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ABSTRACT

Thousands of documents are made available to the users
via the web on a daily basis. One of the most extensively
studied problems in the context of such document streams
is burst identification. Given a term t, a burst is generally
exhibited when an unusually high frequency is observed for
t. While spatial and temporal burstiness have been studied
individually in the past, our work is the first to simultane-
ously track and measure spatiotemporal term burstiness. In
addition, we use the mined burstiness information toward
an efficient document-search engine: given a user’s query of
terms, our engine returns a ranked list of documents dis-
cussing influential events with a strong spatiotemporal im-
pact. We demonstrate the efficiency of our methods with
an extensive experimental evaluation on real and synthetic
datasets.

1. INTRODUCTION
The World Wide Web serves as a host to overwhelm-

ing volumes of documents, appearing in bulk online on a
daily basis. Online magazines and newspapers (e.g. ny-
times.com), blogging and microblogging platforms (e.g. Blog-
Spot.com and Twitter.com) and social networking platforms
(e.g. Facebook.com) are examples of online venues where
users flock to access such documents. In the context of such
document streams, one of the most well-studied problems is
the identification of bursts. Given a term t, a burst is gener-
ally identified when an unusually high frequency is observed
for t in the considered documents. A significant amount of
work has been devoted to identifying temporal bursts [13, 14,
31, 35]. A temporal burst is typically identified by: (a) an
interval on the timeline, indicating the specific timeframe
during which the unusually high frequency was observed,
and (b) a score that indicates the burst’s strength, i.e. the
extent of the deviation from the term’s usual frequency. The
work on temporal burstiness assumes a single stream of doc-
uments. In the context of the web, however, documents

Figure 1: Spatiotemporal collection D. The white
dots represent streams of data originating in differ-
ent locations on a 2D map.

are typically associated with a geostamp. In social net-
working platforms and blogging websites, registered users
include their geographical location (i.e. place of residence)
as part of their online profile. Further, in news portals such
as Topix.com articles are organized based on their place of
origin. This setting motivates the study of burstiness in the
spatial domain by introducing multiple document streams
from different locations. An example of this setting is shown
in Figure 1, where the white dots on the map represent dif-
ferent document streams. In recent work, Mathioudakis et
al. [18] presented a framework for the identification of spa-
tial bursts, where the temporal interval of interest I is given
as part of the input (this is a limitation that we overcome
in our work). Given such an interval I and a term t, the
authors focus on identifying geographical regions where the
observed frequency of t was unusually high, within the time-
frame defined by I .

In this paper, we present the first framework for simul-
taneously tracking the spatial and temporal burstiness of
terms. In particular, given a term t and a set of document
streams from different locations, we focus on two different
types of spatiotemporal burstiness patterns:
Combinatorial Patterns: these patterns ignore the geo-
graphical proximity among streams. Instead, they are de-
fined as a combination of a temporal interval and a set of
streams, where each stream originates from a different geo-
graphical location. Any arbitrary subset of the streams in
Figure 1 can be included in a combinatorial pattern (e.g.
{D1, D4, D7}). A combinatorial pattern encodes that un-
usually high frequencies were simultaneously observed for
term t in all the streams in some set C, during the same
temporal interval I.
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Regional Patterns: these patterns consider the geograph-
ical proximity among document streams. They are defined
as a combination of a temporal interval and a geographical
region. A region can contain the geostamps (locations) of
multiple document streams. Two such regions are marked in
Figure 1. The 1st region contains streams {D5, D6}, while
the 2nd region contains streams {D2, D3, D4, D10}. This
pattern encodes that unusually high frequencies were ob-
served for term t in geographical region R during a temporal
interval I. In this work, we formalize both of these spa-
tiotemporal patterns and present efficient algorithmic tech-
niques for their identification and evaluation.

