
Tables from the logical schema cannot be arbitrarily inter-
leaved: the child table must have a foreign key to its parent
table as a prefix of its primary key. For example, the Ad-
Words schema contains a table Customer with primary key
(CustomerId), which has a child table Campaign with pri-
mary key (CustomerId, CampaignId), which in turn has
a child table AdGroup with primary key (CustomerId,

CampaignId, AdGroupId). A row of the root table in the
hierarchy is called a root row. All child table rows corre-
sponding to a root row are clustered together with that root
row in a single Spanner directory, meaning that cluster is
normally stored on a single Spanner server. Child rows are
stored under their parent row ordered by primary key. Fig-
ure 2 shows an example.

The hierarchically clustered physical schema has several
advantages over a flat relational schema. Consider the cor-

responding traditional schema, also depicted in Figure 2. In
this traditional schema, fetching all Campaign and AdGroup
records corresponding to a given CustomerId would take two
sequential steps, because there is no direct way to retrieve
AdGroup records by CustomerId. In the F1 version of the
schema, the hierarchical primary keys allow the fetches of
Campaign and AdGroup records to be started in parallel,
because both tables are keyed by CustomerId. The primary
key prefix property means that reading all AdGroups for
a particular Customer can be expressed as a single range
read, rather than reading each row individually using an
index. Furthermore, because the tables are both stored in
primary key order, rows from the two tables can be joined
using a simple ordered merge. Because the data is clustered
into a single directory, we can read it all in a single Spanner
request. All of these properties of a hierarchical schema help
mitigate the latency effects of having remote data.

Hierarchical clustering is especially useful for updates,
since it reduces the number of Spanner groups involved in
a transaction. Because each root row and all of its descen-
dant rows are stored in a single Spanner directory, trans-
actions restricted to a single root will usually avoid 2PC
and the associated latency penalty, so most applications try
to use single-root transactions as much as possible. Even
when doing transactions across multiple roots, it is impor-
tant to limit the number of roots involved because adding
more participants generally increases latency and decreases
the likelihood of a successful commit.

Hierarchical clustering is not mandatory in F1. An F1
schema often has several root tables, and in fact, a com-
pletely flat MySQL-style schema is still possible. Using hi-
erarchy however, to the extent that it matches data seman-
tics, is highly beneficial. In AdWords, most transactions are
typically updating data for a single advertiser at a time, so
we made the advertiser a root table (Customer) and clus-
tered related tables under it. This clustering was critical to
achieving acceptable latency.

3.2 Protocol Buffers
The F1 data model supports table columns that con-

tain structured data types. These structured types use the
schema and binary encoding format provided by Google’s
open source Protocol Buffer [16] library. Protocol Buffers
have typed fields that can be required, optional, or repeated;
fields can also be nested Protocol Buffers. At Google, Proto-
col Buffers are ubiquitous for data storage and interchange
between applications. When we still had a MySQL schema,
users often had to write tedious and error-prone transfor-
mations between database rows and in-memory data struc-
tures. Putting protocol buffers in the schema removes this
impedance mismatch and gives users a universal data struc-
ture they can use both in the database and in application
code.

Protocol Buffers allow the use of repeated fields. In F1
schema designs, we often use repeated fields instead of child
tables when the number of child records has a low upper
bound. By using repeated fields, we avoid the performance
overhead and complexity of storing and joining multiple
child records. The entire protocol buffer is effectively treated
as one blob by Spanner. Aside from performance impacts,
Protocol Buffer columns are more natural and reduce seman-
tic complexity for users, who can now read and write their
logical business objects as atomic units, without having to

1070



Logical
Schema

Physical
Layout

Traditional Relational Clustered Hierarchical

Customer(CustomerId, …)

Campaign(CustomerId, CampaignId, …)

AdGroup(CustomerId, CampaignId, AdGroupId, …) 

Customer(1,...)

Campaign(1,3,...)

AdGroup (1,3,6,...)

AdGroup (1,3,7,...)

Campaign(1,4,...)

AdGroup (1,4,8,...)

Customer(2,...)

Campaign(2,5,...)

AdGroup (2,5,9,...)

Physical data partition
boundaries occur

between root rows.

Primary key includes
foreign keys that reference

 all ancestor rows.

Related data is clustered
for fast common-case

 join processing.

Customer(CustomerId, …)
Campaign(CampaignId, CustomerId, …)
AdGroup(AdGroupId, CampaignId, …)

Customer(1,...)

Customer(2,...)

Campaign(3,1,...)

Campaign(4,1,...)

Campaign(5,2,...)

AdGroup(6,3,...)

AdGroup(7,3,...)

AdGroup(8,4,...)

AdGroup(9,5,...)

Joining related data often requires reads 
spanning multiple machines.

Foreign key references only
the parent record.

Figure 2: The logical and physical properties of data storage in a traditional normalized relational schema
compared with a clustered hierarchical schema used in an F1 database.

think about materializing them using joins across several ta-
bles. The use of Protocol Buffers in F1 SQL is described in
Section 8.7.

Many tables in an F1 schema consist of just a single Pro-
tocol Buffer column. Other tables split their data across
a handful of columns, partitioning the fields according to
access patterns. Tables can be partitioned into columns
to group together fields that are usually accessed together,
to separate fields with static and frequently updated data,
to allow specifying different read/write permissions per col-
umn, or to allow concurrent updates to different columns.
Using fewer columns generally improves performance in
Spanner where there can be high per-column overhead.

3.3 Indexing
All indexes in F1 are transactional and fully consistent.

Indexes are stored as separate tables in Spanner, keyed by
a concatenation of the index key and the indexed table’s
primary key. Index keys can be either scalar columns or
fields extracted from Protocol Buffers (including repeated
fields). There are two types of physical storage layout for
F1 indexes: local and global.

Local index keys must contain the root row primary key as
a prefix. For example, an index on (CustomerId, Keyword)

used to store unique keywords for each customer is a local
index. Like child tables, local indexes are stored in the same
Spanner directory as the root row. Consequently, the index
entries of local indexes are stored on the same Spanner server
as the rows they index, and local index updates add little
additional cost to any transaction.

