
Online, Asynchronous Schema Change in F1

Ian Rae
University of

Wisconsin–Madison
ian@cs.wisc.edu

Eric Rollins
Google, Inc.

erollins@google.com

Jeff Shute
Google, Inc.

jshute@google.com

Sukhdeep Sodhi
Google, Inc.

sodhi@google.com

Radek Vingralek
Google, Inc.

radekv@google.com

ABSTRACT
We introduce a protocol for schema evolution in a globally
distributed database management system with shared data,
stateless servers, and no global membership. Our protocol
is asynchronous—it allows different servers in the database
system to transition to a new schema at different times—and
online—all servers can access and update all data during a
schema change. We provide a formal model for determining
the correctness of schema changes under these conditions,
and we demonstrate that many common schema changes can
cause anomalies and database corruption. We avoid these
problems by replacing corruption-causing schema changes
with a sequence of schema changes that is guaranteed to
avoid corrupting the database so long as all servers are no
more than one schema version behind at any time. Finally,
we discuss a practical implementation of our protocol in
F1, the database management system that stores data for
Google AdWords.

1. INTRODUCTION
Schema evolution—the ability to change a database’s def-

inition without the loss of data—has been studied in the
database research community for more than two decades [17].
In this paper, we describe techniques used by Google’s F1
database management system [21] to support schema evolu-
tion in a new setting. F1 is a globally distributed relational
database management system that provides strong consis-
tency, high availability, and allows users to execute queries
via SQL. F1 is built on top of Spanner, a globally distributed
data store [5]. Spanner has evolved over time to provide
its own relational abstraction layer which includes some of
the features that F1 provides; however, F1 was developed
around an earlier version of Spanner, and as such, its im-
plementation details, design goals, and assumptions differ
from Spanner. We focus only on the features of Spanner rel-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 11
Copyright 2013 VLDB Endowment 2150-8097/13/09... $ 10.00.

evant to our protocol for schema evolution and hence view
Spanner as a key–value store.
The main features of F1 that impact schema changes are:

Massively distributed An instance of F1 consists of hun-
dreds of individual F1 servers, running on a shared
cluster of machines distributed in many datacenters
around the globe.

Relational schema Each F1 server has a copy of a rela-
tional schema that describes tables, columns, indexes,
and constraints. Any modification to the schema re-
quires a distributed schema change to update all servers.

Shared data storage All F1 servers in all datacenters have
access to all data stored in Spanner. There is no par-
titioning of data among F1 servers.

Stateless servers F1 servers must tolerate machine fail-
ures, preemption, and loss of access to network re-
sources. To address this, F1 servers are largely stateless—
clients may connect to any F1 server, even for different
statements that are part of the same transaction.

No global membership Because F1 servers are stateless,
there is no need for F1 to implement a global member-
ship protocol. This means there is no reliable mecha-
nism for determining currently running F1 servers, and
explicit global synchronization is not possible.

These aspects of F1’s architecture, together with its role
as a primary data store for Google AdWords, impose several
constraints on the schema change process:

Full data availability F1 is a critical part of Google’s busi-
ness infrastructure. Therefore, the availability of the
data managed by F1 is paramount—any downtime of
the AdWords F1 instance can be measured with a di-
rect impact on Google’s revenue, and modifications to
the schema cannot take the system offline. Addition-
ally, due to this revenue loss, it is unacceptable to take
even a portion of the database offline during a schema
change (e.g., locking a column to build an index).

Minimal performance impact The AdWords F1 instance
is shared among many different teams and projects
within Google that need to access AdWords data. As a
result, the F1 schema changes rapidly to support new
features and business needs created by these teams.

1045

S2 S1 S1 S2 S2

Clients

F1 servers
(schema 1 or schema 2)

Distributed
key-value store

Figure 1: Overview of an F1 instance during a schema
change. All servers share the same key–value store, but mul-
tiple versions of the schema can be in use simultaneously.

Typically, multiple schema changes are applied every
week. Because schema changes are frequent, they must
have minimal impact on the response time of user op-
erations.

Asynchronous schema change Because there is no global
membership in F1, we cannot synchronize the schema
change across all F1 servers. In other words, different
F1 servers may transition to using a new schema at
different times.

These requirements influenced the design of our schema
change process in several ways. First, since all data must be
as available as possible, we do not restrict access to data un-
dergoing reorganization. Second, because the schema change
must have minimal impact on user transactions, we allow
transactions to span an arbitrary number of schema changes,
although we do not automatically rewrite queries to con-
form to the schema in use. Finally, applying schema changes
asynchronously on individual F1 servers means that multi-
ple versions of the schema may be in use simultaneously (see
Figure 1).
Because each server has shared access to all data, servers

using different schema versions may corrupt the database.
Consider a schema change from schema S1 to schema S2

that adds index I on table R. Assume two different servers,
M1 and M2, execute the following sequence of operations:

1. Server M2, using schema S2, inserts a new row r to
table R. Because S2 contains index I, server M2 also
adds a new index entry corresponding to r to the key–
value store.

2. Server M1, using schema S1, deletes r. Because S1

does not contain I, M1 removes r from the key–value
store but fails to remove the corresponding index entry
in I.

The second delete leaves the database corrupt. For exam-
ple, an index-only scan would return incorrect results that
included column values for the deleted row r.
Our protocol attempts to prevent this corruption by ad-

dressing the general problem of asynchronous, online schema
evolution in a distributed database system that has shared
data access across all servers. We consider not only changes
to the logical schema, such as the addition or removal of
columns, but also changes to the physical schema like adding
or removing secondary indexes. By ensuring that no more

than two schema versions are in use at any given time, and
that those schema versions have specific properties, our pro-
tocol enables distributed schema changes in a way that does
not require global membership, implicit or explicit synchro-
nization between nodes, or the need to retain old schema
versions once a schema change is complete. As a result, the
main contributions of this paper are:

• A description of the design choices we made when
building a global-scale distributed DBMS on top of
a key–value store and their implications for schema
change operations.

• A protocol to execute schema changes asynchronously
in a system with shared access to data while avoiding
anomalies that lead to data corruption. This protocol
allows for concurrent modification of the database by
user transactions during a schema change.

• A formal model and proof of correctness of the pro-
posed schema change protocol.

• A discussion of changes made to the system in order
to implement the protocol.

• An evaluation of the implementation and efficacy of
the protocol in a production system used by Google
AdWords.

The rest of the paper is organized as follows. We explain
the interface of the key–value store and the high-level de-
sign of F1’s relational schema and operations in Section 2.
In Section 3, we present a model for our supported schema
changes and show how we design them to protect against
various anomalies that can corrupt the database. We follow
this with Section 4, where we describe how we implemented
these schema changes in our production F1 system that has
been serving Google’s AdWords traffic for over a year, and
we provide some information on the performance and over-
all user experience of the system in Section 5. Finally, we
discuss related work in Section 6 and conclude in Section 7.