Utilizing spatiotemporal burstiness: The second part
of our work focuses on the utilization of the mined spa-
tiotemporal patterns. In previous work [14], we showed how
temporal bursts can be used to identify documents on in-
fluential events. In this paper, we present a search engine
that considers the spatiotemporal burstiness of terms in the
process of document retrieval. Given a query of terms sub-
mitted by the user, our engine retrieves relevant documents
that discuss events with a major spatiotemporal impact, i.e.
an impact that was reflected in multiple streams for an ex-
tended timeframe. We observe that regional patterns lead
to documents on events with a strong localized impact. (e.g.
a medium-scale earthquake affecting a specific region of the
world). One the other hand, combinatorial patterns favor
events with a more global effect (e.g. a large-scale pandemic
affecting countries across the globe). We demonstrate and
discuss these findings in our experiments.

1.1 Applications
Next, we list some of the applications of our work:

Document Search: Given any query of terms, our search
engine can be used to retrieve documents (e.g. tweets on
Twitter, news articles, blog-posts) that discuss events with
a strong spatiotemporal impact. These are influential events
that affect multiple places in the world for extended time-
frames. Thus, they are more likely to be of interest to users.
Our work is a natural extension of approaches that are lim-
ited to the temporal dimension of burstiness [7, 10, 14, 2].

Document Selection: by tracking the popularity of terms
across space and time, a news portal can determine which
articles to present to each user, based on their respective
vocabulary, location and timeframe. For example, a user
living in region that is being affected by a major event is
more likely to be interested in reading relevant articles than
someone who lives thousands of miles away.

Trend Identification: Spatiotemporal patterns are a nat-
ural way to detect trends. Given the set of terms that de-
scribe an item (e.g. a person or product), we can identify
when and where it was popular. This information can help
the user who is interested in trendy topics and can also be
used as input to marketing and advertising campaigns.

1.2 Roadmap
The rest of the paper is organized as follows. In Section 2

we introduce some preliminary points. In Sections 3 and 4,
we describe the two alternative approaches for identifying
spatiotemporal-burstiness patterns. In Section 5, we discuss
how the extracted patterns can be used for document search.
The experimental evaluation is presented in Section 6. In

Section 7 we review the related work. Finally, we conclude
the paper in Section 8.

2. PRELIMINARIES
In this section we introduce some notation and briefly dis-

cuss some basic points that are relevant to our methodology.

Geostamps and document Streams: We assume an un-
derlying geographical map and a set of document streams
D = {D1[·], ..., Dn[·]}. Here, Dx[i] represents the set of
documents reported from stream Dx at timestamp i. Each
stream is associated with a fixed geographical location (geo-
stamp). For the sake of simplicity (and without loss of gen-
erality), our analysis assumes a single streaming source per
location (e.g. the aggregated content of all the available
blogs or websites in a city).

Granularity: Our approaches place no restrictions on the
possible locations of the document streams. However, if the
number of the considered streams is overwhelming, it can
potentially hurt performance. This issue can emerge, for
example, when millions of individual users (e.g. on Twit-
ter) are considered as individual streams. For most real-life
applications, it is sufficient to consider a stream as an en-
tire city or, at most, a specific neighborhood. Then, users
can be easily grouped to form the corresponding aggregate
streams. Still, if one chooses a finer granularity, it is prefer-
able to define the problem in the context of the region of
interest, instead of considering the entire map. An alterna-
tive way to group users is by using a grid to partition the
underlying map. Each cell of the grid can then be consid-
ered as a different stream. Our entire methodology is fully
compatible with this setup.

3. COMBINATORIAL PATTERNS
In this section we introduce STComb, an approach for iden-

tifying combinational spatiotemporal patterns. These pat-
terns are defined as combination of a temporal interval and a
set of streams, where each stream originates from a different
location.