In contrast, global index keys do not include the root row
primary key as a prefix and hence cannot be co-located with
the rows they index. For example, an index on (Keyword)

that maps from all keywords in the database to Customers
that use them must be global. Global indexes are often large

and can have high aggregate update rates. Consequently,
they are sharded across many directories and stored on mul-
tiple Spanner servers. Writing a single row that updates a
global index requires adding a single extra participant to a
transaction, which means the transaction must use 2PC, but
that is a reasonable cost to pay for consistent global indexes.

Global indexes work reasonably well for single-row up-
dates, but can cause scaling problems for large transactions.
Consider a transaction that inserts 1000 rows. Each row
requires adding one or more global index entries, and those
index entries could be arbitrarily spread across 100s of in-
dex directories, meaning the 2PC transaction would have
100s of participants, making it slower and more error-prone.
Therefore, we use global indexes sparingly in the schema,
and encourage application writers to use small transactions
when bulk inserting into tables with global indexes.

Megastore [3] makes global indexes scalable by giving up
consistency and supporting only asynchronous global in-
dexes. We are currently exploring other mechanisms to
make global indexes more scalable without compromising
consistency.

4. SCHEMA CHANGES
The AdWords database is shared by thousands of users

and is under constant development. Batches of schema
changes are queued by developers and applied daily. This
database is mission critical for Google and requires very
high availability. Downtime or table locking during schema
changes (e.g. adding indexes) is not acceptable.

We have designed F1 to make all schema changes fully
non-blocking. Several aspects of the F1 system make non-
blocking schema changes particularly challenging:

• F1 is a massively distributed system, with servers in
multiple datacenters in distinct geographic regions.

1071



• Each F1 server has a schema locally in memory. It
is not practical to make an update occur atomically
across all servers.

• Queries and transactions must continue on all tables,
even those undergoing schema changes.

• System availability and latency must not be negatively
impacted during schema changes.

Because F1 is massively distributed, even if F1 had
a global F1 server membership repository, synchronous
schema change across all servers would be very disruptive
to response times. To make changes atomic, at some point,
servers would have to block transactions until confirming
all other servers have received the change. To avoid this,
F1 schema changes are applied asynchronously, on differ-
ent F1 servers at different times. This implies that two F1
servers may update the database concurrently using differ-
ent schemas.

If two F1 servers update the database using different
schemas that are not compatible according to our schema
change algorithms, this could lead to anomalies includ-
ing database corruption. We illustrate the possibility of
database corruption using an example. Consider a schema
change from schema S1 to schema S2 that adds index I
on table T . Because the schema change is applied asyn-
chronously on different F1 servers, assume that server M1 is
using schema S1 and server M2 is using schema S2. First,
server M2 inserts a new row r, which also adds a new in-
dex entry I(r) for row r. Subsequently, row r is deleted by
server M1. Because the server is using schema S1 and is not
aware of index I, the server deletes row r, but fails to delete
the index entry I(r). Hence, the database becomes corrupt.
For example, an index scan on I would return spurious data
corresponding to the deleted row r.

We have implemented a schema change algorithm that
prevents anomalies similar to the above by

1. Enforcing that across all F1 servers, at most two dif-
ferent schemas are active. Each server uses either the
current or next schema. We grant leases on the schema
and ensure that no server uses a schema after lease ex-
piry.

2. Subdividing each schema change into multiple phases
where consecutive pairs of phases are mutually com-
patible and cannot cause anomalies. In the above ex-
ample, we first add index I in a mode where it only exe-
cutes delete operations. This prohibits server M1 from
adding I(r) into the database. Subsequently, we up-
grade index I so servers perform all write operations.
Then we initiate a MapReduce to backfill index entries
for all rows in table T with carefully constructed trans-
actions to handle concurrent writes. Once complete,
we make index I visible for normal read operations.

The full details of the schema change algorithms are covered
in [20].

5. TRANSACTIONS
The AdWords product ecosystem requires a data store

that supports ACID transactions. We store financial data
and have hard requirements on data integrity and consis-
tency. We also have a lot of experience with eventual con-
sistency systems at Google. In all such systems, we find

developers spend a significant fraction of their time build-
ing extremely complex and error-prone mechanisms to cope
with eventual consistency and handle data that may be out
of date. We think this is an unacceptable burden to place on
developers and that consistency problems should be solved
at the database level. Full transactional consistency is one
of the most important properties of F1.

Each F1 transaction consists of multiple reads, optionally
followed by a single write that commits the transaction. F1
implements three types of transactions, all built on top of
Spanner’s transaction support:

1. Snapshot transactions. These are read-only trans-
actions with snapshot semantics, reading repeatable
data as of a fixed Spanner snapshot timestamp. By de-
fault, snapshot transactions read at Spanner’s global
safe timestamp, typically 5-10 seconds old, and read
from a local Spanner replica. Users can also request
a specific timestamp explicitly, or have Spanner pick
the current timestamp to see current data. The lat-
ter option may have higher latency and require remote
RPCs.

Snapshot transactions are the default mode for SQL
queries and for MapReduces. Snapshot transactions
allow multiple client servers to see consistent views of
the entire database at the same timestamp.

2. Pessimistic transactions. These transactions map
directly on to Spanner transactions [7]. Pessimistic
transactions use a stateful communications protocol
that requires holding locks, so all requests in a sin-
gle pessimistic transaction get directed to the same F1
server. If the F1 server restarts, the pessimistic trans-
action aborts. Reads in pessimistic transactions can
request either shared or exclusive locks.

3. Optimistic transactions. Optimistic transactions
consist of a read phase, which can take arbitrarily
long and never takes Spanner locks, and then a short
write phase. To detect row-level conflicts, F1 returns
with each row its last modification timestamp, which
is stored in a hidden lock column in that row. The
new commit timestamp is automatically written into
the lock column whenever the corresponding data is
updated (in either pessimistic or optimistic transac-
tions). The client library collects these timestamps,
and passes them back to an F1 server with the write
that commits the transaction. The F1 server creates
a short-lived Spanner pessimistic transaction and re-
reads the last modification timestamps for all read
rows. If any of the re-read timestamps differ from what
was passed in by the client, there was a conflicting up-
date, and F1 aborts the transaction. Otherwise, F1
sends the writes on to Spanner to finish the commit.