2. BACKGROUND
F1 provides a relational view over data stored as keys and

values in a key–value store. In this section, we separate
the interface provided by the key–value store from its imple-
mentation, and we show how we map traditional relational
database features into this unique setting.

2.1 Key–value store
F1 is designed for a distributed key–value store with a

simple data model that associates keys with values. F1
assumes the key–value store supports three operations: put ,
del , and get . put and del insert or delete a value with a
given key, respectively, and get returns any stored values
whose key matches a given prefix. Note that put and del
reference exactly one key–value pair, while get may return
multiple key–value pairs.
Additionally, F1’s optimistic concurrency control adds two

more requirements on the key–value store:

1. Commit timestamps. Every key–value pair has a
last-modified timestamp which is updated atomically
by the key–value store.

1046

Example

first_name* last_name* age phone_number

John Doe 24 555-123-4567
Jane Doe 35 555-456-7890

(a) Relational representation.

key value

Example.John.Doe.exists
Example.John.Doe.age 24
Example.John.Doe.phone_number 555-123-4567
Example.Jane.Doe.exists
Example.Jane.Doe.age 35
Example.Jane.Doe.phone_number 555-456-7890

(b) Key–value representation.

Table 1: F1’s logical mapping of the “Example” table (a) into a set of key–value pairs (b). Primary key columns are starred.

2. Atomic test-and-set support. Multiple get and put
operations can be executed atomically.

We describe this in more detail in Section 2.5.

2.2 Relational schema
An F1 schema is a set of table definitions that enable

F1 to interpret the database located in the key–value store.
Each table definition has a list of columns (along with their
types), a list of secondary indexes, a list of integrity con-
straints (foreign key or index uniqueness constraints), and
a list of optimistic locks. Optimistic locks are required
columns that cannot be read directly by client transactions;
we describe them in more detail in Section 2.5. A subset of
columns in a table forms the primary key of the table.
Column values can be either primitive types or complex

types (specified in F1 as protocol buffers [10]). Primary key
values are restricted to only primitive types.
We call a column required if its value must be present in

every row. All primary-key columns are implicitly required,
while non-key columns may be either required or optional.

2.3 Row representation
Rows are represented in the key–value store as a set of key–

value pairs, one pair for each non-primary-key column. Each
key logically includes the name of the table, the primary key
values of the containing row, and the name of the column
whose value is stored in the pair. Although this appears
to needlessly repeat all primary key values in the key for
each column value, in practice, F1’s physical storage format
eliminates this redundancy [21]. We denote the key for the
value of column C in row r as kr(C).
In addition to the column values, there is also a reserved

key–value pair with the special column exists. This key–
value pair indicates the existence of row r in the table, and
it has no associated value, which we denote as 〈key ,null〉.
An concrete example of a row is shown in Table 1.

F1 also supports secondary indexes. A secondary index
in F1 covers a non-empty subset of columns on a table and
is itself represented by a set of key–value pairs in the key–
value store. Each row in the indexed table has an associated
index key–value pair. The key for this pair is formed by
concatenating the table name, the index name, the row’s
indexed column values, and the row’s primary key values.
We denote the index key for row r in index I as kr(I), and as
in the case of the special exists column, there is no associated
value.

2.4 Relational operations
F1 supports a set of standard relational operations:

• insert(R, vkr, vcr) inserts row r to table R with pri-
mary key values vkr and non-key column values vcr.
Insert fails if a row with the same primary key values
already exists in table R.

• delete(R, vkr) deletes row r with primary key values
vkr from table R.

• update(R, vkr, vcr) updates row r with primary key
values vkr in table R by replacing the values of a sub-
set of non-key columns with those in vcr. update can-
not modify values of primary keys. Such updates are
modeled by a delete followed by an insert .

• query(~R, ~C, P) returns a projection ~C of rows from
tables in ~R that satisfy predicate P .

We use the notation write(R, vkr, vcr) to mean any of
insert , delete, or update when we wish to model the fact
that some data has changed, but we do not care about the
specific type of operation that changed it.
These relational operations are translated into changes

to the key–value store based on the schema. For example,
delete(R, vkr) deletes all key–value pairs corresponding to all
columns and indexes defined on table R in schema S with
primary key vkr. Therefore, we subscript all operations with
their related schema, such as deleteS(R, vkr).
Whenever we need to distinguish the transaction that is-

sued a particular operation, we superscript the operation
with the transaction identifier. For example, we say that
update1

S(R, vkr, vcr) is an update operation issued by trans-
action T1 using schema S. We introduce a shorthand nota-
tion query(R,C, vkr) for a query reading a single value of
column C in row r with primary key vkr in table R.
Each operation is guaranteed to take the database from

one consistent state to another with respect to the schema
on which the operation is based.

2.5 Concurrency control
F1 uses a form of timestamp-based optimistic concurrency

control similar to that found in Percolator [14], which is also
built on top of a distributed key–value store. F1’s concur-
rency control is relevant to schema evolution because F1’s
schema contains an additional element on each table: opti-
mistic locks.
A table may have many locks; however, each column in

that table is associated with (or covered by) exactly one
optimistic lock. Each row has its own instance of each of the
optimistic locks defined in the schema, and these instances

1047

Operations use
Schema 1

Operations use
Schema 2

Operations use either
Schema 1 or Schema 2

t1

Schema 1
replaced with

Schema 2
(start of change)

t2

All servers on
Schema 2

(end of change)

transitioning servers

Figure 2: A view of the schema change process from Schema
1 to Schema 2 over time. Lines in the center of the figure
represent individual F1 servers as they load Schema 2.

control concurrent access to that row’s column values by
multiple transactions.
When clients read column values as part of a transaction,

they accumulate last-modified timestamps from the locks
covering those columns; at commit time, these timestamps
are submitted to the server and validated to ensure that they
have not changed. If validation succeeds, the last-modified
timestamps of all locks associated with columns modified by
the transaction are updated to the current timestamp. This
form of concurrency control can be shown to be conflict seri-
alizable by following the same argument as used in the proof
of Theorem 4.17 in [25, pg. 173]. Transactions are limited to
at most one logical write operation, which may modify many
individual rows, and the write operation occurs atomically
with a commit.

By default, as in the majority of database systems, F1 im-
plements row-level locking [21]. However, because users can
add new locks to a table and associate them with arbitrary
columns in that table, F1 users can select a locking granu-
larity ranging from row- to column-level locking as desired.
Consequently, we must consider the correctness of schema
changes which add or remove locks from the schema (identi-
cal to adding or removing required columns, discussed in Sec-
tion 3.3), and the correctness of schema changes which mod-
ify the associations between columns and locks (discussed in
Section 3.4).

3. SCHEMA CHANGES

There is nothing as practical as a good theory.

