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ABSTRACT
Support of high performance queries on large volumes of spatial
data becomes increasingly important in many application domains,
including geospatial problems in numerous fields, location based
services, and emerging scientific applications that are increasingly
data- and compute-intensive. The emergence of massive scale spa-
tial data is due to the proliferation of cost effective and ubiquitous
positioning technologies, development of high resolution imaging
technologies, and contribution from a large number of community
users. There are two major challenges for managing and querying
massive spatial data to support spatial queries: the explosion of spa-
tial data, and the high computational complexity of spatial queries.
In this paper, we present Hadoop-GIS – a scalable and high per-
formance spatial data warehousing system for running large scale
spatial queries on Hadoop. Hadoop-GIS supports multiple types
of spatial queries on MapReduce through spatial partitioning, cus-
tomizable spatial query engine RESQUE, implicit parallel spatial
query execution on MapReduce, and effective methods for amend-
ing query results through handling boundary objects. Hadoop-GIS
utilizes global partition indexing and customizable on demand local
spatial indexing to achieve efficient query processing. Hadoop-GIS
is integrated into Hive to support declarative spatial queries with
an integrated architecture. Our experiments have demonstrated the
high efficiency of Hadoop-GIS on query response and high scal-
ability to run on commodity clusters. Our comparative experi-
ments have showed that performance of Hadoop-GIS is on par with
parallel SDBMS and outperforms SDBMS for compute-intensive
queries. Hadoop-GIS is available as a set of library for processing
spatial queries, and as an integrated software package in Hive.

1. INTRODUCTION
The proliferation of cost effective and ubiquitous positioning

technologies has enabled capturing spatially oriented data at an un-
precedented scale and rate. Collaborative spatial data collection ef-
forts, such as OpenStreetMap [8], further accelerate the generation
of massive spatial information from community users. Analyzing
large amounts of spatial data to derive values and guide decision
making have become essential to business success and scientific
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discoveries. For example, Location Based Social Networks (LB-
SNs) are utilizing large amounts of user location information to
provide geo-marketing and recommendation services. Social sci-
entists are relying on such data to study dynamics of social systems
and understand human behavior.

The rapid growth of spatial data is driven by not only industrial
applications, but also emerging scientific applications that are in-
creasingly data- and compute- intensive. With the rapid improve-
ment of data acquisition technologies such as high-resolution tis-
sue slide scanners and remote sensing instruments, it has become
more efficient to capture extremely large spatial data to support
scientific research. For example, digital pathology imaging has
become an emerging field in the past decade, where examination
of high resolution images of tissue specimens enables novel, more
effective ways of screening for disease, classifying disease states,
understanding disease progression and evaluating the efficacy of
therapeutic strategies. Pathology image analysis offers a means
of rapidly carrying out quantitative, reproducible measurements of
micro-anatomical features in high-resolution pathology images and
large image datasets. Regions of micro-anatomic objects (millions
per image) such as nuclei and cells are computed through image
segmentation algorithms, represented with their boundaries, and
image features are extracted from these objects. Exploring the
results of such analysis involves complex queries such as spatial
cross-matching, overlay of multiple sets of spatial objects, spatial
proximity computations between objects, and queries for global
spatial pattern discovery. These queries often involve billions of
spatial objects and heavy geometric computations.

A major requirement for the data intensive spatial applications
is fast query response which requires a scalable architecture that
can query spatial data on a large scale. Another requirement is to
support queries on a cost effective architecture such as commodity
clusters or cloud environments. Meanwhile, scientific researchers
and application developers often prefer expressive query languages
or interfaces to express complex queries with ease, without worry-
ing about how queries are translated, optimized and executed. With
the rapid improvement of instrument resolutions, increased accu-
racy of data analysis methods, and the massive scale of observed
data, complex spatial queries have become increasingly compute-
and data-intensive due to following challenges.

The Big Data Challenge. High resolution microscopy images
from high resolution digital slide scanners provide rich informa-
tion about spatial objects and their associated features. For ex-
ample, whole-slide images (WSI) made by scanning microscope
slides at diagnostic resolution are very large: A typical WSI con-
tains 100,000x100,000 pixels. One image may contain millions of
objects, and hundreds of image features can be extracted for each
object. A study may involve hundreds or thousands of images ob-
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tained from a large cohort of subjects. For large scale interrelated
analysis, there may be dozens of algorithms - with varying parame-
ters - to generate many different result sets to be compared and con-
solidated. Thus, derived data from images of a single study is often
in the scale of tens of terabytes. A moderate-size hospital can rou-
tinely generate thousands of whole slide images per day, which can
lead to several terabytes of derived analytical results per day, and
petabytes of data can be easily created within a year. For the Open-
StreetMap project, there have been more than 600,000 registered
contributors, and user contributed data is increasing continuously.

High Computation Complexity. Most spatial queries involve ge-
ometric computations which are often compute-intensive. Geomet-
ric computation is not only used for computing measurements or
generating new spatial objects, but also as logical operations for
topology relationships. While spatial filtering through minimum
bounding rectangles (MBRs) can be accelerated through spatial ac-
cess methods, spatial refinements such as polygon intersection ver-
ification are highly expensive operations. For example, spatial join
queries such as spatial cross-matching or overlaying multiple sets
of spatial objects on an image or map can be very expensive to
process.

The large amounts of data coupled with compute-intensive na-
ture of spatial queries require a scalable and efficient solution. A
potential approach for scaling out spatial queries is through a paral-
lel DBMS. In the past, we have developed and deployed a parallel
spatial database solution – PAIS [35, 34, 9]. However, this approach
is highly expensive on software licensing and dedicated hardware,
and requires sophisticated tuning and maintenance efforts [29].

Recently, MapReduce based systems have emerged as a scalable
and cost effective solution for massively parallel data processing.
Hadoop, the open source implementation of MapReduce, has been
successfully applied in large scale internet services to support big
data analytics. Declarative query interfaces such as Hive [32], Pig
[21], and Scope [19] have brought the large scale data analysis one
step closer to the common users by providing high level, easy to
use programming abstractions to MapReduce. In practice, Hive is
widely adopted as a scalable data warehousing solution in many
enterprises, including Facebook. Recently we have developed a
system YSmart [24], a correlation aware SQL to MapReduce trans-
lator for optimized queries, and have integrated it into Hive.

However, most of these MapReduce based systems either lack
spatial query processing capabilities or have limited spatial query
support. While the MapReduce model fits nicely with large scale
problems through key-based partitioning, spatial queries and an-
alytics are intrinsically complex and difficult to fit into the model
due to its multi-dimensional nature [11]. There are two major prob-
lems to handle for spatial partitioning: spatial data skew problem
and boundary object problem. The first problem could lead to load
imbalance of tasks in distributed systems and long response time,
and the second problem could lead to incorrect query results if not
handled properly. In addition, spatial query methods have to be
adapted so that they can be mapped into partition based query pro-
cessing framework while preserving the correct query semantics.
Spatial queries are also intrinsically complex which often rely on
effective access methods to reduce search space and alleviate high
cost of geometric computations. Thus, there is a significant step
required on adapting and redesigning spatial query methods to take
advantage of the MapReduce computing infrastructure.