This approach builds upon our previous work [14] on tem-
poral bursts. Given a single stream of documents and a
term t, we showed how we can extract, in linear time, the
set of non-overlapping bursty temporal intervals. Given the
sequence Yt = y1, y2, ...y|Yt| of frequency measurements for a
term t, we defined the temporal burstiness of a given interval
I = Yt[l : r] as a follows:

BT (I) =

(

∑r
i=l Yt[i]

∑|Yt|
j=1 Yt[j]

−
|I |

|Yt|

)

(1)

Note that the temporal burstiness BT (I) of an interval
I is always in [0, 1]. This definition is based on the well-
known discrepancy paradigm [5]. Based on this formal-
ization, we presented an algorithm for the identification of
high-burstiness intervals. Here, we extend this work in order
to efficiently deal with multiple streams from different geo-
graphical locations. First, we use our previous method [14]
to independently extract the sets of bursty temporal inter-
vals for each stream. While we use our own formalization
of temporal burstiness in our experiments, our methodol-
ogy is compatible with any framework that reports non-
overlapping bursty intervals.
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Figure 2: Examples of bursty temporal intervals for
4 document streams D1, D2, D3 and D4

.

Note that, since the intervals reported for each stream
are strictly non-overlapping [14], overlap can only exist be-
tween intervals from different streams. Each segment that
exists in the overlap of multiple intervals represents a spa-
tiotemporal pattern, defined by the timeframe spanned by
the segment and the set of the corresponding locations. Fig-
ure 2 shows examples of bursty temporal intervals for four
document streams D1, D2, D3 and D4. In this example, two
intervals I1 and I2 have been identified for D1, with their
respective (temporal) burstiness scores being 0.8 and 0.5.

Let I be the complete set of temporal intervals reported
from all the document streams. Then, the problem of identi-
fying spatiotemporal patterns is translated into finding sub-
sets of overlapping intervals. A subset I′ ⊆ I is eligible
only if all the intervals it includes share a common segment.
Formally, I′ is eligible if:

⋂

I∈I′

I 6= ∅ (2)

In Figure 2, we have I = {I1, I2, I3, I4, I5, I6, I7}. In this
case, the subsets {I1, I3, I5, I6, } and {I2, I4, I7} are eligible.
On the other hand, the subset {I1, I4, I6} is not eligible.

To aid us in our analysis, we define U to be the universe of
all eligible subsets of I. First, we formally define the prob-
lem of finding the single highest-scoring subset of intervals:

Problem 1. Highest-Scoring Subset (HSS): Let U be
the set of eligible subsets, and let BT (I) return the temporal
burstiness score of a given interval I. Then, we want to find
the subset I∗ ∈ U such that:

I∗ = argmax
I
′
∈U

∑

I∈I
′

BT (I) (3)

Solving the HSS problem gives us the single highest scoring
spatiotemporal pattern. Toward the end of this section we
discuss how we can retrieve multiple high-scoring patterns.
Note that any subset of intervals I′ ∈ U can be trivially con-
verted into a (combinatorial) spatiotemporal pattern. First,
by the definition of U , each interval in I′ comes from a dif-
ferent stream. Hence, all the streams that are represented
in I′ compose the set of streams of the pattern. Further,
the timeframe of the pattern is defined as the common seg-
ment of all the intervals in I′. Finally, the burstiness score
is equal to

∑

I∈I
′ BT (I).

In the example of Figure 2, the highest scoring subset is
{I1, I3, I5, I6}, which gives us the top spatiotemporal pat-
tern. The set of streams included in the pattern is {D1, D2,
D3, D4}. Further, the timeframe of the pattern is defined by
the common segment of the intervals, spanning from times-
tamp tx to timestamp ty in the figure. Finally, the burstiness

of the pattern is 2.1, equal to the cumulative burstiness of
the included intervals.

Before we present our solution to the HSS problem, we
state the following lemma, to aid us in our analysis:

Lemma 1. Given a set I = {I1, ..., Im} of 1-D intervals
on the real line, the following two statements are equivalent:

⋂

I∈I

I 6= ∅ (4)

Ii ∩ Ij 6= ∅, ∀(Ii, Ij) ∈ I, 1 ≤ i, j ≤ m (5)

Lemma 1 simply states that if m intervals have a non-empty
intersection, then each pair of intervals must also have a
non-empty intersection. The proof is trivial and is omitted
for lack of space. Given Lemma 1, we can now state the
following Proposition:

Proposition 1. The HSS problem is equivalent to the
Maximum-Weight Clique Problem for Interval Graphs (MWCI)