Kurt Lewin

Soon after we implemented the schema change process in F1,
we realized the need for a formal model to validate its cor-
rectness, since improperly executed schema changes could
result in catastrophic data loss. While we developed our

formal model, we found two subtle bugs in our production
system, and we also found that some of the schema changes
that we had not yet implemented could be supported safely.
Finally, by allowing us to reason about our schema change
protocol, having a formal model increased our confidence in
the F1 schema change process. We describe the most salient
features of the formal model in this section.
All servers in an F1 instance share a set of key–value pairs,

called a database representation, that are located in a
key–value store. To interpret these key–value pairs as rows,
every F1 server maintains a copy of its instance’s schema in
its memory, and it uses this schema to translate relational
operators into the operations supported by the key–value
store. Accordingly, when a client submits an operation, the
schema used for that operation is determined by the schema
currently in the memory of the F1 server the client is con-
nected to.
The canonical copy of the schema is stored within the

database representation as a special key–value pair known
to all F1 servers in the instance. When the canonical copy
of the schema is replaced with a new version, it begins a
schema change, which is a process that propagates the
new schema to all servers in an F1 instance. Because F1 is a
highly distributed system with hundreds of servers with no
way to synchronize between them (either explicitly or implic-
itly), different servers may transition to the new schema at
different times (see Figure 2), and multiple schema versions
may be in use simultaneously. Accordingly, we say that a
schema change has completed only when all F1 servers in
the instance have loaded the new schema.
Since all F1 servers in an instance share a single key–value

store, improperly executing asynchronous schema changes
can corrupt the database. For example, if a schema change
adds an index to the database, servers still operating on the
old schema will fail to maintain the new index. If this occurs,
any queries which perform index reads will return incorrect
results.
The fundamental cause of this corruption is that the change

made to the schema is, in some sense, too abrupt. Servers on
the old schema have no knowledge of the index, while servers
on the new schema use it for all operations as if it were fully
maintained. Additionally, although we used adding an in-
dex as an example, this problem occurs for all fundamental
schema change operations in our system.
To address this issue, we devised a protocol for safely ex-

ecuting schema changes that relies on the use of interme-
diate states. With our protocol, elements of the schema
(such as tables, columns, indexes, and so on) can be placed
in an intermediate state that restricts which operations can
be applied to them. This enables us to decompose a sin-
gle dangerous schema change into a sequence of safe schema
changes that we show enforce correct behavior.
To simplify reasoning about the correctness of our imple-

mentation, we restrict servers in an F1 instance from using
more than two distinct schema versions. In particular, our
protocol expects that all servers use either the most recent
schema version or a schema that is at most one version old
(see Section 4.3 for a practical method of implementing this
requirement). This is the fewest number of simultaneous
schema versions that we can permit, since the asynchronous
nature of our schema change process means that there is al-
ways a possibility of having a short window where more than
one schema version is in use. It would also be possible to

1048

allow more than two schema versions in use simultaneously,
but as this would greatly increase the complexity of reason-
ing about correctness and be of limited utility, we opted not
to support it in our protocol.
In order to describe our protocol for safely executing dis-

tributed, asynchronous schema changes and to reason about
its correctness, we must first discuss the elements found
within an F1 schema and the states that can be applied
to them.

3.1 Schema elements and states
As described in Section 2.2, an F1 schema has tables,

columns, indexes, constraints, and optimistic locks. We de-
scribe these collectively as schema elements (or just ele-
ments), and each element in the schema has a state associ-
ated with it. There are two states which we consider to be
non-intermediate: absent and public.
As one might expect, if an element is not present in the

schema, it is absent. If an element is present in the schema,
and it can be affected by or applied to all operations, it
is public. Accordingly, these are the two states that are
requested by users when elements are added to or removed
from the schema.
However, F1 also has the notion of two internal, interme-

diate states: delete-only and write-only. The delete-only
state is defined as follows:

Definition 1. A delete-only table, column, or index
cannot have their key–value pairs read by user transactions
and

1. if E is a table or column, it can be modified only by
delete operations.

2. if E is an index, it is modified only by delete and update
operations. Moreover, update operations can delete
key–value pairs corresponding to updated index keys,
but they cannot create any new ones.

As a result, when an element is delete-only, F1 servers will
delete its associated key–value pairs as necessary (e.g., to
remove entries from an index), but they will not permit the
insertion of any new key–value pairs for that element.
The write-only state is defined for columns and indexes as

follows:

Definition 2. A write-only column or index can have
their key–value pairs modified by insert , delete, and update
operations, but none of their pairs can be read by user trans-
actions.

Therefore, this state allows data to be written, but not read
(in the case of indexes, F1 servers will not use write-only
indexes to accelerate seeks).
The write-only state is also defined for constraints:

Definition 3. A write-only constraint1 is applied for
all new insert , delete, and update operations, but it is not
guaranteed to hold over all existing data.

In this case, F1 servers will enforce the constraint for new
operations on the database, but reads against the database
may see data which violates the constraint.
Although it may seem strange to have states where data

can be inserted into the database but not read, or read in a
1Section 2.2 defines the constraints we implemented in F1.

manner that seems to violate expectations, recall that differ-
ent F1 servers may be using different schema versions. We
will show in the following sections that careful use of these
states is important for ensuring a consistent view of the key–
value pairs in the database across all F1 servers.

3.2 Database consistency
Intuitively, all data in the key–value store must corre-

spond to some column or index entry in the schema; other-
wise, the key–value store would contain some “garbage” data
that is not part of the database, which is clearly undesirable.
Additionally, the database must satisfy all constraints that
are present in the schema. We now formalize this intuition
into a definition of database consistency that enables us to
evaluate whether a schema change can corrupt the database.

Definition 4. A database representation d is consistent
with respect to schema S iff

1. No column values exist without a containing
row and table. For every column key–value pair
〈kr(C), vr(C)〉 ∈ d there exists 〈kr(exists),null〉 ∈ d
and there exists table R ∈ S containing column C.

2. All rows have all public required column val-
ues. For every required public column C in table
R ∈ S, if there exists 〈kr(exists),null〉 ∈ d, there exists
〈kr(C), vr(C)〉 ∈ d.

3. No index entries exist without a corresponding
index in the schema. For every index key–value pair
〈kr(I),null〉 ∈ d there exists table R ∈ S containing
index I.

4. All public indexes are complete. If there exists a
public index I on R ∈ S, then there exists an index
key–value pair 〈kr(I),null〉 ∈ d for every row r ∈ R.2

5. All index entries point to valid rows. Conversely,
for every index key–value pair 〈kr(I),null〉 ∈ d, there
exists a column key–value pair 〈kr(C), vr(C)〉 ∈ d for
every column C covered by index I.

6. All public constraints are honored. No key–value
pair exists in d that violates a public constraint listed
in S, and all key–value pairs that must be present ac-
cording to public constraints in S exist in d.

7. No unknown values. There are no key–value pairs
in database representation d except those postulated
in Clauses 1 and 3 of this definition.

We denote the fact that database representation d is con-
sistent with respect to schema S as d |= S. If d is not con-
sistent with respect to schema S, we denote this as d * S.
The consistency of a database representation d with re-

spect to schema S can be violated in two ways:

1. Database representation d contains key–value pairs it
should not according to schema S. We call such a viola-
tion an orphan data anomaly. Specifically, database
representation d has orphan data with respect to S if
it violates Clauses 1, 3, 5, or 7 of Definition 4.