We have developed Hadoop-GIS [7] – a spatial data warehous-
ing system over MapReduce. The goal of the system is to deliver
a scalable, efficient, expressive spatial querying system to support
analytical queries on large scale spatial data, and to provide a fea-
sible solution that can be afforded for daily operations. Hadoop-

GIS provides a framework on parallelizing multiple types of spa-
tial queries and having the query pipelines mapped onto MapRe-
duce. Hadoop-GIS provides spatial data partitioning to achieve
task parallelization, an indexing-driven spatial query engine to pro-
cess various types of spatial queries, implicit query parallelization
through MapReduce, and boundary handling to generate correct
results. By integrating the framework with Hive, Hadoop-GIS pro-
vides an expressive spatial query language by extending HiveQL
[33] with spatial constructs, and automates spatial query translation
and execution. Hadoop-GIS supports fundamental spatial queries
such as point, containment, join, and complex queries such as spa-
tial cross-matching (large scale spatial join) and nearest neighbor
queries. Structured feature queries are also supported through Hive
and fully integrated with spatial queries.

The rest of the paper is organized as follows. We first present
an architectural overview of Hadoop-GIS in Section 2. The spatial
query engine is discussed in Section 3, MapReduce based spatial
query processing is presented in Section 4, boundary object han-
dling for spatial queries is discussed in Section 5, integration of
spatial queries into Hive is discussed in Section 6, performance
study is discussed in Section 7, which followed by related work
and conclusion.

2. OVERVIEW

2.1 Query Cases
There are five major categories of queries: i) feature aggregation

queries (non-spatial queries), for example, queries for finding mean
values of attributes or distribution of attributes; ii) fundamental spa-
tial queries, including point based queries, containment queries and
spatial joins; iii) complex spatial queries, including spatial cross-
matching or overlay (large scale spatial join) and nearest neighbor
queries; iv) integrated spatial and feature queries, for example, fea-
ture aggregation queries in a selected spatial regions; and v) global
spatial pattern queries, for example, queries on finding high den-
sity regions, or queries to find directional patterns of spatial ob-
jects. In this paper, we mainly focus on a subset of cost-intensive
queries which are commonly used in spatial warehousing appli-
cations. Support of multiway join queries and nearest neighbor
queries are discussed in our previous work [12], and we are plan-
ning to study global spatial pattern queries in our future work.

In particular, spatial cross-matching/overlay problem involves
identifying and comparing objects belonging to different observa-
tions or analyses. Cross-matching in the domain of sky survey aims
at performing one-to-one matches in order to combine physical
properties or study the temporal evolution of the source [26]. Here
spatial cross-matching refers to finding spatial objects that overlap
or intersect each other [36]. For example, in pathology imaging,
spatial cross-matching is often used to compare and evaluate image
segmentation algorithm results, iteratively develop high quality im-
age analysis algorithms, and consolidate multiple analysis results
from different approaches to generate more confident results. Spa-
tial cross-matching can also support spatial overlays for combining
information for massive spatial objects between multiple layers or
sources of spatial data, such as remote sensing datasets from dif-
ferent satellites. Spatial cross-matching can also be used to find
temporal changes of maps between time snapshots.

2.2 Traditional Methods for Spatial Queries
Traditional spatial database management systems (SDBMSs) have

been used for managing and querying spatial data, through ex-
tended spatial capabilities on top of ORDBMS. These systems of-
ten have major limitations on managing and querying spatial data
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at massive scale, although parallel RDBMS architectures [28] can
be used to achieve scalability. Parallel SDBMSs tend to reduce
the I/O bottleneck through partitioning of data on multiple paral-
lel disks and are not optimized for computationally intensive op-
erations such as geometric computations. Furthermore, parallel
SDBMS architecture often lacks effective spatial partitioning mech-
anism to balance data and task loads across database partitions, and
does not inherently support a way to handle boundary crossing ob-
jects. The high data loading overhead is another major bottleneck
for SDBMS based solutions [29]. Our experiments show that load-
ing the results from a single whole slide image into a SDBMS can
take a few minutes to dozens of minutes. Scaling out spatial queries
through a parallel database infrastructure is studied in our previous
work [34, 35], but the approach is highly expensive and requires
sophisticated tuning for optimal performance.

2.3 Overview of Methods
The main goal of Hadoop-GIS is to develop a highly scalable,

cost-effective, efficient and expressive integrated spatial query pro-
cessing system for data- and compute-intensive spatial applications,
that can take advantage of MapReduce running on commodity clus-
ters. To realize such system, it is essential to identify time consum-
ing spatial query components, break them down into small tasks,
and process these tasks in parallel. An intuitive approach is to spa-
tially partition the data into buckets (or tiles), and process these
buckets in parallel. Thus, generated tiles will become the unit for
query processing. The query processing problem then becomes the
problem on designing querying methods that can run on these tiles
independently, while preserving the correct query semantics. In
MapReduce environment, we propose the following steps on run-
ning a typical spatial query, as shown in Algorithm 1.

In step A, we perform effective space partitioning to generate
tiles. In step B, spatial objects are assigned tile UIDs, merged
and stored into HDFS. Step C is for pre-processing queries, which
could be queries that perform global index based filtering, queries
that do not need to run in tile based query processing framework.
Step D performs tile based spatial query processing independently,
which are parallelized through MapReduce. Step E provides han-
dling of boundary objects (if needed), which can run as another
MapReduce job. Step F does post-query processing, for example,
joining spatial query results with feature tables, which could be an-
other MapReduce job. Step G does data aggregation of final results,
and final results are output into HDFS. Next we briefly discuss
the architectural components of Hadoop-GIS (HiveSP ) as shown in
Figure 1, including data partitioning, data storage, query language
and query translation, and query engine. The query engine consists
of index building, query processing and boundary handling on top
of Hadoop.

2.4 Data Partitioning
Spatial data partitioning is an essential initial step to define, gen-

erate and represent partitioned data. There are two major consid-
erations for spatial data partitioning. The first consideration is to
avoid high density partitioned tiles. This is mainly due to poten-
tial high data skew in the spatial dataset, which could cause load
imbalance among workers in a cluster environment. Another con-
sideration is to handle boundary intersecting objects properly. As
MapReduce provides its own job scheduling for balancing tasks,
the load imbalance problem can be partially alleviated at the task
scheduling level. Therefore, for spatial data partitioning, we mainly
focus on breaking high density tiles into smaller ones, and take a
recursive partitioning approach. For boundary intersecting objects,
we take the multiple assignment based approach in which objects

Algorithm 1: Typical workflow of spatial query processing on
MapReduce

A. Data/space partitioning;
B. Data storage of partitioned data on HDFS;
C. Pre-query processing (optional);
D. for tile in input collection do

Index building for objects in the tile;
Tile based spatial querying processing;

E. Boundary object handling;
F. Post-query processing (optional);
G. Data aggregation;
H. Result storage on HDFS;
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Figure 1: Architecture overview of Hadoop-GIS (HiveSP )

are replicated and assigned to each intersecting tile, followed by a
post-processing step for remedying query results (section 5).