A detailed proof of proposition 1 can be found in Sec-
tion A.1 of the Appendix. An instance of the Maximum-
Weight Clique (MWC) problem consists of an undirected graph
G(V,E) and a vertex weight w(v),∀ v ∈ V . Given a constant
K, the decision version of the MWC problem asks whether
there exists a clique V ∗ ⊆ V , so that

∑

v∈V ∗ w(v) ≥ K.
Proposition 1 refers to a specialized formulation of this

problem, focusing exclusively on Interval Graphs (MWCI). An
interval graph is the intersection graph of a set of intervals
on the real line. It has a vertex for each interval in the set,
and an edge between every pair of vertices corresponding to
two intersecting intervals.

Proposition 1 allows us to use any known algorithms for
the MWCI to solve HSS. In addition, while MWC is known to
be NP-Complete [1], MWCI is solvable in polynomial time [8].
In our experiments, we use the algorithm described in [8],
which returns the single highest-scoring clique in O(n log n)
time. We refer to this algorithm as maxClique.
Getting Multiple Patterns: In order to obtain multiple
non-overlapping patterns we can iteratively apply maxClique,
removing each time the intervals included in the maximum
clique. Allowing overlap would inevitably lead to uninfor-
mative results, obtained by trivially modifying other high-
scoring cliques. Nonetheless, one can alternatively use any
of the available algorithms for the enumeration of overlap-
ping maximal cliques for interval graphs [32].

4. REGIONAL PATTERNS
The STComb algorithm presented in the previous section

disregards the spatial proximity of the streams, and is thus
inapplicable if one wishes to capture the spatial locality of
bursts. In addition, STComb is not customized for streaming
data, since it needs to recompute the set of cliques every
time new information arrives. Next, we describe an online
approach, called STLocal, that addresses these issues. By
considering the geographical proximity among streams, we
can evaluate the spatial extent of a term’s burstiness pat-
tern. Conceptually, we are looking for bursty regions of the
map, instead of arbitrary sets of bursty streams.

First, we examine the simple case where we are given
Dx[i]: the set of documents received from a single stream
Dx ∈ D at timestamp i. We then extend our approach to
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deal with a snapshot of the entire collection (i.e. all avail-
able streams), taken at some fixed point in time. Finally,
we address the streaming scenario, where a new snapshot is
added at every new timestamp.

Single Data Stream: Wemodel the spatiotemporal bursti-
ness of terms by using the formal concept of Discrepancy.
Discrepancy Theory has different formalizations and appli-
cations in several fields [5] and is generally used to describe
the deviation of an observed situation from the expected
baseline. Next, we use this paradigm to model the burstiness
of a given term t: let Dx[i] represent the set of documents
that arrived from a stream Dx ∈ D at timestamp i. Then,
given a term t, let Dx[i][t] return the total frequency of t in
the documents included in Dx[i]. Formally:

Dx[i][t] =
∑

d∈Dx[i]

freq(t, d) (6)

Dx[·][·] can be visualized as a 2-D matrix, where rows corre-
spond to timestamps and columns to terms. Then, Dx[i][t]
represents the observed frequency for t on timestamp i.

Following the typical Discrepancy paradigm, we now de-
fine Ex[i][t] to be the expected frequency of t with respect
to stream Dx at timestamp i. This allows us to identify and
evaluate frequency bursts by measuring the extent to which
the observed frequency surpasses the expected baseline. The
nature of an appropriate baseline depends on the domain of
the application and the specifics of the data: Ex[i][t] can be
taken to be equal to the average observed frequency of t in
Dx, taken over all the snapshots collected before timestamp
i. Alternatively, one can focus only on the most recent mea-
surements. Finally, data from previous timeframes can also
serve as a baseline, if available. For example, the expected
frequency of a given term t in the news from San Fran-
cisco on Dec-25-09 can be computed as the average daily
frequency of the term, as computed over the measurements
taken during the Dec. of previous years. Further discussion
on possible baselines can also be found in our previous work
on the temporal burstiness of terms [14].