2As in most relational database systems, F1 does not index
rows with missing values in the index key. We do not model
this fact for the sake of simplicity.

1049

2. Database representation d is missing a key–value pair
it should contain according to schema S or it contains
a key–value pair that violates a public constraint in
schema S. We say a violation of this sort is an in-
tegrity anomaly. Specifically, database representa-
tion d has integrity anomalies if it violates Clauses 2,
4, or 6 of Definition 4.

Let opS be any of delete, update, insert , or query execut-
ing under schema S. Every correctly implemented operation
opS preserves the consistency of any database representa-
tion d it is applied to with respect to the schema S it uses.
However, it is not guaranteed to preserve consistency with
respect to any other schema. Because multiple schema ver-
sions are in use during a schema change, failure to preserve
consistency with respect to all schema versions easily cor-
rupts the database representation.
To avoid this, we define the notion of a consistency-

preserving schema change.

Definition 5. A schema change from schema S1 to schema
S2 is consistency preserving iff, for any database repre-
sentation d consistent with respect to both S1 and S2, it is
true that

1. any operation opS1
preserves the consistency of d with

respect to schema S2, and

2. any operation opS2
preserves the consistency of d with

respect to schema S1.

In Definition 5, it may appear unnecessary to require that
all operations preserve the consistency of the database repre-
sentation with respect to the old schema S1. After all, once
the schema change completes, all F1 servers will use the new
schema S2. Therefore, as long as all operations preserve con-
sistency with respect to S2, the database representation will
become consistent as soon as the schema change completes.
However, F1 servers using the old schema S1 that oper-

ate on a representation which is not consistent with respect
to S1 may issue operations that yield database representa-
tions not consistent with respect to the new schema S2 (an
operation opS1 has an undefined behavior if applied to a
database representation d * S1). Consider a schema change
from schema S1 to schema S2 that adds column C and a
database representation d that is consistent only with re-
spect to schema S2. First, operation insertS2(R, vkr, vr(C))
updates database representation d by adding key–value pair
〈kr(C), vr(C)〉. The resulting database representation d′ is
still consistent with respect to schema S2 (but not S1!). Now,
suppose operation deleteS1(R, vkr) is later executed against
database representation d′. It fails to remove key–value pair
〈kr(C), vr(C)〉 from database representation d′ because col-
umn C is not present in schema S1, making key–value pair
〈kr(C), vr(C)〉 an orphan with respect to schema S2. Hence
the resulting database representation d′′ is not consistent
with respect to schema S2, and moreover, the corruption
will persist after the schema change completes.

Therefore, we must require in Definition 5 that, during
a consistency-preserving schema change, all operations pre-
serve consistency with respect to both the old schema S1

and the new schema S2 at all times during a schema change.
This property also means that Definition 5 is symmetric:

Claim 1. A schema change from schema S1 to schema
S2 is consistency preserving iff a schema change from schema
S2 to schema S1 is consistency preserving.

Consistency-preserving schema changes ensure that the
database is not corrupted; however, many common schema
changes are not consistency preserving.

3.3 Adding and removing schema elements
The most common schema changes requested by F1 users

are those that add and remove elements, such as tables,
columns, and constraints, from the schema. For ease of ex-
planation, we group tables, columns (including optimistic
locks), and indexes together as structural schema ele-
ments (or simply structural elements). Structural ele-
ments can be thought of as the elements in the schema that
determine the set of allowed key–value pairs in the key–value
store. We do not address optimistic locks explicitly in this
section since they are semantically identical (from a schema
change perspective) to required columns.
Due to the fact that multiple schema versions are in use

simultaneously, adding or removing any structural element
without using any intermediate states has the potential to
corrupt the database.

Claim 2. Any schema change from schema S1 to schema
S2 that either adds or drops a public structural element E is
not consistency preserving.

Proof. Consider a schema change from schema S1 to
schema S2 that adds structural element E and a (possibly
empty) database representation d |= S1, S2.
We examine all possibilities for new structural element E:

E is a table. Suppose we apply operation insertS2(E, vkr, vcr)
to database representation d, creating database rep-
resentation d′. d′ * S1 because insertS2(E, vkr, vcr)
adds key–value pairs which are orphan data with re-
spect to schema S1, violating Clause 1 in Definition 4.

E is a column in table R. Suppose we apply operation
insertS2(R, vkr, vr(E)) to d, creating database repre-
sentation d′′. Similarly, d′′ * S1 because the key–value
pairs corresponding to E are also orphan data, again
violating Clause 1 in Definition 4.

E is an index on table R. Finally, suppose we apply op-
eration insertS2(R, vkr, vcr) to d, creating database
representation d′′′ such that row r contains all columns
indexed by E. d′′′ * S1 and d′′′ * S2 because it vio-
lates Clauses 3 and 4 in Definition 4, respectively.

The same result follows for structural element drops by
Claim 1.

However, it is possible to prevent these anomalies by ju-
dicious use of the intermediate states we described in Sec-
tion 3.1. These intermediate states, when applied in the
proper order, can ensure that no orphan data or integrity
anomalies ever occur in the database representation, allow-
ing us to execute consistency-preserving schema changes.

Claim 3. A schema change from schema S1 to schema
S2 is consistency preserving iff it avoids orphan data and
integrity anomalies with respect to both S1 and S2.

Proof. Follows directly from the definitions of orphan
data and integrity anomalies, which together cover all clauses
of Definition 4.

We now discuss the exact intermediate states needed to
support addition and removal of optional structural elements,
required structural elements, and constraints in turn.

1050

3.3.1 Optional structural elements
Adding and removing public optional elements can cause

orphan data anomalies, since some servers have knowledge
of elements that other servers do not, and these elements can
be freely modified by user transactions. We can eliminate
these anomalies by ensuring that elements pass through an
intermediate schema that has them in a delete-only state
before they are set to public (in the case of additions) or
removed (in the case of drops). This enables us to add a new,
delete-only element to the schema in a way that does not
compromise the consistency of the database representation.

Claim 4. Consider a schema change from schema S1 to
schema S2 that adds a delete-only structural element E, with
any database representation d such that d |= S1. Then d |=
S2, and no operation opS1

or opS2
on E in d can cause

orphan data or integrity anomalies with respect to S1 or S2.
Proof. Because d |= S1 and E is absent in S1, there are

no key–value pairs corresponding to E in d. Element E is
not public in S2 and hence no such pairs are required in
order to establish that d |= S2.
Assume that E is an index. Operations using S2 do not

add any new key–value pairs relative to operations using S1;
they only delete key–value pairs belonging to E, should they
exist. Since neither schema allows the insertion of any key–
value pairs corresponding to E, any pair of operations using
S1 and S2 trivially avoids orphan data anomalies.
Similarly, no integrity anomalies can occur because nei-

ther S1 nor S2 impose any new requirements or constraints
on key–value pairs in the database, as E is optional.
The reasoning is identical if E is a table or column.

Once the optional structural element is in the schema in
the delete-only state, it can be promoted to public without
causing further anomalies.