F1 clients use optimistic transactions by default. Opti-
mistic transactions have several benefits:

• Tolerating misbehaved clients. Reads never hold locks
and never conflict with writes. This avoids any prob-
lems caused by badly behaved clients who run long
transactions or abandon transactions without abort-
ing them.

1072



• Long-lasting transactions. Optimistic transactions can
be arbitrarily long, which is useful in some cases. For
example, some F1 transactions involve waiting for end-
user interaction. It is also hard to debug a transac-
tion that always gets aborted while single-stepping.
Idle transactions normally get killed within ten sec-
onds to avoid leaking locks, which means long-running
pessimistic transactions often cannot commit.

• Server-side retriability. Optimistic transaction com-
mits are self-contained, which makes them easy to
retry transparently in the F1 server, hiding most tran-
sient Spanner errors from the user. Pessimistic trans-
actions cannot be retried by F1 servers because they
require re-running the user’s business logic to repro-
duce the same locking side-effects.

• Server failover. All state associated with an optimistic
transaction is kept on the client. Consequently, the
client can send reads and commits to different F1
servers after failures or to balance load.

• Speculative writes. A client may read values outside an
optimistic transaction (possibly in a MapReduce), and
remember the timestamp used for that read. Then the
client can use those values and timestamps in an op-
timistic transaction to do speculative writes that only
succeed if no other writes happened after the original
read.

Optimistic transactions do have some drawbacks:

• Insertion phantoms. Modification timestamps only ex-
ist for rows present in the table, so optimistic transac-
tions do not prevent insertion phantoms [13]. Where
this is a problem, it is possible to use parent-table locks
to avoid phantoms. (See Section 5.1)

• Low throughput under high contention. For exam-
ple, in a table that maintains a counter which many
clients increment concurrently, optimistic transactions
lead to many failed commits because the read times-
tamps are usually stale by write time. In such cases,
pessimistic transactions with exclusive locks avoid the
failed transactions, but also limit throughput. If each
commit takes 50ms, at most 20 transactions per sec-
ond are possible. Improving throughput beyond that
point requires application-level changes, like batching
updates.

F1 users can mix optimistic and pessimistic transactions ar-
bitrarily and still preserve ACID semantics. All F1 writes
update the last modification timestamp on every relevant
lock column. Snapshot transactions are independent of any
write transactions, and are also always consistent.

5.1 Flexible Locking Granularity
F1 provides row-level locking by default. Each F1 row

contains one default lock column that covers all columns in
the same row. However, concurrency levels can be changed
in the schema. For example, users can increase concurrency
by defining additional lock columns in the same row, with
each lock column covering a subset of columns. In an ex-
treme case, each column can be covered by a separate lock
column, resulting in column-level locking.

One common use for column-level locking is in tables with
concurrent writers, where each updates a different set of

columns. For example, we could have a front-end system
allowing users to change bids for keywords, and a back-end
system that updates serving history on the same keywords.
Busy customers may have continuous streams of bid updates
at the same time that back-end systems are updating stats.
Column-level locking avoids transaction conflicts between
these independent streams of updates.

Users can also selectively reduce concurrency by using a
lock column in a parent table to cover columns in a child
table. This means that a set of rows in the child table share
the same lock column and writes within this set of rows get
serialized. Frequently, F1 users use lock columns in parent
tables to avoid insertion phantoms for specific predicates or
make other business logic constraints easier to enforce. For
example, there could be a limit on keyword count per Ad-
Group, and a rule that keywords must be distinct. Such
constraints are easy to enforce correctly if concurrent key-
word insertions (in the same AdGroup) are impossible.

6. CHANGE HISTORY
Many database users build mechanisms to log changes,

either from application code or using database features like
triggers. In the MySQL system that AdWords used be-
fore F1, our Java application libraries added change history
records into all transactions. This was nice, but it was inef-
ficient and never 100% reliable. Some classes of changes
would not get history records, including changes written
from Python scripts and manual SQL data changes.

In F1, Change History is a first-class feature at the
database level, where we can implement it most efficiently
and can guarantee full coverage. In a change-tracked
database, all tables are change-tracked by default, although
specific tables or columns can be opted out in the schema.
Every transaction in F1 creates one or more ChangeBatch
Protocol Buffers, which include the primary key and before
and after values of changed columns for each updated row.
These ChangeBatches are written into normal F1 tables that
exist as children of each root table. The primary key of the
ChangeBatch table includes the associated root table key
and the transaction commit timestamp. When a transac-
tion updates data under multiple root rows, possibly from
different root table hierarchies, one ChangeBatch is writ-
ten for each distinct root row (and these ChangeBatches in-
clude pointers to each other so the full transaction can be re-
assembled if necessary). This means that for each root row,
the change history table includes ChangeBatches showing all
changes associated with children of that root row, in commit
order, and this data is easily queryable with SQL. This clus-
tering also means that change history is stored close to the
data being tracked, so these additional writes normally do
not add additional participants into Spanner transactions,
and therefore have minimal latency impact.

F1’s ChangeHistory mechanism has a variety of uses. The
most common use is in applications that want to be noti-
fied of changes and then do some incremental processing.
For example, the approval system needs to be notified when
new ads have been inserted so it can approve them. F1 uses
a publish-and-subscribe system to push notifications that
particular root rows have changed. The publish happens in
Spanner and is guaranteed to happen at least once after any
series of changes to any root row. Subscribers normally re-
member a checkpoint (i.e. a high-water mark) for each root

1073



row and read all changes newer than the checkpoint when-
ever they receive a notification. This is a good example of
a place where Spanner’s timestamp ordering properties are
very powerful since they allow using checkpoints to guaran-
tee that every change is processed exactly once. A separate
system exists that makes it easy for these clients to see only
changes to tables or columns they care about.