2.5 Realtime Spatial Query Engine
A fundamental component we aim to provide is a standalone spa-

tial query engine with such requirements: i) is generic enough to
support a variety of spatial queries and can be extended; ii) can
be easily parallelized on clusters with decoupled spatial query pro-
cessing and (implicit) parallelization; and iii) can leverage existing
indexing and querying methods. Porting a spatial database engine
for such purpose is not feasible, due to its tight integration with
RDBMS engine and complexity on setup and optimization. We
develop a Real-time Spatial Query Engine (RESQUE) to support
spatial query processing, as shown in the architecture in Figure 1.
RESQUE takes advantage of global tile indexes and local indexes
created on demand to support efficient spatial queries. Besides,
RESQUE is fully optimized, supports data compression, and comes
with very low overhead on data loading. This makes RESQUE
a highly efficient spatial query engine compared to a traditional
SDBMS engine. RESQUE is compiled as a shared library which
can be easily deployed in a cluster environment. Hadoop-GIS takes
advantage of spatial access methods for query processing with two
approaches. At the higher level, Hadoop-GIS creates global re-
gion based spatial indexes of partitioned tiles for HDFS file split
filtering. As a result, for many spatial queries such as containment
queries, we can efficiently filter most irrelevant tiles through this
global region index. The global region index is small and can be
stored in a binary format in HDFS and shared across cluster nodes
through Hadoop distributed cache mechanism. At the tile level,
RESQUE supports an indexing on demand approach by building
tile based spatial indexes on the fly, mainly for query processing
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purpose, and storing index files in the main memory. Since the
tile size is relatively small, index building on a single tile is very
fast and it greatly enhances spatial query processing performance.
Our experiments show that, with increasing speed of CPU, index-
ing building overhead is a very small fraction of compute- and data-
intensive spatial queries such as cross-matching.

2.6 MapReduce Based Parallel Query Execu
tion

Instead of using explicit spatial query parallelization as summa-
rized in [17], we take an implicit parallelization approach by lever-
aging MapReduce. This will much simplify the development and
management of query jobs on clusters. As data is spatially parti-
tioned, the tile name or UID forms the key for MapReduce, and
identifying spatial objects of tiles can be performed in mapping
phase. Depending on the query complexity, spatial queries can
be implemented as map functions, reduce functions or combina-
tion of both. Based on the query types, different query pipelines
are executed in MapReduce. As many spatial queries involve high
complexity geometric computations, query parallelization through
MapReduce can significantly reduce query response time.

2.7 Boundary Object Handling
In the past, two approaches were proposed to handle boundary

objects in a parallel query processing scenario, namely Multiple
Assignment and Multiple Matching [25, 40]. In multiple assign-
ment, the partitioning step replicates boundary crossing objects and
assigns them to multiple tiles. In multiple matching, partitioning
step assigns an boundary crossing object to a single tile, but the
object may appear in multiple tile pairs for spatial joins. While the
multiple matching approach avoids storage overhead, a single tile
may have to be read multiple times for query processing, which
could incur increase in both computation and I/O. The multiple
assignment approach is simple to implement and fits nicely with
the MapReduce programming model. For example, spatial join on
tiles with multiple assignment based partitioning can be corrected
by eliminating duplicated object pairs from the query result. This
can be implemented as another MapReduce job with some small
overhead (Section 5).

2.8 Declarative Queries
We aim to provide a declarative spatial query language on top of

MapReduce. The language inherits major operators and functions
from ISO SQL/MM Spatial, which are also implemented by major
SDBMSs. We also extend it with more complex pattern queries and
spatial partitioning constructs to support parallel query processing
in MapReduce. Major spatial operations include spatial query op-
erators, spatial functions, and spatial data types.

2.9 Integration with Hive
To support feature queries with a declarative query language, we

use Hive, which provides a SQL like language on top of MapRe-
duce. We extend Hive with spatial query support by extending
HiveQL with spatial constructs, spatial query translation and exe-
cution, with integration of the spatial query engine into Hive query
engine (Figure 1). The spatial indexing aware query optimization
will take advantage of RESQUE for efficient spatial query support
in Hive.

3. REALTIME SPATIAL QUERY ENGINE
To support high performance spatial queries, we first build a

standalone spatial querying engine RESQUE with following ca-
pabilities: i) effective spatial access methods to support diverse

Objects in 
dataset 1 of tile T

Objects in 
dataset 2 of tile T

Spatial 
Filtering with 

Indexes

Geometry
Refinement

Spatial 
Measurement

R*-Tree File 1

R*-Tree File 2

Result File

Bulk R*-Tree 
Building

Bulk R*-Tree 
Building

Figure 2: An example spatial join workflow in RESQUE

spatial query types; ii) efficient spatial operators and measurement
functions to provide geometric computations; iii) query pipelines to
support diverse spatial queries with optimal access methods; and iv)
to be able to run with decoupled spatial processing in a distributed
computing environment. We have adopted a set of open source spa-
tial and geometric computation libraries to support diverse access
methods and geometric computations, including SpatialIndex [4],
GEOS [6], and build additional ones such as Hibert R-Tree [23].
Diverse spatial query pipelines are developed to support different
types of queries based on the query type and data characteristics.

3.1 Indexed Spatial Query Support
One essential requirement for spatial queries is fast response.

This is important for both exploratory studies on massive amounts
of spatial data with a large space of parameters and algorithms,
and decision making in enterprise or healthcare applications. Us-
ing spatial index to support spatial queries is a common practice for
most SDBMS systems. However, the mismatch between the large
data blocks in HDFS for batch processing and the page based ran-
dom access of spatial indexes makes it difficult to pre-store spatial
indexes on HDFS and retrieve it later for queries. While some ef-
fort has been made on this [39], the approaches are not flexible and
the pre-generated indexes might not be suitable to support dynamic
spatial query types. To support indexing based spatial queries, we
combine two approaches: i) global spatial indexes for regions and
tiles; and ii) on demand indexing for objects in tiles.

Global region indexes are small due to their large data granu-
larity. They can be pre-generated and stored in a binary format in
HDFS and shared across cluster nodes through Hadoop distributed
cache mechanism. Global region indexing will facilitate region
level data filtering and helps improve query performance. For an
example, to process a point or window query we can quickly lookup
the global index to identify the tiles that are relevant for the query
range.

We propose an approach on building indexes on-demand com-
bined with data partitioning to process spatial queries. Our exten-
sive profiling of spatial queries shows that index building on mod-
ern hardware is not a major bottleneck in large scale spatial query
processing. Using dynamically built local indexes for objects in
tiles could efficiently support spatial queries with minimal index
building overhead. To provide page based spatial index search, the
built spatial indexes are stored in the main memory for query pro-
cessing. In rare cases where not enough main memory is available
for in memory index processing, secondary storage can be utilized
for index storage. Our tests show the indexing building time using
RESQUE with R*-Tree based join takes a very small fraction of
the overall response time (Section 7.4).