Claim 5. Consider a schema change from schema S1 to
schema S2 that promotes an optional structural element E
from delete-only to public, with any database representation
d such that d |= S1. Then d |= S2, and no operation opS1

or opS2
on E in d can result in orphan data or integrity

anomalies with respect to S1 or S2.
Proof. Because d |= S1 and E is delete-only in S1, there

may or may not be key–value pairs corresponding to E in
d; however, since E is optional, the presence of such pairs is
allowed—but not required—in S2, and so d |= S2.
Delete operations using schema S1 will delete the key–

value pairs corresponding to structural element E if present,
because the element is in a delete-only state in S1. Similarly,
operations using schema S2 will delete the key–value pairs
corresponding to structural element E if present, because E
is public. Thus, all operations will avoid orphan data anoma-
lies by deleting key–value pairs corresponding to structural
element E as necessary.
Integrity anomalies cannot occur since element E is op-

tional.

Accordingly, if a structural element is optional, it can be
safely added to or dropped from the schema with only a sin-
gle intermediate schema and the following state transitions
(the order is reversed for drops):

absent→ delete only→ public

However, aside from simply following the above state tran-
sitions in reverse, drops have an additional step: they must

delete the key–value pairs associated with the removed struc-
tural element. When the only schema in use has the element
in the delete-only state, a database reorganization pro-
cess must remove the element’s key–value pairs from the
database representation. To be consistent, this must occur
before a schema change begins which removes the element
from the schema; otherwise, some servers would be using a
schema which prohibits such key–value pairs.
We have shown how it is possible to add and remove op-

tional elements with only the delete-only intermediate state;
however, to support adding and removing required struc-
tural elements and constraints, an additional state is needed.

3.3.2 Required structural elements
Required structural elements require the presence of spe-

cific key–value pairs by definition. Accordingly, in addition
to the orphan data anomalies that affect optional elements,
adding and removing these elements in a public state can
also lead to integrity anomalies. In this section, we demon-
strate how the write-only state can be used in conjunction
with the delete-only state to execute these schema changes
in a consistency-preserving manner with the following state
transitions (in the case of drops, the order of states is re-
versed, and the database reorganization takes place before
the transition to absent):

absent→ delete only→ write only
db reorg−→ public

We showed previously in Section 3.3.1 that the transition
from absent to delete-only was free of anomalies; accordingly,
we now show that the transition from delete-only to write-
only cannot cause anomalies.

Claim 6. Consider a schema change from schema S1 to
schema S2 that promotes an index or required column E from
delete-only to write-only, with any database representation d
such that d |= S1. Then d |= S2, and no operation opS1

or opS2
on E in d can result in orphan data or integrity

anomalies with respect to S1 or S2.

Proof. Schemas S1 and S2 contain identical elements
except for element E. Since both S1 and S2 contain E in
internal states, both schemas allow key–value pairs corre-
sponding to E in d, and neither schema requires that the
pairs be present. Consequently, d |= S1, S2.
We show that no operations on E in d can cause orphans.

First, consider the case where structural element E is an
index on table R. Assume that there is an orphan key–
value pair 〈kr(E),null〉 for some row r ∈ R. The orphan
could have been formed only by delete or update. However,
deleteS1 and updateS1

cannot form orphans because E is
delete-only in schema S1. Similarly, deleteS2 and updateS2

cannot form orphans because E is write-only in schema S2.
Since neither S1 nor S2 require the presence of key–value

pairs corresponding to E, integrity anomalies cannot occur.
The same reasoning applies if E is a required column.

This allows us to add an index or required column in a
write-only state without causing orphan data or integrity
anomalies. Once an element is in the write-only state, all
F1 servers will ensure that it is properly maintained for
new data; however, data which existed prior to the schema
change may not be consistent. Accordingly, before we can
promote the index or required column to public, we must
execute a database reorganization process that backfills all

1051

missing key–value pairs corresponding to the new element.
With this done, the element can then be transitioned to pub-
lic without causing anomalies.

Claim 7. Consider a schema change from schema S1 to
schema S2 that promotes structural element E from write-
only to public, with any database representation d such that
d |= S1, S2

3. Then no operation opS1
or opS2

on E in d can
cause orphan data or integrity anomalies with respect to S1

or S2.

Proof. We can show that the schema change from schema
S1 to schema S2 does not result in orphan data anomalies
following the same argument as in the proof of Claim 6.
We proceed to show that the schema change from schema

S1 to schema S2 does not result in integrity anomalies. S1

and S2 contain identical elements except for element E;
therefore, only E can be involved with any integrity anoma-
lies.
Because d |= S2, it cannot have any integrity anomalies

with respect to S2 at the start of the change. It remains to
show that operations executed during the schema change do
not form any new integrity anomalies. If E is an optional
column, no integrity anomalies can ever occur since E im-
poses no requirements on the presence of key–value pairs.
If E is an index or a required column, insert and update
operations are required to update the key–value representa-
tions of E because this is enforced by both the write-only
and public states. This prevents the formation of any new
integrity anomalies.

As the promotion of an element from write-only to public
can result in neither orphan data nor integrity anomalies, it
is a consistency-preserving schema change. We can apply
this result to all schema changes which add or drop a struc-
tural element by showing that they can be implemented as
a sequence of schema changes that maintain database con-
sistency in the presence of concurrent operations.

Theorem 1. Consider a schema change from schema S1

to schema S2 that either adds or drops structural element
E, with any database representation d1 such that d1 |= S1.
Then there is a sequence of consistency-preserving schema
changes and at most one database reorganization that tran-
sitions all servers to schema S2 and modifies d1 to database
representation d2 such that d2 |= S2.

Proof. We consider a schema change that adds index
I; the other cases are similar. We add index I using the
following sequence of consistency-preserving schema changes
and a single database reorganization:

1. A schema change from schema S1 to schema S′ that
adds index I as delete-only. It follows from Claim 4
and d1 |= S that the schema change is consistency
preserving and d′ |= S′, where d′ is the database rep-
resentation at the end of the schema change from S1

to S′.

2. A schema change from schema S′ to schema S′′ that
promotes index I from delete-only to write-only. It
follows from Claim 6 and d′ |= S′ that the schema
change is consistency preserving and d′′ |= S′′.

3Requiring d |= S2 implies that the database reorganization
must be executed prior to the schema change from S1 to S2.

3. A database reorganization that inserts key–value pairs
corresponding to index I for all rows in d1, resulting in
database representation d′′′ |= S′′, S2. Because d′′′ |=
S2, it cannot have any integrity anomalies with respect
to S2.

4. A schema change from schema S′′ to schema S2 that
promotes index I from write-only to public. This is
consistency preserving by Claim 7 and d′′′ |= S′′, S2.

The claim for dropping index I follows from performing
the same sequence of schema changes with the states applied
in the reverse order, using Claim 1. In this case, database re-
organization happens prior to the final schema change, and it
drops the index key–value pairs instead of adding them.