Formally, we define the burstiness of a given term t with
respect to a data stream Dx ∈ D at timestamp i as follows:

B(t,Dx[i]) = Dx[i][t]− Ex[i][t] (7)

Snapshot of the Entire Collection: Next, we discuss how
we process an entire snapshot of the considered collection.
A snapshot D[i] = {D1[i], D2[i], ..., Dn[i]} of a spatiotempo-
ral collection D consists of the document-sets reported by
all the streams at a single timestamp i. Our STLocal algo-
rithm considers the spatial proximity of the streams in the
2-dimensional space: we want to find regions that are bursty
with respect to a given term t. The burstiness of a region is
based on the streams that originate within its area. Ideally,
we could afford the flexibility of looking for regions of ar-
bitrary shapes. However, this would dramatically increase
the computational cost. Therefore, we focus on regions that
can be represented by axis-oriented rectangles, allowing, as
we show later, for a polynomial-time solution of the prob-
lem. By allowing rectangles of arbitrary size, we can cap-
ture interesting patterns on the 2-D map, while achieving
an acceptable computational cost. A rectangle may contain

multiple streams, depending on its size and location on the
map. In the example of Figure 1, the rectangular area in
north Africa includes streams D5 and D6.

We define the rectangle score (r-score) of a rectangle R
with respect to a term t at a given timestamp i as the sum
of the respective burstiness values of the streams that fall
within R. Formally:

r-score(R, i, t) =
∑

Dx∈R

B(t, Dx[i]) (8)

where B(t,Dx[i]) is as defined in Eq. 7. We can now formal-
ize the notion of Bursty Rectangles as follows:

Definition 1. [Bursty Rectangles]: Given a term t
and a snapshot D[i] of a spatiotemporal collection D, we
define as Bursty Rectangles the set of non-overlapping
rectangles, for which r-score(·, i, t) > 0.

Positive-scoring rectangles represent regions where the over-
all observed frequency was higher than the expected one.
The no-overlap constraint bounds the number of rectangles
to at most n = |D|. It also eliminates trivial results, pro-
duced by slightly modifying other high-scoring rectangles.
In some cases, a higher r-score can be achieved by expand-
ing the rectangle to include more streams, even if it means
also including some non-bursty streams. Our approach au-
tomatically determines whether a set of streams should be
included in a single rectangle, or if reporting a set of (two
or more) smaller rectangles would benefit the r-score.

In Algorithm 1, we give the pseudocode of R-Bursty, an
optimal algorithm that finds all non-overlapping bursty rect-
angles with a positive r-score. The R-Bursty algorithm uses
as a module the polynomial algorithm proposed by Dobkin
et al. [5] to find the single axis-oriented rectangle with the
maximum bichromatic discrepancy in a 2-D setup. We re-
fer the reader to the original paper for more details on this
algorithm. A formal analysis of the complexity of R-Bursty
can be found in Section A of the Appendix.

Streaming Data: The R-Bursty algorithm provides us with
the set of bursty rectangles for a single snapshot of the col-
lection. As new snapshots arrive in a streaming fashion, we
want to aggregate the consecutive rectangle-sets, in order
to identify extended periods of time when particular regions
of the map displayed bursty behavior. To assist us with the
analysis, we define the concept of the spatiotemporal window
w = (R, [a : b]), consisting of an axis-oriented rectangle R
and the timeframe [a : b]. Geometrically, a spatiotemporal
window w can be represented as a hyper-rectangle in 3-D
space. Figure 3 shows 3 different examples of spatiotempo-
ral windows, w1, w2 and w3, on a 60× 40 map. Window w1

corresponds to the rectangle R on the map, and spans the
timeframe between 3 and 8. Also, observe that w2 and w3

correspond to the same rectangle, even though they span
different timeframes. Given a term t, we define the bursti-
ness (w-score) of a spatiotemporal window w = (R, [a : b])
with respect to a term t as follows:

w-score(w, t) =
b∑

i=a

r-score(R, i, t) =
b∑

i=a

∑

Dx∈R

B(t, Dx[i]) (9)
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Algorithm 1 R-Bursty

Input: term t, snapshot Di of a spatiotemporal collection D
Output: All non-overlapping rectangles in Di that have
r-score(·, i, t) > 0.