3.2 Spatial Query Workflows in RESQUE
Based on the indexing methods above, we are able to create mul-

tiple spatial query pipelines. Next we discuss workflows for spatial
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join, spatial containment in detail, and nearest neighbor queries is
discussed in our previous work [12] which will be skipped here.
Spatial Join Workflow. Next we show a workflow of a spatial join
(Figure 2), where two datasets from a tile T are joined to find in-
tersecting polygon objects. The SQL expression of this query is
discussed in Section 4.2. Bulk spatial index building is performed
on each dataset to generate index files – here we use R*-Trees [14].
Hilbert R-Tree can also be used when the objects are in regular
shapes and relatively homogenous distribution. The R*-Tree files
are stored in the main memory and contain MBRs in their interior
nodes and polygons in their leaf nodes, and will be used for fur-
ther query processing. The spatial filtering component performs
MBR based spatial join filtering with the two R*-Trees, and re-
finement on the spatial join condition is further performed on the
polygon pairs through geometric computations. Much like pred-
icate pushdown in traditional database query optimization, spatial
measurement step is also performed on intersected polygon pairs to
calculate results required, such as overlap area ratio for each pair of
intersecting markups. Other spatial join operators such as overlaps
and touches can also be processed similarly.
Index Optimization. As data and indexes are read-only and no
further update is needed, bulk-loading techniques [15] are used. To
minimize the number of pages, the page utilization ratio is also
set to 100%. In addition, we provide compression to reduce leaf
node shape sizes through compact chain code based representation:
instead of representing the full coordinates for each x,y coordinate,
we use offset from neighboring point to represent the coordinates.
The simple chain code compression approach can save 40% space
for the pathology imaging use case.
Spatial Refinement and Measurement. For each pair of markup
polygons whose MBRs intersect, precise geometry computation al-
gorithm is used to check whether the two markup polygons actu-
ally intersect. Spatial refinement based on geometric computation
often dominates the query execution cost in data-intensive spatial
queries, and could be accelerated through GPU based approach
[36]. We are planning to integrate GPU based spatial functions
into MapReduce in our future work.
Spatial Containment Workflow. Spatial containment queries have
a slightly different workflow. The spatial containment query range
may span only a single tile or multiple tiles. Thus, an initial step
will be to identify the list of intersecting tiles by looking up the
global tile index, which could filter a large number of tiles. The
tiles whose MBRs intersect with the query range will then be fur-
ther processed, where only a single index is used in the spatial fil-
tering phase. For an extreme case where the containing shape is
small and lies within a tile, only a single tile is identified for creat-
ing the index. For a point query – given a point, find the containing
objects, only a single tile is needed and it has similar workflow as
the small containment query.

4. MAPREDUCE BASED SPATIAL QUERY
PROCESSING

RESQUE provides a core query engine to support spatial queries,
which enables us to develop high performance large scale spatial
query processing based on MapReduce framework. Our approach
is based on spatial data partitioning, tile based spatial query pro-
cessing with MapReduce, and result normalization for tile bound-
ary objects.

4.1 Spatial Data Partitioning and Storage
Spatial data partitioning serves two major purposes. First, it pro-

vides two-dimensional data partitioning and generates a set of tiles,

which become a processing unit for querying tasks. A large set of
such tasks can be processed in parallel without data dependance or
communication requirement. Therefore, spatial partitioning pro-
vides not only data partitioning but also computational paralleliza-
tion. Last, spatial data partitioning could be critical to mitigate spa-
tial data skew. Data skew is a common issue in spatial applications.
For example, with a fixed grid partitioning of images into tiles with
size of 4Kx4K, the largest count of objects in a tile is over 20K ob-
jects, compared to the average count of 4,291. For OpenStreetMap
dataset, by partitioning the space into 1000x1000 fixed grids, the
average count of objects per tile is 993, but the largest count of
objects in a tile is 794,429. If there is a parallel spatial query pro-
cessing based on tiles, such large skewed tile could significantly
increase the response time due to the straggling tiles.

As MapReduce provides its own job scheduling for balancing
tasks, for spatial data partitioning, we mainly focus on breaking
high density regions into small ones, and take a recursive partition-
ing approach. We either assume the input is a pre-partitioned tileset
with fixed grid size, which is commonly used for imaging analysis
applications, or pre-generate fixed grid based tileset if no partition-
ing exists. We count the number of objects in each tile, and sort
them based on the counts. We define a threshold Cmax as the max-
imal count of objects allowed in a tile. We pick all tiles with object
counts larger than Cmax, and split each of them into two equal
half-sized tiles based on an optimal direction: x or y. A direction is
considered optimal if the split along that direction generates a new
tile with object count below the threshold, or the two new tiles are
more balanced. This process is repeated until all tiles have counts
below than Cmax.

After partitioning, each object in a tile is assigned a correspond-
ing tile UID. The MBRs of tiles are maintained in a global spatial
index. Note that in the same spatial universe, there could be mul-
tiple types of objects with different granularity, e.g., cells versus
blood vessels, each dataset of a different type will have its own
separate partitioning. If there are multiple datasets of the same
type in the same space, e.g., two segmentation results of different
algorithms, partitioning is considered together for all these datasets
based on combined object counts.

For data staging into HDFS, we merge all tiles into large files
instead of storing each tile as a separate file, as the file size from
each tile could be small, e.g., a few MBs, which are not suitable to
be stored directly into HDFS. This is due to the nature of HDFS,
which is optimized for large data blocks (default block size 64MB)
for batch processing. Large number of small files leads to deterio-
rated performance for MapReduce due to following reasons. First,
each file block consumes certain amount of main memory on the
cluster namenode and this directly compromises cluster scalability
and disaster recoverability. Second, in the Map phase, the large
number of blocks for small files leads to “large number of small
map tasks” which has significant task-startup overhead.

For objects across tile boundaries, we take the multiple assign-
ment approach, where an object intersects with the tile boundary
will be assigned multiple times to all the intersecting tiles [25].
Consequently, such boundary objects may participate in multiple
query tasks which could lead to incorrect query results. Therefore,
the query results are normalized through an additional boundary
handling process in which results are rectified (Section 5). While
this method will incur redundancy on object storage, the ratio of
boundary objects is usually small (within a few percent in our use
cases).

4.2 Spatial Join with MapReduce
As spatial join is among the most commonly used and costly
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queries, next we discuss how to map spatial join queries into MapRe-
duce computing model. We first show an example spatial join
query for spatial cross-matching in SQL, as shown in Figure 3.
This query finds all intersecting polygon pairs between two result
sets generated from an image by two different methods, and com-
pute the overlap ratios (intersection-to-union ratios) and centroid
distances of the pairs. The table markup polygon represents the
boundary as polygon, algorithm UID as algrithm uid. The SQL
syntax comes with spatial extensions such as spatial relationship
operator ST INTERSECTS, spatial object operators ST INTERSECTION
and ST UNION, and spatial measurement functions ST CENTROID,
ST DISTANCE, and ST AREA.

1: SELECT
2: ST_AREA(ST_INTERSECTION(ta.polygon,tb.polygon))/
3: ST_AREA(ST_UNION(ta.polygon,tb.polygon)) AS ratio,
4: ST_DISTANCE(ST_CENTROID(tb.polygon),
5: ST_CENTROID(ta.polygon)) AS distance,
6: FROM markup_polygon ta JOIN markup_polygon tb ON
8: ST_INTERSECTS(ta.polygon, tb.polygon) = TRUE
9: WHERE ta.algrithm_uid=’A1’ AND tb.algrithm_uid=’A2’ ;

Figure 3: An example spatial join (cross-matching) query

For simplicity, we first present how to process the spatial join
above with MapReduce, by ignoring boundary objects, and then
we come back to the boundary handling in Section 5. A MapRe-
duce program for spatial join query (Figure 3) will have similar
structure as a regular relational join operation, but with all the spa-
tial part executed by invoking RESQUE engine within the program.
According to the equal-join condition, the program uses the Stan-
dard Repartition Algorithm [16] to execute the query. Based on
the MapReduce structure, the program has three main steps: i) In
the map phase, the input table is scanned, and the WHERE con-
dition is evaluated on each record. Only those records that satisfy
the WHERE condition are emitted with tile uid is as key. ii) In the
shuffle phase, all records with the same tile uid would be sorted
and prepared for the reducer operation. iii) In the reduce phase, the
tile based spatial join operation is performed on the input records
and the spatial operations are executed by invoking the RESQUE
engine (Section 3).