Accordingly, we can add and remove any structural schema
element in a manner that preserves the consistency of the
database representation with respect to all schemas involved.

3.3.3 Constraints
F1 supports foreign key and index uniqueness integrity

constraints. Adding and removing these constraints can
cause integrity anomalies; for example, if a uniqueness con-
straint is added to a column without using intermediate
states, servers using the old schema will allow the insertion
of duplicate values, causing a violation of the constraint from
the perspective of servers on the new schema. These anoma-
lies can be prevented by first adding the constraint in the
write-only state with the following state transitions (again,
the order is reversed for drops):

absent→ write only→ public

Because this is similar to the write-only state used for re-
quired structural elements, we omit a detailed discussion
and proof of this process in the interest of space. The same
mechanism could be used to enforce arbitrary integrity con-
straints in addition to those supported by F1.

3.4 Changing lock coverage
Ordinarily, database concurrency control is not affected by

changes to the schema. However, recall that F1 represents
optimistic locks in the schema as named objects. Users are
able to modify the granularity of locking on a per-table basis
by changing which optimistic locks cover which columns. As
the mechanics of adding or dropping a lock are equivalent to
adding or dropping a required column, which we discussed
in Section 3.3.2, we focus here on lock coverage changes.
Lock coverage schema changes modify which lock handles

concurrency control for a given column. Note that lock
drops implicitly cause a corresponding lock coverage change,
since all columns must be covered by some lock. Changes
to lock coverage can allow non-serializable schedules if they
are improperly implemented.

Claim 8. A schema change from schema S1 to S2 which
changes the coverage of column C from lock L1 to lock L2

allows non-serializable schedules.
Proof. Suppose we have a schedule with transactions Ti

and Tj (i 6= j):

queryi
S1

(R,C, vkr)

< writejS2
(R, vkr, vr(C))

< writeiS1
(R, vkr, vr(C))

1052

Element set to
write only

Delete
element

Element set to
delete only

Element set to
delete only

Coverage set
to {old lock,
new lock}

Element set to
delete only

Element
removed

Element set to
write only

Element set to
public

Constraint set
to write only

Coverage set
to {old lock,
new lock}

Coverage set
to new lock

Coverage set
to new lock

Constraint
removed

Constraint set
to full

Element set to
public

Element
removed

Delete
element

Backfill
element

Propagate
timestamps

Verify
constraint

Propagate
timestamps

Drop a structural element Add a structural element Add or drop a constraint Change lock coverage

Source schema

Target schema

Schema 1

Reorganization

Schema 2

Schema 3

Reorganization

Lock is new Lock exists

DropAdd

OptionalRequired

OptionalRequired

Figure 3: Intermediate states used during schema changes. State transitions occurring in the same row of the figure are
combined into a single schema change, and if no state transitions in a given row are necessary, that schema change is skipped.

If Ti commits, this schedule is not serializable: there is a
Read–Write conflict between transaction Ti and Tj . How-
ever, since the transactions are using different schemas with
different lock coverage for C, this schedule will be (erro-
neously) permitted. Operations using S1 read and update
the lock timestamp from L1, while operations using S2 read
and update the lock timestamp from L2. Therefore, trans-
action Tj ’s write will not update L1’s timestamp, allowing
transaction Ti’s validation (and subsequent commit) to suc-
ceed despite the fact that the value of C has changed.

We correct this problem by allowing columns to be tem-
porarily covered by multiple locks. When changing a col-
umn’s lock coverage from one lock to another, we insert an
internal state in which the column is covered by both the
old lock and the new lock. We refer to this as the dual-
coverage state, and operations executing against a schema
with a column in the dual-coverage state must read, validate,
and update all locks associated with that column.
It would appear that it suffices to split a lock coverage

schema change into two schema changes, with a schema hav-
ing dual coverage as an intermediate step. However, such a
composition of schema changes still allows non-serializable
schedules. Consider column C covered by lock L1 in schema
S1, locks L1 and L2 in schema S2, and lock L2 in schema
S3. Suppose locks L1 and L2 have the same timestamp, t1.
This can occur when a row is created as the result of an
insert operation. Now consider the following schedule with

transactions Ti and Tj (i 6= j):

queryi
S1

(R,C, vkr)

< writejS1
(R, vkr, vr(C))

< writeiS3
(R, vkr, vr(C))

In the first operation, Ti receives timestamp t1 for lock L1.
In the second operation, Tj updates the timestamp for lock
L1 to timestamp t2 (t2 > t1). When Ti submits its write
operation using S3, timestamp t1 is validated by the server
against the current lock listed in S3, which is L2. L2’s times-
tamp has not changed as a result of the above schedule, so
t1 passes validation, permitting a non-serializable schedule.
We prevent concurrency anomalies as shown above by us-

ing a database reorganization. After all servers have transi-
tioned to a schema with all lock coverage changes in the dual-
coverage state, we execute a reorganization process that
propagates lock timestamps by atomically setting:

timestamp(L2) = max(timestamp(L1), timestamp(L2))

for every row with a column in the dual-coverage state.
With this modification, we show that a pair of schema

changes can accomplish lock coverage without admitting any
non-serializable schedules.

Claim 9. Any schema change from schema S1 to schema
S2 that changes lock coverage of column C from lock L1 to
lock L2 can be replaced with a reorganization and a sequence
of schema changes that avoid non-serializable schedules.

1053

Proof. Let S′ be a schema where column C is covered
by both locks L1 and L2. We replace the schema change
from schema S1 to S2 with the following: a schema change
from S1 to S′, a reorganization process that propagates the
timestamp of L1 instances to L2 instances if needed, and a
schema change from S′ to S2.
During the schema change from S1 to S′, all operations

effectively validate against L1. Although L2 is present and
maintained by operations using S2, it is not yet used for
concurrency control. Therefore, the only schedules permit-
ted are those that would be permitted if C was covered by
L1, which correspond to serializable schedules.
After the first schema change, but before starting the

schema change from S′ to S2, the reorganization process
ensures that timestamp(L2) ≥ timestamp(L1) in every row.
Consequently, a schedule that is rejected when not perform-
ing a lock coverage change and using only lock L1 (i.e., a
non-serializable schedule) cannot be admitted when using
either dual coverage (both locks L1 and L2), or only L2.
Therefore, only serializable schedules can be admitted dur-
ing a schema change from S′ to S2.

We summarize the intermediate states required for each
schema change and the transitions between them in Figure 3.
Note that state transitions for multiple elements can be com-
bined into a single schema change.

4. IMPLEMENTATION
We implemented support for these schema changes in a

production F1 instance that serves all of Google’s AdWords
traffic. Our implementation has been used to successfully
perform schema changes with no downtime across hundreds
of individual F1 servers. Because this instance of F1 is
shared among many different groups in Google, our imple-
mentation has some details unique to this environment, and
we describe these now.

4.1 Spanner
The discussion in Section 3 focused on the correctness of

the schema change protocol given a generic interface for a
key–value store. We intentionally designed this interface to
be as generic as possible to enable broad application of our
schema change protocol.
In practice, F1 is built on top of Spanner [5], and several

of Spanner’s features have influenced F1’s implementation.
Here, we highlight two Spanner features that are relevant to
F1 schema changes: garbage collection and write fencing.