Change History also gets used in interesting ways for
caching. One client uses an in-memory cache based on
database state, distributed across multiple servers, and uses
this while rendering pages in the AdWords web UI. After
a user commits an update, it is important that the next
page rendered reflects that update. When this client reads
from the cache, it passes in the root row key and the com-
mit timestamp of the last write that must be visible. If the
cache is behind that timestamp, it reads Change History
records beyond its checkpoint and applies those changes to
its in-memory state to catch up. This is much cheaper than
reloading the cache with a full extraction and much sim-
pler and more accurate than comparable cache invalidation
protocols.

7. CLIENT DESIGN

7.1 Simplified ORM
The nature of working with a distributed data store re-

quired us to rethink the way our client applications inter-
acted with the database. Many of our client applications had
been written using a MySQL-based ORM layer that could
not be adapted to work well with F1. Code written using
this library exhibited several common ORM anti-patterns:

• Obscuring database operations from developers.

• Serial reads, including for loops that do one query per
iteration.

• Implicit traversals: adding unwanted joins and loading
unnecessary data “just in case”.

Patterns like these are common in ORM libraries. They
may save development time in small-scale systems with local
data stores, but they hurt scalability even then. When com-
bined with a high-latency remote database like F1, they are
disastrous. For F1, we replaced this ORM layer with a new,
stripped-down API that forcibly avoids these anti-patterns.
The new ORM layer does not use any joins and does not
implicitly traverse any relationships between records. All
object loading is explicit, and the ORM layer exposes APIs
that promote the use of parallel and asynchronous read ac-
cess. This is practical in an F1 schema for two reasons.
First, there are simply fewer tables, and clients are usually
loading Protocol Buffers directly from the database. Second,
hierarchically structured primary keys make loading all chil-
dren of an object expressible as a single range read without
a join.

With this new F1 ORM layer, application code is more
explicit and can be slightly more complex than code using
the MySQL ORM, but this complexity is partially offset
by the reduced impedance mismatch provided by Protocol
Buffer columns. The transition usually results in better
client code that uses more efficient access patterns to the
database. Avoiding serial reads and other anti-patterns re-
sults in code that scales better with larger data sets and
exhibits a flatter overall latency distribution.

With MySQL, latency in our main interactive application
was highly variable. Average latency was typically 200-300
ms. Small operations on small customers would run much
faster than that, but large operations on large customers
could be much slower, with a latency tail of requests taking
multiple seconds. Developers regularly fought to identify
and fix cases in their code causing excessively serial reads
and high latency. With our new coding style on the F1
ORM, this doesn’t happen. User requests typically require
a fixed number (fewer than 10) of reads, independent of
request size or data size. The minimum latency is higher
than in MySQL because of higher minimum read cost, but
the average is about the same, and the latency tail for huge
requests is only a few times slower than the median.

7.2 NoSQL Interface
F1 supports a NoSQL key/value based interface that al-

lows for fast and simple programmatic access to rows. Read
requests can include any set of tables, requesting specific
columns and key ranges for each. Write requests specify in-
serts, updates, and deletes by primary key, with any new
column values, for any set of tables.

This interface is used by the ORM layer under the hood,
and is also available for clients to use directly. This API
allows for batched retrieval of rows from multiple tables in a
single call, minimizing the number of round trips required to
complete a database transaction. Many applications prefer
to use this NoSQL interface because it’s simpler to construct
structured read and write requests in code than it is to gen-
erate SQL. This interface can be also be used in MapReduces
to specify which data to read.

7.3 SQL Interface
F1 also provides a full-fledged SQL interface, which is used

for low-latency OLTP queries, large OLAP queries, and ev-
erything in between. F1 supports joining data from its Span-
ner data store with other data sources including Bigtable,
CSV files, and the aggregated analytical data warehouse for
AdWords. The SQL dialect extends standard SQL with con-
structs that allow accessing data stored in Protocol Buffers.
Updates are also supported using SQL data manipulation
statements, with extensions to support updating fields in-
side protocol buffers and to deal with repeated structure
inside protocol buffers. Full syntax details are beyond the
scope of this paper.

8. QUERY PROCESSING
The F1 SQL query processing system has the following

key properties which we will elaborate on in this section:

• Queries are executed either as low-latency centrally
executed queries or distributed queries with high par-
allelism.

• All data is remote and batching is used heavily to mit-
igate network latency.

• All input data and internal data is arbitrarily parti-
tioned and has few useful ordering properties.

• Queries use many hash-based repartitioning steps.

• Individual query plan operators are designed to stream
data to later operators as soon as possible, maximizing
pipelining in query plans.

1074



Scan Scan

Lookup Join
(AdGroupId, 
CreativeId)

Lookup Join
(AdGroupId, 
CreativeId)

AdGroupCreativeAdGroupCreativeAdGroupCreative

...

Hash 
Join

AdClick

Hash 
Join

AdClick
...

Aggregation
Sum(Clicks)

Aggregation
Sum(Clicks)

Repartition
HASH(CampaignId, Region, Language)

Coordinator

AdGroupCreativeAdGroupCreativeCreative

Repartition
HASH(CustomerId, CreativeId)

AdGroupCreativeAdGroupCreativeAdClick

...

Hash 
Table

Hash 
Table

To Client

Figure 3: A distributed query plan. Rounded boxes
represent processes running on separate machines.
Arrows show data flow within a process or over the
network in the form of RPCs.

• Hierarchically clustered tables have optimized access
methods.

• Query data can be consumed in parallel.

• Protocol Buffer-valued columns provide first-class sup-
port for structured data types.

• Spanner’s snapshot consistency model provides glob-
ally consistent results.