The workflow of the map function is shown in the map function
in Algorithm 2. Each record in the table is converted into the map
function input key/value pair (k, v), where k is the byte offset of
the line in the file, and v is the record. Inside the map function,
if the record can satisfy the select condition, then an intermediate
key/value pair is generated. The intermediate key is the tile uid
of this record, and the intermediate value is the combination of
columns which are specified in the select clause. Note that the in-
termediate key/values will participate in a two-table join, and a tag
must be attached to the value in order to indicate which table the
record belongs to. Besides, since the query for this case is a self-
join, we use a shared scan in the map function to execute the data
filter operations on both instances of the same table. Therefore, a
single map input key/value could generate 0, 1 or 2 intermediate
key/value pairs, according to the SELECT clause and the values of
the record.

The shuffle phase is performed by Hadoop internally, which groups
data by tile UIDs. The workflow of the reduce function is shown in
the reduce function in Algorithm 2. According to the main structure
of the program, the input key of the reduce function is the join key
(tile uid), and the input values of the reduce function are all records
with the same tile uid. In the reduce function, we first initialize two
temporary files, then we dispatch records into corresponding files.
After that, we invoke RESQUE engine to build R*-tree indexes

Algorithm 2: MapReduce program for spatial join query

function Map(k,v):
tile uid = projectKey(v);
join seq = projectJoinSequence(v);
record = projectRecord(v);
v = concat(join seq,record);
emit( tile uid , v);

function JoinReduce(k,v):
/* arraylist holds join objects */
join set = [ ] ;
for vi in v do

join seq = projectJoinSequence(vi);
record = projectRecord(vi);
if join seq == 0 then

join set[0].append(record);
if join seq == 1 then

join set[1].append(record);

/* library call to RESQUE */
plan = RESQUE.genLocalPlan(join set);
result = RESQUE.processQuery(plan);
for item in result do

emit(item);

and execute the query. The execution result data sets are stored in
a temporary in-memory file. Finally we parse that file, and output
the result to HDFS. Note that the function RESQUE.processQuery
here performs multiple spatial opeartions together, including eval-
uation of WHERE condition, projection, and computation (e.g.,
ST intersection and ST area), which could be customized.

4.3 Other Spatial Query Types
Other spatial queries can follow a similar process pattern as shown

in Algorithm 1. Spatial selection/containment is a simple query
type in which objects geometrically contained in selection region
are returned. For example, in a medical imaging scenario, users
may be interested in the cell features which are contained in a can-
cerous tissue region. Thus, a user can issue a simple query as shown
in Figure 4 to retrieve cancerous cells.

1: SELECT * FROM markup_polygon m, human_markup h
2: WHERE h.name=’cancer’ AND
3: ST_CONTAINS(h.region, m.polygon) = TRUE;

Figure 4: An Example Containment Query in SQL

Since data is partitioned into tiles, containment queries can be
processed in a filter-and-refine fashion. In the filter step, tiles which
are disjoined from the query region can be filtered. In the refine-
ment step, the candidate objects are checked with precise geometry
test. The global region index is used to generate a selective table
scan operation which only scans the file splits which potentially
contain the query results. The query would be translated into a
map only MapReduce program shown in Algorithm 3. Support
of multi-way spatial join queries and nearest neighbor queries fol-
low a similar pattern and are discussed in our previous work [12].
Figure 4 illustrates a containment query in which the task is to re-
trieve all the cells which are spatially contained in a region which
is marked as cancereous.

5. BOUNDARY HANDLING
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Algorithm 3: MapReduce program for containment query

function Map(k,v):
/* a arraylist holds spatial objects */
candidate set = [ ] ;
tile id = projectKey(v);

for vi in v do
record = projectRecord(vi);
candidate set.append(record);

tile boundary =getTileBoundary( tile id);
if queryRegion.contains(tile boundary) then

emitAll(candidate set);
else

if queryRegion.intersects(tile boundary) then
for record in candidate set do

if queryRegion.contains(record) then
emit(record);

Tile is the basic parallelization unit in Hadoop-GIS. However, in
tile based partitioning, some spatial objects may lie on tile bound-
aries. We define such an object as boundary object of which spa-
tial extent crosses multiple tile boundaries. For example, in Fig-
ure 5 (left), the object p is a boundary object which crosses the tile
boundaries of tiles S and T. In general, the fraction of boundary
objects is inversely proportional to the size of the tile. As tile size
gets smaller, the percentage of boundary objects increases.

There are two basic approaches to handle boundary objects. They
either have to be specially processed to guarantee query semantics
and correctness, or they can be simply discarded. The latter is suit-
able for a scenario where approximate query results are needed, and
query results would not be effected by the tiny fraction of bound-
ary objects. Whereas in many other cases, accurate and consistent
query results are required and the boundary objects need to be han-
dled properly.

S T S
ps

T
pt

qq
p

+

Figure 5: Boundary object illustration

Hadoop-GIS remedies the boundary problem in a simple but
effective way. If a query requires to return complete query re-
sult, Hadoop-GIS generates a query plan which contains a pre-
processing task and a post-processing task. In the pre-processing
task, the boundary objects are duplicated and assigned to multi-
ple intersecting tiles (multiple assignment). When each tile is pro-
cessed independently during query execution, the results are not yet
correct due to the duplicates. In the post-processing step, results
from multiple tiles will be normalized, e.g., to eliminate duplicate
records by checking the object uids, which are assigned internally
and globally unique. For example, when processing the spatial join
query, the object p is duplicated to tiles S and T as ps and pt (Fig-
ure 5 right). Then the same process of join processing follows as if
there are no boundary objects. In the post-processing step, objects
will go through a filtering process in which duplicate records are
eliminated.

Algorithm 4: Boundary aware spatial join processing

function Map(k,v):
tile id = projectKey(v);
record = projectRecord(v);
if isBoundaryObject(record, tile id) then

tiles = getCrossingTiles(record) ;
/* replicate to multiple tiles */
for tile id in tiles do

emit(tile id , v);

function JoinReduce(k,v):
/* performs tile based spatial join,

same as reduce function in
Algorithm 2 */

function Map(k,v):
uid1 = projectUID(v,1);
uid2 = projectUID(v,2);
key = concat(uid1,uid2);
emit(key,v);

/* Hadoop sorts records by key and
shuffles them */

function Reduce(k,v):
for records in v do

if isUniq(record) then
emit(record);

Intuitively, such approach would incur extra query processing
cost due to the replication and duplicate elimination steps. How-
ever, this extra cost is very small compared to the overall query
processing time, and we will experimentally quantify such over-
head later in Section 7.

6. INTEGRATION WITH HIVE
Hive [32] is an open source MapReduce based query system that

provides a declarative query language for users. By providing a
virtual table like view of data, SQL like query language HiveQL,
and automatic query translation, Hive achieves scalability while it
greatly simplifies the effort on developing applications in MapRe-
duce. HiveQL supports a subset of standard ANSI SQL statements
which most data analysts and scientists are familiar with.

6.1 Architecture
To provide an integrated query language and unified system on

MapReduce, we extend Hive with spatial query support by extend-
ing HiveQL with spatial constructs, spatial query translation and
execution, with integration of the spatial query engine into Hive
query engine (Figure 1). We call the language QLSP , and the Hive
integrated version of Hadoop-GIS as HiveSP . An example spatial
SQL query is shown in Figure 3. The spatial indexing aware query
optimization will take advantage of RESQUE for efficient spatial
query support in Hive.