1: Run the algorithm in [5] to retrieve Rmax, the rectangle in
Di with the highest r-score.

2: Report Rmax and set B(t,Dx) = −∞,∀Dx ∈ Rmax

( We set the scores of the streams within Rmax to −∞ to
eliminate overlap among the reported rectangles).

3: Repeat the process from the step (1), until the r-score of the
retrieved rectangle is less or equal to zero.

Figure 3: Examples of Spatiotemporal Windows. Both win-

dows w2 and w3 correspond to the same rectangular region

(R2), while w3 corresponds to a different region (R1).

While Eq. 9 allows us to evaluate the score of any given
window, it is computationally intractable to consider all pos-
sible windows in order to find those with the highest scores.
Before we discuss how we tackle this problem, we formalize
the concept of a maximal spatiotemporal window:

Definition 2. [Maximal Spatiotemporal Window ]:
Given two windows w = (R, [a : b]) and w′ = (R′, [a′ : b′]),
we say that w′ is a sub-window of w if w′ is completely
contained in w (in terms of both space and time, i.e., R′ ⊆ R,
b′ ≤ b and a′ ≥ a). Thus, w is then considered a super-
window of w′. Then, a window w is considered maximal if
and only if there exist no super-windows of w that have a
higher w-score than it does.

The above definition allows us to find high-scoring, non-
overlapping windows, while avoiding trivial occurrences, such
as windows that trivially differ from other high-scoring win-
dows or over-extended windows that may in fact contain
higher-scoring candidates. Therefore, in our context, the
maximal window represents a meaningful and informative
spatiotemporal pattern. Given this concept, we formalize
the Bursty Source Patterns problem by mapping it to the
problem of finding the set of Maximal Windows. Given a
spatiotemporal collection D and a term t, we want to find
the set of maximal spatiotemporal windows Wt.

A positive score means that, within the region covered by
the window, the observed frequency of the term was higher
than the expected one. In the context of streaming data
from multiple streams, computing and maintaining Wt is a
non-trivial task. In Algorithm 2, we present STLocal, an
efficient algorithm that finds the Maximal Windows.

A walkthrough of the STLocal Algorithm: Given a spa-
tiotemporal collection D, the algorithm maintains a set of

Algorithm 2 STLocal

Input: Spatiotemporal collection D
Output: Set of Maximal Windows Wt for every term t

1: i← 0 // Timestamp Counter

2: Initialize St ← ∅, Wt ← ∅ for every term t

(St contains a sequence of snapshots for every rectangle)
3: while Stream is open do

4: i← i+ 1
5: for each term t do
6: R ←R-Bursty(Di , t)
7: St ← St ∪ {new sequence S : ∀R ∈ R}
8: for ( each sequence S ∈ St) do

9: S.add(r-score(RS , i, t))
10: Wt ←Wt ∪ GetMax(S)
11: if (S.total < 0) then

12: Remove S from St

maximal windows Wt for each term t. For every new snap-
shot Di, we use R-Bursty to identify the respective set R of
bursty rectangles (Line 6). For each term t, the algorithm
maintains a set of sequences St, corresponding to the set of
rectangles that have been identified as bursty. For every se-
quence S ∈ St, let RS represent the region of the map that
S corresponds to. Every time a new snapshots arrives, the
r-score of RS is computed and appended to S (Line 9).

Given such a sequence of real values, we need an on-
line process able to compute and maintain Wt. For this,
we employ the online algorithm presented by Ruzzo and
Tompa [21], which we refer to as GetMax. Given a sequence
of real values, GetMax identifies all the maximal segments
(i.e. contiguous subsequences) in linear time. A descrip-
tion of GetMax can be found in Section C of the Appendix.
Each maximal segment corresponds to a maximal window.
In Line 10, GetMax is used to update the set of maximal
windows Wt for the term. In practice, the algorithm is not
re-applied to the entire sequence every time a new score is
appended. Instead, it maintains the processed sequence and
updates the set of maximal windows every time a new value
arrives.