Garbage collection. Spanner has a schema which de-
scribes the allowed set of key–value pairs in the database.
Any key–value pairs that are not allowed cannot be accessed
and are eventually garbage-collected. This enables us to
drop structural elements without database reorganization,
since removing them from the Spanner schema is identical
to proactively deleting all associated key–value pairs.

Write fencing. Write operations against the key–value
store are formed by the F1 server using its current schema.
If a single write operation takes a long time to commit, the
write may take effect after multiple schema changes have
occurred, which violates our requirement that operations be
based on a schema that is no more than one version old.
Spanner allows us to place a deadline on individual write
operation so that the writes do commit past the deadline.

Of these two features, only write fencing is required for
correctness; garbage collection is useful only for performance
and ease of implementation.

4.2 Schema change process
F1 does not implement typical DDL operations (e.g., AL-

TER TABLE or DROP COLUMN) for performing schema
changes. Applying changes individually using DDL state-
ments is impractical, because much of the overhead (e.g., re-
organizations) can be amortized if multiple schema changes
are batched together.
Instead, F1 represents the entire database schema as a

protocol buffer-encoded file [10, 21]. A version of this file
is generated from sources stored in a version control sys-
tem; when users need to modify the schema, they update
the sources in the version control system to include their de-
sired change. This allows us to batch several updates to the
schema into one schema change operation, and it provides
us with a log of all schema changes.
Twice per week, administrators take the schema from the

version control system and apply it to the running F1 in-
stance. Before the new schema can be applied, an analysis
process determines which intermediate states and reorgani-
zations are required in order to safely perform the schema
change. Once the intermediate schemas and reorganizations
are determined, an execution process applies them in order
while ensuring that no more than two schema versions can
be in use at any time (see Section 4.3).
A single intermediate schema may apply state transitions

to many different elements in the schema. For details on
how we overlap these state transitions, see Figure 3.

4.3 Schema leases
Our schema change protocol requires that F1 servers use

at most two different schemas concurrently. Because F1 does
not maintain global server membership, we cannot contact
servers directly to check which schema version they are run-
ning or to update them with a new schema. Additionally,
even if global membership data were available, F1 would
need a method for dealing with unresponsive servers.
We address this by granting each F1 server a schema

lease, with typical values of multiple minutes. F1 servers re-
new their lease by re-reading the schema from a well-known
location in the key–value store every lease period. If a
server is unable to renew its lease, it terminates—because F1
servers are run in a managed cluster execution environment,
they will be automatically restarted on a healthy node.
Additionally, user transactions are allowed to span lease

renewals; however, we limit individual write operations to
use only schemas with active leases. This is necessary be-
cause write operations are translated into operations on the
key–value store at the time they are submitted. If an indi-
vidual write operation takes longer than two lease periods
to execute, it could violate our requirement that only the
two most recent schema versions can be used at any time.
We use write fencing to ensure that no write operation can

commit if the schema it is based on has an expired lease.
This allows us to maintain the following invariant:

Invariant 1. If schema S is written at time t0 and no
other schema is written between times t0 and t1 (t1 > t0 +
lease_period), then at time t1 each F1 server either uses S
or is unable to commit transactions.

1054

As a consequence, we ensure that at any moment F1 servers
use at most two schemas by writing a maximum of one
schema per lease period. The schema change execution pro-
cess must wait at least one schema lease period before apply-
ing a new intermediate schema. Therefore, a typical schema
change involving no reorganization takes 10 to 20 minutes.
We could limit the number of simultaneously used schemas
to k + 1 by writing schemas at a rate not exceeding k per
lease period, this would have complicated reasoning about
the system’s correctness.
We optimize the lease renewal process in several ways.

First, we replicate the canonical copy of the schema in sev-
eral locations in Spanner, and we use Spanner’s atomic test-
and-set to update them all atomically. This provides fault
tolerance and improved read performance.
Second, we optimize lease renewal by caching the commit

timestamp of the currently loaded schema on the F1 servers.
When an F1 server renews its lease, it first examines the
commit timestamp of the canonical schema version. If the
read timestamp is identical to the cached timestamp, the F1
server does not need to read the schema itself from Spanner.

4.4 Data reorganization
Some schema changes, like adding an index, require cor-

responding updates to the database representation. We per-
form these updates with a background reorganizer that
takes several factors into account:

• It is impractical to assume that the entire reorgani-
zation can be done atomically. Therefore, the reorga-
nizer’s operation must be resumable and idempotent.

• All data must be available while the reorganizer is exe-
cuting. As a result, the reorganizer must tolerate con-
current access to the data being modified.

• Although not required for correctness, the reorganizer
should avoid re-executing a data change that has been
performed by a user transaction (e.g., re-adding an
index key–value pair that already exists).

We built our reorganizer using the MapReduce frame-
work [8]. The MapReduce controller partitions the database
and assigns partitions to map tasks. The map tasks scan all
rows in their assigned partitions at a snapshot timestamp
corresponding to the start of the schema change, updating
each row to conform to the new schema if necessary. Depend-
ing on the schema change, the map task will either add key–
value representations of an added structural element (such as
a new index or lock) or remove representations of a dropped
structural element (such as a dropped column).
Each map task reads the representation of each row as-

signed to it and determines whether it has been updated by
a user transaction since the the reorganization has began.
If so, the map task does not modify the row any further,
following the Thomas write rule [24]. Otherwise, it adds or
removes key–value pairs as needed.

4.5 Schema repository
Since schema changes occur frequently in our production

F1 instance, it is important that each F1 server does not
delay or fail a large number of user operations when moving
from one schema to another. To manage this transition, each
server stores a schema repository in its volatile memory.

Query latency (ms)

Percentile No schema change Schema change Increase

50% 2.84 2.94 3.5%
90% 79.82 74.23 -7.0%
99% 170.33 178.05 4.5%

Table 2: The effect of schema changes on query latencies.

The schema repository stores multiple schema versions
along with the lease times associated with them4. The
schema repository maintains several invariants:

1. New write operations use the most recent schema ver-
sion available in the repository.

2. After a new schema version is loaded by the repository,
pending write operations are allowed to complete using
their previously assigned schema version.

3. All submitted write operations are terminated through
write fencing when the lease on their associated schema
version expires.

Write operations terminated due to lease expiry are resub-
mitted by the server, but this causes wasted work. We can
reduce the likelihood of failing write operations by renewing
schema leases early; however, more frequent lease renewal
increases load on both F1 and Spanner. In our experience,
we have found renewing a lease when it has half of the lease
period remaining to be a reasonable setting.