8.1 Central and Distributed Queries
F1 SQL supports both centralized and distributed exe-

cution of queries. Centralized execution is used for short
OLTP-style queries and the entire query runs on one F1
server node. Distributed execution is used for OLAP-style
queries and spreads the query workload over worker tasks
in the F1 slave pool (see Section 2). Distributed queries al-
ways use snapshot transactions. The query optimizer uses
heuristics to determine which execution mode is appropriate
for a given query. In the sections that follow, we will mainly
focus our attention on distributed query execution. Many
of the concepts apply equally to centrally executed queries.

8.2 Distributed Query Example
The following example query would be answered using

distributed execution:

SELECT agcr.CampaignId, click.Region,

cr.Language, SUM(click.Clicks)

FROM AdClick click

JOIN AdGroupCreative agcr

USING (AdGroupId, CreativeId)

JOIN Creative cr

USING (CustomerId, CreativeId)

WHERE click.Date = '2013-03-23'

GROUP BY agcr.CampaignId, click.Region,

cr.Language

This query uses part of the AdWords schema. An Ad-
Group is a collection of ads with some shared configuration.
A Creative is the actual ad text. The AdGroupCreative ta-
ble is a link table between AdGroup and Creative; Creatives
can be shared by multiple AdGroups. Each AdClick records
the Creative that the user was shown and the AdGroup
from which the Creative was chosen. This query takes all
AdClicks on a specific date, finds the corresponding Ad-
GroupCreative and then the Creative. It then aggregates to
find the number of clicks grouped by campaign, region and
language.

A possible query plan for this query is shown in Figure 3.
In the query plan, data is streamed bottom-up through each
of the operators up until the aggregation operator. The
deepest operator performs a scan of the AdClick table. In
the same worker node, the data from the AdClick scan flows
into a lookup join operator, which looks up AdGroupCre-
ative records using a secondary index key. The plan then
repartitions the data stream by a hash of the CustomerId
and CreativeId, and performs a lookup in a hash table that
is partitioned in the same way (a distributed hash join). Af-
ter the distributed hash join, the data is once again reparti-
tioned, this time by a hash of the CampaignId, Region and
Language fields, and then fed into an aggregation operator
that groups by those same fields (a distributed aggregation).

8.3 Remote Data
SQL query processing, and join processing in particular,

poses some interesting challenges in F1, primarily because
F1 does not store its data locally. F1’s main data store is
Spanner, which is a remote data source, and F1 SQL can
also access other remote data sources and join across them.
These remote data accesses involve highly variable network
latency [9]. In contrast, traditional database systems gen-
erally perform processing on the same machine that hosts
their data, and they mostly optimize to reduce the number
of disk seeks and disk accesses.

Network latency and disk latency are fundamentally dif-
ferent in two ways. First, network latency can be mitigated
by batching or pipelining data accesses. F1 uses extensive
batching to mitigate network latency. Secondly, disk la-
tency is generally caused by contention for a single limited
resource, the actual disk hardware. This severely limits the
usefulness of sending out multiple data accesses at the same
time. In contrast, F1’s network based storage is typically
distributed over many disks, because Spanner partitions its
data across many physical servers, and also at a finer-grained
level because Spanner stores its data in CFS. This makes it
much less likely that multiple data accesses will contend for
the same resources, so scheduling multiple data accesses in
parallel often results in near-linear speedup until the under-
lying storage system is truly overloaded.

1075



The prime example of how F1 SQL takes advantage of
batching is found in the lookup join query plan operator.
This operator executes a join by reading from the inner ta-
ble using equality lookup keys. It first retrieves rows from
the outer table, extracting the lookup key values from them
and deduplicating those keys. This continues until it has
gathered 50MB worth of data or 100,000 unique lookup key
values. Then it performs a simultaneous lookup of all keys
in the inner table. This returns the requested data in ar-
bitrary order. The lookup join operator joins the retrieved
inner table rows to the outer table rows which are stored in
memory, using a hash table for fast lookup. The results are
streamed immediately as output from the lookup join node.

F1’s query operators are designed to stream data as much
as possible, reducing the incidence of pipeline stalls. This
design decision limits operators’ ability to preserve interest-
ing data orders. Specifically, an F1 operator often has many
reads running asynchronously in parallel, and streams rows
to the next operator as soon as they are available. This
emphasis on data streaming means that ordering properties
of the input data are lost while allowing for maximum read
request concurrency and limiting the space needed for row
buffering.

8.4 Distributed Execution Overview
The structure of a distributed query plan is as follows.

A full query plan consists of potentially tens of plan parts,
each of which represents a number of workers that execute
the same query subplan. The plan parts are organized as
a directed acyclic graph (DAG), with data flowing up from
the leaves of the DAG to a single root node, which is the
only node with no out edges, i.e. the only sink. The root
node, also called the query coordinator, is executed by the
server that received the incoming SQL query request from a
client. The query coordinator plans the query for execution,
receives results from the penultimate plan parts, performs
any final aggregation, sorting, or filtering, and then streams
the results back to the client, except in the case of parti-
tioned consumers as described in Section 8.6.

A technique frequently used by distributed database sys-
tems is to take advantage of an explicit co-partitioning of the
stored data. Such co-partitioning can be used to push down
large amounts of query processing onto each of the process-
ing nodes that host the partitions. F1 cannot take advan-
tage of such partitioning, in part because the data is always
remote, but more importantly, because Spanner applies an
arbitrary, effectively random partitioning. Moreover, Span-
ner can also dynamically change the partitioning. Hence, to
perform operations efficiently, F1 must frequently resort to
repartitioning the data. Because none of the input data is
range partitioned, and because range partitioning depends
on correct statistics, we have eschewed range partitioning
altogether and opted to only apply hash partitioning.

Traditionally, repartitioning like this has been regarded
as something to be avoided because of the heavy network
traffic involved. Recent advances in the scalability of net-
work switch hardware have allowed us to connect clusters
of several hundred F1 worker processes in such a way that
all servers can simultaneously communicate with each other
at close to full network interface speed. This allows us to
repartition without worrying much about network capacity
and concepts like rack affinity. A potential downside of this
solution is that it limits the size of an F1 cluster to the limits
of available network switch hardware. This has not posed a

problem in practice for the queries and data sizes that the
F1 system deals with.