There are several core components in HiveSP to provide spatial
query processing capabilities. i) Spatial Query Translator parses
and translates SQL queries into an abstract syntax tree. We extend
the HiveQL translator to support a set of spatial query operators,
spatial functions, and spatial data types. ii) Spatial Query Opti-
mizer takes an operator tree as an input and applies rule based op-
timizations such as predicate push down or index-only query pro-
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cessing. iii) Spatial Query Engine supports following infrastruc-
ture operations: spatial relationship comparison, such as intersects,
touches, overlaps, contains, within, disjoint, spatial measurements,
such as intersection, union, distance, centroid, area; and spatial
access methods for efficient query processing, such as R∗-Tree,
Hilbert R-Tree and Voronoi Diagram. The engine is compiled as
a shared library and can be easily deployed.

Users interact with the system by submitting SQL queries. The
queries are parsed and translated into an operator tree, and the
query optimizer applies heuristic rules to the operator tree to gen-
erate an optimized query plan. For a query with spatial query op-
erator, MapReduce codes are generated, which call an appropriate
spatial query pipeline supported by the spatial query engine. Gen-
erated MapReduce codes are submitted to the execution engine to
return intermediate results, which can be either returned as final
query results or be used as input for next query operator. Spatial
data is partitioned based on the attribute defined in the “PARTI-
TION BY” clause and staged to the HDFS.

6.2 Query Processing
HiveSP uses the traditional plan-first, execute-next approach for

query processing, which consists of three steps: query translation,
logical plan generation, and physical plan generation. To process
a query expressed in SQL, the system first parses the query and
generates an abstract syntax tree. Preliminary query analysis is
performed in this step to ensure that the query is syntactically and
grammatically correct. Next, the abstract syntax tree is translated
into a logical plan which is expressed as an operator tree, and sim-
ple query optimization techniques such as predicate push down and
column pruning are applied in this step. Then, a physical plan is
generated from the operator tree which eventually consists of se-
ries of MapReduce tasks. Finally, the generated MapReduce tasks
are submitted to the Hive runtime for execution.

Major differences between Hive and HiveSP are in the logical
plan generation step. If a query does not contain any spatial oper-
ations, the resulting logical query plan is exactly the same as the
one generated from Hive. However, if the query contains spatial
operations, the logical plan is regenerated with special handling of
spatial operators. Specifically, two additional steps are performed
to rewrite the query. First, operators involving spatial operations
are replaced with internal spatial query engine operators for tile
level query processing. Second, serialization/deserialization oper-
ations are added before and after the spatial operators to prepare
Hive for communicating with the spatial query engine.

An example query plan is given in Figure 6, which is generated
from translating SQL query in Figure 3. Notice that the spatial
join operator is implemented as reduce side join and the spatial
data table is partitioned by tiles for parallel processing, with a user
specified partition column during virtual table definition.

6.3 Software
Hadoop-GIS has two forms: the standalone library version which

can be invoked through customizations, and Hive integrated version
HiveSP . HiveSP is designed to be completely hot-swappable with
Hive. Hive users only need to deploy the spatial query engine on
the cluster nodes, and turn the spatial query processing switch on.
Any query that runs on Hive can run on HiveSP without modifica-
tion.

The spatial query engine is written in C++ and compiled as a
shared library. We use libspatial library [4] for building R*-
Tree index, and the library is extended to support index based spa-
tial operations such as two-way, multi-way spatial joins and nearest
neighbor search [12].

Map

Reduce

TableScanOperator

table: ta

TableScanOperator

table: tb

FilterOperator

predicate: provenance=’A1’

FilterOperator

predicate: provenance=’A2’

ReduceSinkOperator

partition col: tile id

ReduceSinkOperator

partition col: tile id

SpatialJoinOperator

predicate:

ST Intersects(col[0.0],col[0.1])

SelectOperator

expressions: col[0],col[2] ...

FileOutputOperator

table: temp tb

Figure 6: Two-way spatial join query plan

To use the system, users follow the same user guidelines of us-
ing Hive. First of all, users need to create all the necessary table
schema which will be persisted to the metastore as metadata. Spa-
tial columns need to be specified with corresponding data types
defined in ISO SQL/MM Spatial. Spatial partitioning column can
also be specified. After the schema creation, users can load the
data through Hive data loading tool. Once data is loaded, users can
begin to write spatial SQL queries.

7. PERFORMANCE STUDY
We study the performance of RESQUE query engine versus other

SDBMS engines, the performance of Hadoop-GIS versus parallel
SDBMS, scalability of Hadoop-GIS in terms of number of reducers
and data size, and query performance with boundary handling.

7.1 Experimental Setup
Hadoop-GIS: We use a cluster with 8 nodes and 192 cores. Each of
these 8 nodes comes with 24 cores (AMD 6172 at 2.1GHz), 2.7TB
hard drive at 7200rpm and 128GB memory. A 1Gb interconnect-
ing network is used for node communication. The OS is CentOS
5.6 (64 bit). We use the Cloudera Hadoop 2.0.0-cdh4.0.0 as our
MapReduce platform, and Apache Hive 0.7.1 for HiveSP . Most of
the configuration parameters are set to their default value, except
the JVM maximum heap size which is set to 1024MB. The system
is configured to run a maximum of 24 map or reduce instances on
each node. Datasets are uploaded to the HDFS and the replication
factor is set to 3 on each datanode.
DBMS-X: To have a comparison between Hadoop-GIS and par-
allel SDBMS, we installed a commercial DBMS (DBMS-X) with
spatial extensions and partitioning capabilities on two nodes. Each
node comes with 32 cores, 128GB memory, and 8TB RAID-5 drives
at 7200rpm. The OS for the nodes is CentOS 5.6 (64 bit). There
are a total of 30 database partitions, 15 logical partitions on each
node. With the technical support from the DBMS-X vendor, the
parallel SDBMS has been tuned with many optimizations, such
as co-location of common joined datasets, replicated spatial refer-
ence tables, proper spatial indexing, and query hints. For RESQUE
query engine comparison, we also install PostGIS (V1.5.2, single
partition) on a cluster node.

7.2 Dataset Description
We use two real world datasets: pathology imaging, and Open-

StreetMap.
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Pathology Imaging (PI). This dataset comes from image analysis
of pathology images, by segmenting boundaries of micro-anatomic
objects such as nuclei and tumor regions. The images are pro-
vided by Emory University Hospital. Spatial boundaries have been
validated, normalized, and represented in WKT format. We have
dataset sizes at 1X (18 images, 44GB), 3X (54 images, 132GB),
5X (90 images, 220GB), 10X (180 images, 440GB), and 30X (540
images, 1,320GB) for different testings. The average number of
nuclei per image is 0.5 million, and 74 features are derived for each
nucleus.
OpenStreetMap (OSM). OSM [8] is a large scale map project
through extensive collaborative contribution from a large number
of community users. It contains spatial representation of geometric
features such as lakes, forests, buildings and roads. Spatial objects
are represented by a specific type such as points, lines and poly-
gons. We download the dataset from the official website, and parse
it into a spatial database. The table schema is simple and it has
roughly 70 columns. We use the polygonal representation table
with more than 87 million records. To be able to run our queries,
we construct two versions of the OSM dataset, one from a latest
version, and another smaller one from an earlier version released in
2010. The dataset is also dumped as text format for Hadoop-GIS.