5. IMPACT ON USER TRANSACTIONS
Schema changes in F1 often involve data reorganizations,

which perform global database updates. One of the design
goals of the implementation of schema change in F1 is to
minimize the impact of such reorganizations on user opera-
tion response times.
We analyzed the logs of the AdWords production system

in order to evaluate the impact schema changes had on user
transactions. The production system consists of approxi-
mately 1500 F1 servers evenly distributed in five datacen-
ters. The logs contain records of 19 schema changes that
span a period of approximately 10 weeks.
In this period, over one billion user operations occurred

when no schema change was in progress, and over 50 mil-
lion operations occurred during a schema change. These
operations consisted of approximately 75% queries and 25%
writes (inserts, deletes, and updates). Query and write la-
tencies outside and during schema change can be found in
Tables 2 and 3, respectively.

6. RELATED WORK
Mariposa [22] suggested that schema changes in distributed

systems should not rely on global membership, and other
work has brought up the idea that such changes should be
online and non-blocking [11, 19]. Aspects of our work are
similar to a “soft schema change,” which allows old trans-
actions to finish with a schema version that has been re-
placed [19]. Our protocol is per operation instead of per
4Transactions can use at most two schema versions simulta-
neously. However, read-only queries against database snap-
shots use the schema version of the snapshot.

1055

Write latency (ms)

Percentile No schema change Schema change Increase

50% 107.16 179.26 67.3%
90% 497.27 616.08 23.9%
99% 965.69 1076.69 11.5%

Table 3: The effect of schema changes on write latencies.

transaction, and we generalize their intermediate state for
indexes into our write-only state.
Much of the work on schema evolution is complementary

to our own. In particular, researchers have proposed special
syntax for schema evolution [6,13,18], models for capturing
the effect of schema changes and automatically rewriting
queries [2,4,6,7,9,13,23], and methods for executing tempo-
ral queries [15,16]. Although we have not implemented these
features, they can be used in conjunction with our work.
Schema evolution in distributed systems has largely fo-

cused on data warehouses and federated systems [1,3,12,20].
This work addresses the difficult problem of integrating the
schemas of disparate systems with independent data into
the appearance of a unified database with a single overall
schema. In contrast, our work addresses issues that arise
when multiple versions of a schema are used to interpret
and modify a common set of data.
Finally, Spanner also has support for schema changes [5].

However, their implementation relies on the ability to per-
form a synchronous change through synchronized clocks and
global membership information.

7. CONCLUSION
We examined schema evolution in F1, a distributed re-

lational database built on top of a distributed key–value
store. Our method allows users to evolve the schema with
no loss of availability, no global synchronization, and no risk
of data corruption. We implemented our protocol in produc-
tion servers, and we have successfully executed hundreds of
schema changes in a critical system under constant use.
Creating a formal model of the schema change process has

had several positive effects on our production system. In
particular, it highlighted two subtle bugs in our implemen-
tation, and it showed that some schema changes which were
not supported by our system could be easily implemented.

8. ACKNOWLEDGMENTS
The authors would like to thank the members of F1 and

Spanner teams at Google and Jeff Naughton for their feed-
back on early versions of the paper. The last author would
like to dedicate this paper to the memory of his advisor, Yuri
Breitbart.

9. REFERENCES
[1] Bellahsene, Z. Schema Evolution in Data Warehouses.

KAIS, 4(3):283–304, 2002.
[2] Bernstein, P. A. et al. Model Management and

Schema Mappings: Theory and Practice. In VLDB,
pp. 1439–1440. 2007.

[3] Blaschka, M., et al. On Schema Evolution in
Multidimensional Databases. In DaWaK, pp. 802–802.
1999.

[4] Bonifati, A., et al. Schema Mapping Verification: The
Spicy Way. In EDBT, pp. 85–96. 2008.

[5] Corbett, J., et al. Spanner: Google’s
Globally-Distributed Database. In OSDI, pp. 251–264.
2012.

[6] Curino, C., et al. The PRISM Workbench: Database
Schema Evolution Without Tears. In ICDE, pp.
1523–1526. 2009.

[7] Curino, C. A., et al. Update Rewriting and Integrity
Constraint Maintenance in a Schema Evolution
Support System: PRISM++. VLDB, 4(2):117–128,
2010.

[8] Dean, J. et al. MapReduce: Simplified Data
Processing on Large Clusters. CACM, 51(1):107–113,
2008.

[9] Domínguez, E., et al. Model–Driven, View–Based
Evolution of Relational Databases. In DEXA, pp.
822–836. 2008.

[10] Google Inc. Protocol Buffers - Google’s data
interchange format, 2012. URL
http://code.google.com/p/protobuf/.

[11] Løland, J. et al. Online, Non-blocking Relational
Schema Changes. In EDBT, pp. 405–422. 2006.

[12] McBrien, P. et al. Schema Evolution in Heterogeneous
Database Architectures, A Schema Transformation
Approach. In CAiSE, pp. 484–499. 2006.

[13] Papastefanatos, G., et al. Language Extensions for the
Automation of Database Schema Evolution. In ICEIS.
2008.

[14] Peng, D. et al. Large-scale Incremental Processing
Using Distributed Transactions and Notifications. In
OSDI. 2010.

[15] Pereira Moreira, V. et al. Schema Versioning: Queries
to The Generalized Temporal Database System. In
DEXA, pp. 458–459. 1999.

[16] Rizzi, S. et al. X-Time: Schema Versioning and
Cross-Version Querying in Data Warehouses. In ICDE,
pp. 1471–1472. 2007.

[17] Roddick, J. Schema evolution in database systems: an
annotated bibliography. ACM SIGMOD Record,
21(4):35–40, 1992.

[18] Roddick, J. SQL/SE – A Query Language Extension
for Databases Supporting Schema Evolution. ACM
SIGMOD Record, 21(3):10–16, 1992.

[19] Ronstrom, M. On-line Schema Update for a Telecom
Database. In ICDE, pp. 329–338. 2000.

[20] Rundensteiner, E., et al. Maintaining Data
Warehouses over Changing Information Sources.
CACM, 43(6):57–62, 2000.

[21] Shute, J., et al. F1: A Distributed SQL Database
That Scales. VLDB, 6(11), 2013.

[22] Stonebraker, M., et al. Mariposa: a wide-area
distributed database system. VLDB, 5(1):48–63, 1996.

[23] Terwilliger, J., et al. Automated Co-evolution of
Conceptual Models, Physical Databases, and
Mappings. ER, 6412:146–159, 2010.

[24] Thomas, R. A Majority Consensus Approach to
Concurrency Control for Multiple Copy Databases.
ACM TODS, 4(2):180–209, 1979.

[25] Weikum, G. et al. Transactional Information Systems.
Morgan Kaufmann, 2002.

1056

http://code.google.com/p/protobuf/

	Introduction
	Background
	Key–value store
	Relational schema
	Row representation
	Relational operations
	Concurrency control

	Schema changes
	Schema elements and states
	Database consistency
	Adding and removing schema elements
	Optional structural elements
	Required structural elements
	Constraints

	Changing lock coverage

	Implementation
	Spanner
	Schema change process
	Schema leases
	Data reorganization
	Schema repository

	Impact on user transactions
	Related work
	Conclusion
	Acknowledgments
	References