The use of hash partitioning allows us to implement an
efficient distributed hash join operator and a distributed ag-
gregation operator. These operators were already demon-
strated in the example query in Section 8.2. The hash join
operator repartitions both of its inputs by applying a hash
function to the join keys. In the example query, the hash
join keys are CustomerId and CreativeId. Each worker is re-
sponsible for a single partition of the hash join. Each worker
loads its smallest input (as estimated by the query planner)
into an in-memory hash table. It then reads its largest input
and probes the hash table for each row, streaming out the
results. For distributed aggregation, we aggregate as much
as possible locally inside small buffers, then repartition the
data by a hash of the grouping keys, and finally perform a
full aggregation on each of the hash partitions. When hash
tables grow too large to fit in memory, we apply standard
algorithms that spill parts of the hash table to disk.

F1 SQL operators execute in memory, without checkpoint-
ing to disk, and stream data as much as possible. This avoids
the cost of saving intermediate results to disk, so queries run
as fast as the data can be processed. This means, however,
that any server failure can make an entire query fail. Queries
that fail get retried transparently, which usually hides these
failures. In practice, queries that run for up to an hour
are sufficiently reliable, but queries much longer than that
may experience too many failures. We are exploring adding
checkpointing for some intermediate results into our query
plans, but this is challenging to do without hurting latency
in the normal case where no failures occur.

8.5 Hierarchical Table Joins
As described in Section 3.1, the F1 data model supports

hierarchically clustered tables, where the rows of a child ta-
ble are interleaved in the parent table. This data model
allows us to efficiently join a parent table and a descendant
table by their shared primary key prefix. For instance, con-
sider the join of table Customer with table Campaign:

SELECT *

FROM Customer JOIN

Campaign USING (CustomerId)

The hierarchically clustered data model allows F1 to per-
form this join using a single request to Spanner in which
we request the data from both tables. Spanner will return
the data to F1 in interleaved order (a pre-order depth-first
traversal), ordered by primary key prefix, e.g.:

Customer(3)

Campaign(3,5)

Campaign(3,6)

Customer(4)

Campaign(4,2)

Campaign(4,4)

While reading this stream, F1 uses a merge-join-like algo-
rithm which we call cluster join. The cluster join operator
only needs to buffer one row from each table, and returns
the joined results in a streaming fashion as the Spanner in-
put data is received. Any number of tables can be cluster
joined this way using a single Spanner request, as long as all
tables fall on a single ancestry path in the table hierarchy.

1076



For instance, in the following table hierarchy, F1 SQL can
only join RootTable to either ChildTable1 or ChildTable2

in this way, but not both:

RootTable

ChildTable1

ChildTable2

When F1 SQL has to join between sibling tables like these,
it will perform one join operation using the cluster join al-
gorithm, and select an alternate join algorithm for the re-
maining join. An algorithm such as lookup join is able to
perform this join without disk spilling or unbounded mem-
ory usage because it can construct the join result piecemeal
using bounded-size batches of lookup keys.

8.6 Partitioned Consumers
F1 queries can produce vast amounts of data, and push-

ing this data through a single query coordinator can be a
bottleneck. Furthermore, a single client process receiving all
the data can also be a bottleneck and likely cannot keep up
with many F1 servers producing result rows in parallel. To
solve this, F1 allows multiple client processes to consume
sharded streams of data from the same query in parallel.
This feature is used for partitioned consumers like MapRe-
duces[10]. The client application sends the query to F1 and
requests distributed data retrieval. F1 then returns a set of
endpoints to connect to. The client must connect to all of
these endpoints and retrieve the data in parallel. Due to the
streaming nature of F1 queries, and the cross-dependencies
caused by frequent hash repartitioning, slowness in one dis-
tributed reader may slow other distributed readers as well,
as the F1 query produces results for all readers in lock-step.
A possible, but so far unimplemented mitigation strategy
for this horizontal dependency is to use disk-backed buffer-
ing to break the dependency and to allow clients to proceed
independently.

8.7 Queries with Protocol Buffers
As explained in Section 3, the F1 data model makes heavy

use of Protocol Buffer valued columns. The F1 SQL dialect
treats these values as first class objects, providing full access
to all of the data contained therein. For example, the follow-
ing query requests the CustomerId and the entire Protocol
Buffer valued column Info for each customer whose country
code is US.

SELECT c.CustomerId, c.Info

FROM Customer AS c

WHERE c.Info.country_code = 'US'

This query illustrates two aspects of Protocol Buffer sup-
port. First, queries use path expressions to extract in-
dividual fields (c.Info.country code). Second, F1 SQL
also allows for querying and passing around entire protocol
buffers (c.Info). Support for full Protocol Buffers reduces
the impedance mismatch between F1 SQL and client ap-
plications, which often prefer to receive complete Protocol
Buffers.

Protocol Buffers also allow repeated fields, which may have
zero or more instances, i.e., they can be regarded as variable-
length arrays. When these repeated fields occur in F1
database columns, they are actually very similar to hierar-
chical child tables in a 1:N relationship. The main difference

between a child table and a repeated field is that the child ta-
ble contains an explicit foreign key to its parent table, while
the repeated field has an implicit foreign key to the Proto-
col Buffer containing it. Capitalizing on this similarity, F1
SQL supports access to repeated fields using PROTO JOIN,
a JOIN variant that joins by the implicit foreign key. For
instance, suppose that we have a table Customer, which has
a Protocol Buffer column Whitelist which in turn contains
a repeated field feature. Furthermore, suppose that the
values of this field feature are themselves Protocol Buffers,
each of which represents the whitelisting status of a partic-
ular feature for the parent Customer.