7.3 Query Benchmarking
We use three typical queries for the benchmark: spatial join (spa-

tial cross-matching), spatial selection (containment query), and ag-
gregation. Many other complex queries can be decomposed into
these queries, for example, a spatial aggregation can be run in two
steps: first step for spatial object filtering with a containment query,
followed by an aggregation on filtered spatial objects. The spatial
join query on PI dataset is demonstrated in Figure 3 for joining two
datasets with an intersects predicate. Another similar spatial join
query on OSM dataset is also constructed to find changes in spa-
tial objects between two snapshots. We construct a spatial contain-
ment query, illustrated in Figure 4 for PI case, to retrieve all objects
within a region, where the containment region covers a large area
in the space. A similar containment query is also constructed for
OSM dataset with a large query region. For aggregation query, we
compute the average area and perimeter of polygons of different
categories, with 100 distinct labels.

7.4 Performance of RESQUE Engine
Standalone Performance. An efficient query engine is a critical
building block for a large scale system. To test the standalone
performance of RESQUE, we run it on a single node as a single
thread application. The spatial join query is used as a represen-
tative benchmark. We first test the effect of spatial indexing, by
taking a single tile with two result sets (5506 markups vs 5609
markups), and the results are shown in Figure 8(a). A brute-force
approach compares all possible pairs of boundaries in a nested loop
manner without using any index, and takes 673 minutes. Such slow
performance is due to polynomial complexity on pair-wise com-
parisons and high complexity on geometric intersection testing.
An optimized brute-force approach will first eliminate all the non-
intersecting markup pairs by using a MBR based filtering. Then
it applies the geometry intersection testing algorithm on the candi-
date markup pairs. This approach takes 4 minutes 41 seconds, a big
saving with minimized geometric computations. Using RESQUE
with indexing based spatial join, the number of computations is sig-
nificantly reduced, and it only takes 10 seconds. When profiling the
cost for RESQUE, we observe that reading and parsing cost is 30%,
R*-Tree construction cost is 0.2%, MBR filtering cost is 0.67%,
and spatial refinement and measurement cost is 69.13%. With fast

development of CPU speed, spatial index construction takes very
little time during the query process, which motivates us to develop
an index-on-demand approach to support spatial queries. We can
also see that geometric computation dominates the cost, which can
be accelerated through parallel computation on a cluster.
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Figure 8: Performance of RESQUE

Data Loading Efficiency. Another advantage of RESQUE is its
light data loading cost compared to SDBMS approach. We run
three steps to get the overall response time (data loading, indexing
and querying) on three systems: RESQUE on a single slot MapRe-
duce with HDFS, PostGIS and SDBMS-X with a single partition.
The data used for the testing are two results from a single image
(106 tiles, 528,058 and 551,920 markups respectively). As shown
in Figure 8(b), data loading time for REQUE is minimal compared
to others. With controlled optimization, RESQUE outperforms on
the overall efficiency.

7.5 Performance of HadoopGIS

7.5.1 HadoopGIS versus Parallel SDBMS
For the purpose of comparison, we run the benchmark queries on

both Hadoop-GIS and DBMS-X on the PI dataset. The data is par-
titioned based on tile UIDs – boundary objects are ignored in the
testing as handling boundary objects in SDBMS is not supported
directly. Figure 7 shows the performance results. The horizon-
tal axis represents the number of parallel processing units (PPU),
and the vertical axis represents query execution time. For the par-
allel SDBMS, the number of PPUs corresponds to the number of
database partitions. For Hadoop-GIS, the number of PPU corre-
sponds to the number of mapper and reducer tasks.
Join Query. As the figure 7(a) shows, both systems exhibit good
scalability, but overall Hadoop-GIS performs much better com-
pared to DBMS-X, which has already been well tuned by the ven-
dor. Across different numbers of PPUs, Hadoop-GIS is more than
a factor of two faster than DBMS-X. Given that DBMS can in-
telligently place the data in storage and can reduce IO overhead
by using index based record fetching, it is expected to have better
performance on IO heavy tasks. However, a spatial join involves
expensive geometric computation, and the query plan generated by
the DBMS is suboptimal for such tasks. Another reason for the
performance of DBMS-X is because of its limited capability on
handling computational skew, even though the built-in partitioning
function generates a reasonably balanced data distribution. Hadoop
has an on-demand task scheduling mechanism which can help alle-
viate such computational skew.
Containment Query. For containment queries, Hadoop-GIS out-
performs DBMS-X on a smaller scale and has a relatively flat per-
formance across different number of PPUs. However, DBMS-X
exhibits better scalability when scaled out with larger number of
partitions. Recall that, in Hadoop-GIS, a containment query is im-
plemented as a Map only MapReduce job, and the query itself is
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Figure 7: Performance Comparison between Hadoop-GIS and DBMS-X on PI Dataset

less computationally intensive compared to the join query. There-
fore, the time is actually being spent on reading in a file split, pars-
ing the objects, and checking if the object is contained in the query
region. On the other hand, DBMS-X can take advantage of a spa-
tial index and can quickly filter out irrelevant records. Therefore it
is not surprising that DBMS-X has slightly better performance for
containment queries.
Aggregation Query. Figure 7(c) demonstrates that DBMS-X per-
forms better than Hadoop-GIS on aggregation task. One reason
for this is that Hadoop-GIS has the record parsing overhead. Both
systems have similar query plans - a whole table scan followed by
an aggregation operation on the spatial column, which have sim-
ilar I/O overhead. In Hadoop-GIS, however, the records need to
be parsed in real-time, whereas in DBMS-X records are pre-parsed
and stored in binary format.

In a summary, Hadoop-GIS performs better in compute-intensive
analytical tasks and exhibits nice scalability - a highly desirable
feature for data warehousing applications. Moreover, it needs much
less tuning effort compared to the database approach. However,
MapReduce based approach may not be the best choice if the query
task is small, e.g., queries to retrieve a small number of objects.

7.5.2 Performance on OpenStreetMap Dataset
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Figure 9: Performance of Hadoop-GIS on OSM
We have also tested performance and scalability of Hadoop-GIS

on OSM dataset, which contains geospatial objects. To test sys-
tem scalability, we run the same types of queries as on the PI
dataset. For the join query, the query returns objects which have
been changed in the newer version of the dataset. Therefore, the
join predicate becomes ST EQUAL = FALSE.

Figure 9 shows the performance results for Hadoop-GIS on OSM
dataset. As Figure 9(a) shows, Hadoop-GIS exhibits very nice scal-
ability on the join task. When the number of available processing
units is increased to 40 from 20, the query time nearly reduced into
half, which is almost a linear speed-up. With increase of the num-
ber of PPUs, there is a continuous drop on the query time.

Figure 9(b) illustrates the containment query performance on
OSM dataset, where running time is less than 100 seconds. The

variance of query performance across different number of PPUs is
flat, due to the fact that containment queries are relatively IO inten-
sive.

7.5.3 Scalability of HadoopGIS
Figure 10(a) shows the scalability of the system. Datasets used

include: 1X, 3X, 5X, and 10X datasets, with varying number of
PPUs. We can see a continuous decline of query time when the
number of reducers increases. It achieves a nearly linear speed-
up, e.g., time is reduced to by half when the number of reducers
is increased from 20 to 40. The average querying time per image
is about 9 seconds for the 1X dataset with all cores, comparing
with 22 minutes 12 seconds in a single partition PostGIS. The sys-
tem has a very good scale up feature. As the figure shows, query
processing time increases linearly with dataset size. The time for
processing the join query on 10X dataset is roughly 10 times of the
time for processing a 1X dataset.