SELECT c.CustomerId, f.feature

FROM Customer AS c

PROTO JOIN c.Whitelist.feature AS f

WHERE f.status = 'STATUS_ENABLED'

This query joins the Customer table with its virtual child
table Whitelist.feature by the foreign key that is implied
by containment. It then filters the resulting combinations
by the value of a field f.status inside the child table f, and
returns another field f.feature from that child table. In
this query syntax, the PROTO JOIN specifies the parent re-
lation of the repeated field by qualifying the repeated field
name with c, which is the alias of the parent relation. The
implementation of the PROTO JOIN construct is straightfor-
ward: in the read from the outer relation we retrieve the
entire Protocol Buffer column containing the repeated field,
and then for each outer row we simply enumerate the re-
peated field instances in memory and join them to the outer
row.

F1 SQL also allows subqueries on repeated fields in Pro-
tocol Buffers. The following query has a scalar subquery to
count the number of Whitelist.features, and an EXISTS

subquery to select only Customers that have at least one
feature that is not ENABLED. Each subquery iterates over re-
peated field values contained inside Protocol Buffers from
the current row.

SELECT c.CustomerId, c.Info,

(SELECT COUNT(*) FROM c.Whitelist.feature) nf

FROM Customer AS c

WHERE EXISTS (SELECT * FROM c.Whitelist.feature f

WHERE f.status != 'ENABLED')

Protocol Buffers have performance implications for query
processing. First, we always have to fetch entire Protocol
Buffer columns from Spanner, even when we are only inter-
ested in a small subset of fields. This takes both additional
network and disk bandwidth. Second, in order to extract the
fields that the query refers to, we always have to parse the
contents of the Protocol Buffer fields. Even though we have
implemented an optimized parser to extract only requested
fields, the impact of this decoding step is significant. Future
versions will improve this by pushing parsing and field selec-
tion to Spanner, thus reducing network bandwidth required
and saving CPU in F1 while possibly using more CPU in
Spanner.

9. DEPLOYMENT
The F1 and Spanner clusters currently deployed for Ad-

Words use five datacenters spread out across mainland US.
The Spanner configuration uses 5-way Paxos replication to

1077



ensure high availability. Each region has additional read-
only replicas that do not participate in the Paxos algorithm.
Read-only replicas are used only for snapshot reads and thus
allow us to segregate OLTP and OLAP workloads.

Intuitively, 3-way replication should suffice for high avail-
ability. In practice, this is not enough. When one datacen-
ter is down (because of either an outage or planned mainte-
nance), both surviving replicas must remain available for F1
to be able to commit transactions, because a Paxos commit
must succeed on a majority of replicas. If a second data-
center goes down, the entire database becomes completely
unavailable. Even a single machine failure or restart tem-
porarily removes a second replica, causing unavailability for
data hosted on that server.

Spanner’s Paxos implementation designates one of the
replicas as a leader. All transactional reads and commits
must be routed to the leader replica. User transactions nor-
mally require at least two round trips to the leader (reads
followed by a commit). Moreover, F1 servers usually per-
form an extra read as a part of transaction commit (to get
old values for Change History, index updates, optimistic
transaction timestamp verification, and referential integrity
checks). Consequently, transaction latency is best when
clients and F1 servers are co-located with Spanner leader
replicas. We designate one of the datacenters as a pre-
ferred leader location. Spanner locates leader replicas in the
preferred leader location whenever possible. Clients that
perform heavy database modifications are usually deployed
close to the preferred leader location. Other clients, includ-
ing those that primarily run queries, can be deployed any-
where, and normally do reads against local F1 servers.

We have chosen to deploy our five read/write replicas with
two each on the east and west coasts of the US, and the
fifth centrally. With leaders on the east coast, commits re-
quire round trips to the other east coast datacenter, plus the
central datacenter, which accounts for the 50ms minimum
latency. We have chosen this deployment to maximize avail-
ability in the presence of large regional outages. Other F1
and Spanner instances could be deployed with closer replicas
to reduce commit latency.

10. LATENCY AND THROUGHPUT
In our configuration, F1 users see read latencies of 5-10

ms and commit latencies of 50-150 ms. Commit latency is
largely determined by network latency between datacenters.
The Paxos algorithm allows a transaction to commit once a
majority of voting Paxos replicas acknowledge the transac-
tion. With five replicas, commits require a round trip from
the leader to the two nearest replicas. Multi-group commits
require 2PC, which typically doubles the minimum latency.

Despite the higher database latency, overall user-facing
latency for the main interactive AdWords web application
averages about 200ms, which is similar to the preceding sys-
tem running on MySQL. Our schema clustering and applica-
tion coding strategies have successfully hidden the inherent
latency of synchronous commits. Avoiding serial reads in
client code accounts for much of that. In fact, while the
average is similar, the MySQL application exhibited tail la-
tency much worse than the same application on F1.

For non-interactive applications that apply bulk updates,
we optimize for throughput rather than latency. We typi-
cally structure such applications so they do small transac-
tions, scoped to single Spanner directories when possible,

and use parallelism to achieve high throughput. For exam-
ple, we have one application that updates billions of rows per
day, and we designed it to perform single-directory transac-
tions of up to 500 rows each, running in parallel and aiming
for 500 transactions per second. F1 and Spanner provide
very high throughput for parallel writes like this and are
usually not a bottleneck – our rate limits are usually cho-
sen to protect downstream Change History consumers who
can’t process changes fast enough.

For query processing, we have mostly focused on func-
tionality and parity so far, and not on absolute query per-
formance. Small central queries reliably run in less than
10ms, and some applications do tens or hundreds of thou-
sands of SQL queries per second. Large distributed queries
run with latency comparable to MySQL. Most of the largest
queries actually run faster in F1 because they can use more
parallelism than MySQL, which can only parallelize up to
the number of MySQL shards. In F1, such queries often see
linear speedup when given more resources.

Resource costs are usually higher in F1, where queries
often use an order of magnitude more CPU than similar
MySQL queries. MySQL stored data uncompressed on local
disk, and was usually bottlenecked by disk rather than CPU,
even with flash disks. F1 queries start from data compressed
on disk and go through several layers, decompressing, pro-
cessing, recompressing, and sending over the network, all of
which have significant cost. Improving CPU efficiency here
is an area for future work.