7.6 Boundary Handling Overhead
We run the join query on PI dataset to measure the overhead in

boundary handling step. Figure 10(b) shows the performance of
spatial join query with boundary handling. The blue bars repre-
sent the cost of processing the query, and the green bars represent
the cost of amending the results. As the figure shows, the cost of
boundary handling is very small. Boundary handling overhead de-
pends on two factors – the number of boundary objects and the size
of the query output. If the number of objects on the tile boundary
accounts for a considerable fraction of the dataset, the overhead
should not dominate the query processing time. Therefore, we test
the join query on the same dataset in which the number of bound-
ary objects is deliberately increased. Figure 10(c) shows the spatial
join query performance with different fraction of boundary objects.
The lines represent query performance with varying percentage of
boundary objects as shown in the legend. It is clear from the figure
that, the boundary handling overheard increases linearly with the
percentage of boundary objects.

In Figure 10(c), we show the performance when the percentage
of boundary objects is as high as 11.7%. In reality, the number of
objects is much less than this number. We have performed an ex-
periment with the OSM dataset in which the dataset is partitioned
into 1 million tiles. Even in such a fine granular level of partition-
ing, the number of objects lying on the grid boundary is less than
2%.

8. RELATED WORK
Parallel SDBMS has been used for managing and querying large

scale spatial data based on shared nothing architecture [28], such
as Greenplum, IBM Netezza, Teradata, and partitioned version of
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Figure 10: Scalability of Hadoop-GIS & boundary handling overhead

IBM DB2 Spatial Extender, Oracle Spatial, MS SQL Server Spa-
tial, and PostGIS. These approaches lack the framework for spatial
partitioning and boundary object handling. Data loading speed is
a major bottleneck for SDBMS based solutions [29], especially for
complex structured spatial data types [35]. We have previously de-
veloped a parallel SDBMS based approach PAIS [34, 35, 9] based
on DB2 DPF with reasonable scalability, but the approach is highly
expensive on software license and hardware requirement[29], and
requires sophisticated tuning and maintenance. The objective of the
work presented in this paper is to provide a scalable and cost effec-
tive approach to support expressive and high performance spatial
queries. The Sloan Digital Sky Survey project (SDSS) [3] cre-
ates a high resolution multi-wavelength map of the Northern Sky
with 2.5 trillion pixels of imaging, and takes a large scale parallel
database approach. SDSS provides a high precision GIS system for
astronomy, implemented as a set of UDFs. The database runs on
GrayWulf architecture [31] through collaboration with Microsoft.

Partitioning based approach for parallelizing spatial joins is dis-
cussed in [40], which uses the multiple assignment, single join ap-
proach with partitioning-based spatial join algorithm. The authors
also provide re-balancing of tasks to achieve better parallelization.
We take the same multiple assignment approach for partitioning,
but use index based spatial join algorithm, and rely on MapReduce
for load balancing. R-Tree based parallel spatial join is also pro-
posed in early work [17] with a combined shared virtual memory
and shared nothing architecture. Recently we have exploited mas-
sive data parallelism by developing GPU aware parallel geometric
computation algorithms to support spatial joins running on desktop
machines [36]. Integrating GPU into our MapReduce pipeline is
among our future work.

Spatial support has been extended to NoSQL based solutions,
such as neo4j/spatial [2] and GeoCouch [1]. These approaches
build spatial data structures and access methods on top of key-value
stores, thus take advantage of the scalability. However, these ap-
proaches support limited queries, for example, GeoCouch supports
only bounding box queries, and there is no support of the analytical
spatial queries for spatial data warehousing applications.

In [18], an approach is proposed on bulk-construction of R-Trees
through MapReduce. In [38], a spatial join method on MapReduce
is proposed for skewed spatial data, using an in-memory based
strip plane sweeping algorithm. It uses a duplication avoidance
technique which could be difficult to generalize for different query
types. Hadoop-GIS takes a hybrid approach on combining parti-
tioning with indexes and generalizes the approach to support mul-
tiple query types. Besides, our approach is not limited to memory
size. VegaGiStore [39] tries to provide a Quadtree based global
partitioning and indexing, and a spatial object placement structures
through Hibert-ordering with local index header and real data. The

global index links to HDFS blocks where the structures are stored.
It is not clear how boundary objects are handled in partitioning,
and how parallel spatial join algorithm is implemented. Work in
[5] takes a fixed grid partitioning based approach and uses sweep
line algorithm for processing distributed joins on MapReduce. It
is unclear how the boundary objects are handled, and no perfor-
mance study is available at the time of evaluation. The work in
[22] presents an approach for multi-way spatial join for rectangle
based objects, with a focus on minimizing communication cost. A
MapReduce based Voronoi diagram generation algorithm is pre-
sented in [13]. In our work in [12], we present preliminary results
on supporting multi-way spatial join queries and nearest neighbor
queries for pathology image based applications. This paper has sig-
nificantly generalized the work to provide a generic framework for
supporting multiple types of spatial applications, and a systematic
approach for data partitioning and boundary handling.

Comparisons of MapReduce and parallel databases for struc-
tured data are discussed in [29, 20, 30]. Tight integration of DBMS
and MapReduce is discussed in [10, 37]. MapReduce systems
with high-level declarative languages include Pig Latin/Pig [27,
21], SCOPE [19], and HiveQL/Hive [32]. YSmart provides an op-
timized SQL to MapReduce job translation and is recently patched
to Hive. Hadoop-GIS takes an approach that integrates DBMS’s
spatial indexing and declarative query language capabilities into
MapReduce.

9. CONCLUSION AND DISCUSSION
“Big” spatial data from imaging and spatial applications share

many similar requirements for high performance and scalability
with enterprise data, but has its own unique characteristics – spa-
tial data are multi-dimensional and spatial query processing comes
with high computational complexity. In this paper, we present
Hadoop-GIS, a solution that combines the benefit of scalable and
cost-effective data processing with MapReduce, and the benefit
of efficient spatial query processing with spatial access methods.
Hadoop-GIS achieves the goal through spatial partitioning, parti-
tion based parallel processing over MapReduce, effective handling
of boundary objects to generate correct query results, and multi-
level spatial indexing supported customizable spatial query engine.
Our experiment results on two real world use cases demonstrate
that Hadoop-GIS provides a scalable and effective solution for an-
alytical spatial queries over large scale spatial datasets.

Our work was initially motivated by the use case of pathology
imaging. We started from a parallel SDBMS based solution [35]
and experienced major problems such as the data loading bottle-
neck, limited support of complex spatial queries, and the high cost
of software and hardware. Through the development and deploy-
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ment of MapReduce based query processing, we are able to provide
scalable query support with cost-effective architecture [12]. In this
paper, we have generalized the approach to provide a solution that
can be used to support various spatial applications.

Ongoing work includes support of 3D pathology analytical imag-
ing. 3D examinations of tissues at microscopic resolution are now
possible and have significant potential to enhance the study of both
normal and disease processes, by exploring structural changes or
spatial relationship of disease features. A single 3D image consists
of around a thousand slices and consumes more than 1TB storage,
and spatial queries on massive 3D geometries pose many new chal-
lenges. Another ongoing work is to support queries for global spa-
tial patterns such as density and directional patterns. We are also
working on integrating GPU based spatial operations [36] into the
query pipeline.
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