11. RELATED WORK
As a hybrid of relational and NoSQL systems, F1 is related

to work in both areas. F1’s relational query execution tech-
niques are similar to those described in the shared-nothing
database literature, e.g., [12], with some key differences
like the ignoring of interesting orders and the absence of co-
partitioned data. F1’s NoSQL capabilities share properties
with other well-described scalable key-value stores including
Bigtable [6], HBase [1], and Dynamo [11]. The hierarchi-
cal schema and clustering properties are similar to Megas-
tore [3].

Optimistic transactions have been used in previous sys-
tems including Percolator [19] and Megastore [3]. There is
extensive literature on transaction, consistency and locking
models, including optimistic and pessimistic transactions,
such as [24] and [4].

Prior work [15] also chose to mitigate the inherent latency
of remote lookups though the use of asynchrony in query
processing. However, due to the large volumes of data pro-
cessed by F1, our system is not able to make the simplifying
assumption that an unlimited number of asynchronous re-
quests can be made at the same time. This complication,
coupled with the high variability of storage operation la-
tency, led to the out-of-order streaming design described in
Section 8.3.

MDCC [17] suggests some Paxos optimizations that could
be applied to reduce the overhead of multi-participant trans-
actions.

Using Protocol Buffers as first class types makes F1, in
part, a kind of object database [2]. The resulting simpli-
fied ORM results in a lower impedance mismatch for most
client applications at Google, where Protocol Buffers are
used pervasively. The hierarchical schema and clustering
properties are similar to Megastore and ElasTraS [8]. F1

1078



treats repeated fields inside protocol buffers like nested re-
lations [21].

12. CONCLUSION
In recent years, conventional wisdom in the engineering

community has been that if you need a highly scalable, high-
throughput data store, the only viable option is to use a
NoSQL key/value store, and to work around the lack of
ACID transactional guarantees and the lack of conveniences
like secondary indexes, SQL, and so on. When we sought
a replacement for Google’s MySQL data store for the Ad-
Words product, that option was simply not feasible: the
complexity of dealing with a non-ACID data store in ev-
ery part of our business logic would be too great, and there
was simply no way our business could function without SQL
queries. Instead of going NoSQL, we built F1, a distributed
relational database system that combines high availability,
the throughput and scalability of NoSQL systems, and the
functionality, usability and consistency of traditional re-
lational databases, including ACID transactions and SQL
queries.

Google’s core AdWords business is now running com-
pletely on F1. F1 provides the SQL database functionality
that our developers are used to and our business requires.
Unlike our MySQL solution, F1 is trivial to scale up by
simply adding machines. Our low-level commit latency is
higher, but by using a coarse schema design with rich col-
umn types and improving our client application coding style,
the observable end-user latency is as good as before and the
worst-case latencies have actually improved.

F1 shows that it is actually possible to have a highly scal-
able and highly available distributed database that still pro-
vides all of the guarantees and conveniences of a traditional
relational database.

13. ACKNOWLEDGEMENTS
We would like to thank the Spanner team, without whose

great efforts we could not have built F1. We’d also like to
thank the many developers and users across all AdWords
teams who migrated their systems to F1, and who played a
large role influencing and validating the design of this sys-
tem. We also thank all former and newer F1 team members,
including Michael Armbrust who helped write this paper,
and Marcel Kornacker who worked on the early design of
the F1 query engine.

14. REFERENCES
[1] Apache Foundation. Apache HBase.

http://hbase.apache.org/.

[2] M. Atkinson et al. The object-oriented database
system manifesto. In F. Bancilhon, C. Delobel, and
P. Kanellakis, editors, Building an object-oriented
database system, pages 1–20. Morgan Kaufmann, 1992.

[3] J. Baker et al. Megastore: Providing scalable, highly
available storage for interactive services. In CIDR,
pages 223–234, 2011.

[4] H. Berenson et al. A critique of ANSI SQL isolation
levels. In SIGMOD, 1995.

[5] E. A. Brewer. Towards robust distributed systems
(abstract). In PODC, 2000.

[6] F. Chang et al. Bigtable: A distributed storage system
for structured data. In OSDI, 2006.

[7] J. C. Corbett et al. Spanner: Google’s
globally-distributed database. In OSDI, 2012.

[8] S. Das et al. ElasTraS: An elastic, scalable, and
self-managing transactional database for the cloud.
TODS, 38(1):5:1–5:45, Apr. 2013.

[9] J. Dean. Evolution and future directions of large-scale
storage and computation systems at Google. In
SOCC, 2010.

[10] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, 2004.

[11] G. DeCandia et al. Dynamo: Amazon’s highly
available key-value store. In SOSP, 2007.

[12] D. J. Dewitt et al. The Gamma database machine
project. TKDE, 2(1):44–62, Mar. 1990.

[13] K. P. Eswaran et al. The notions of consistency and
predicate locks in a database system. CACM,
19(11):624–633, Nov. 1976.

[14] A. Fikes. Storage architecture and challenges. Google
Faculty Summit, July 2010.

[15] R. Goldman and J. Widom. WSQ/DSQ: A practical
approach for combined querying of databases and the
web. In SIGMOD, 2000.

[16] Google, Inc. Protocol buffers. https:
//developers.google.com/protocol-buffers/.

[17] T. Kraska et al. MDCC: Multi-data center
consistency. In EuroSys, 2013.

[18] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[19] D. Peng and F. Dabek. Large-scale incremental
processing using distributed transactions and
notifications. In OSDI, 2010.

[20] I. Rae et al. Online, asynchronous schema change in
F1. PVLDB, 6(11), 2013.

[21] M. A. Roth et al. Extended algebra and calculus for
nested relational databases. ACM Trans. Database
Syst., 13(4):389–417, Oct. 1988.

[22] J. Shute et al. F1: The fault-tolerant distributed
RDBMS supporting Google’s ad business. In
SIGMOD, 2012.

[23] M. Stonebraker. SQL databases v. NoSQL databases.
CACM, 53(4), 2010.

[24] G. Weikum and G. Vossen. Transactional Information
Systems. Morgan Kaufmann, 2002.

1079