In Lines 11-12, we eliminate regions (and their respec-
tive sequences) that should no longer be considered bursty.
When S.total (the sum of all the scores in S) becomes nega-
tive, S cannot be a part of a maximal segment and it is safe
to remove it from St. Conceptually, no maximal segment
can have a suffix of S as its prefix. The proof is straightfor-
ward and is omitted for lack of space.

The algorithm is polynomial in the number of streams.
A formal complexity analysis of STLocal can be found in
Section A of the Appendix.

Discussion on proximity: STLocal captures patterns that
correspond to 2D rectangles of arbitrary size. This choice
was principally motivated by the need to combine flexibility
with low (polynomial) computational cost. Further, it is
possible for a bursty rectangular region to contain a small
number of non-bursty streams. This number is bound to
be small, otherwise one could split the region and obtain
higher-scoring rectangles that do not include such streams.
Nonetheless, it is computationally trivial to remember, and
ultimately exclude, such “false positives” for each pattern.

5. FINDING BURSTY DOCUMENTS
Next, we show how we can use spatiotemporal patterns

to retrieve documents that are relevant to a user’s query
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and also discuss events with a high spatiotemporal impact.
We refer to these documents as bursty documents. Even
though our search engine is compatible with both regional
and combinatorial patterns, it only handles one type at a
time (i.e. a separate instance is required for each type).

On a high-level, our search engine considers two factors
in the evaluation of a given document: (1) the relevance of
the document to the user’s query; and (2) the document’s
burstiness, as captured in its overlap with the mined spa-
tiotemporal burstiness patterns. Formally, given a query of
terms q, the score of a document d is computed as follows:

score(q, d) =
∑

t∈q

relevance(d,t) × burstiness(d, t) (10)

Here, relevance(d,t) is the relevance of document d with re-
spect to term t. This can be implemented as any normalized
version of freq(t,d), i.e. the number of occurrences of t in
d. The best choice depends on the particular nature of the
considered documents. In our own experiments, we found
that using log(freq(t,d+1)) yielded the best results. Further,
burstiness(d,t) is the burstiness of document d with respect
to term t. Let Pt be the set of patterns extracted for a
given term t. Recall that both types of spatiotemporal pat-
terns discussed in this paper (combinational and regional)
include a timeframe and a set of streams. In addition, each
document d arrives from a single stream at a specific point
in time. We say that d overlaps with a pattern P if both
its stream of origin and its timestamp are included in P .
Formally, let Pt,d ⊆ Pt be the subset of patterns for term t
that overlap with a given document d. Then, we define the
burstiness of d with respect to t as follows:

burstiness(d,t) =

{

f(Pt,d) if Pt,d 6= ∅
−∞ otherwise

(11)

where f(Pt,d) can be any function of the scores of the
patterns in Pt,d. For example, f(·) can return the maximum,
minimum or median such score. An aggregate function that
considers all the scores, such as the average, can also be
applied. In our own experiments, we found that using the
maximum score over all the patterns included in Pt,d yielded
the best results. Given Eq. 10, we can now formulate the
Bursty Documents problem:

Problem 2. [Bursty Documents]: Given a set of streams
D and a query of terms q = {t0, t1, ...}, we want to find the
k documents from D with the highest burstiness, i.e. those
k documents that maximize Eq. 10.

The problem can now be addressed via standard infor-
mation retrieval techniques. An inverted index is first built,
mapping each term to the documents that include it, ranked
by their respective scores. The popular Threshold Algo-
rithm (TA) [6] for top-k evaluation can then be applied to
retrieve the top documents for any given multi-term query.

6. EXPERIMENTAL EVALUATION
In this section we present the experimental evaluation of

our methodology for the identification and utilization of spa-
tiotemporal patterns. Our evaluation tests our methodology
in terms of both the quality of the reported results and the
computational efficiency. We begin in Section 6.1, where

we describe the datasets used. In Section 6.2, we demon-
strate the effectiveness of our two frameworks for the iden-
tification of bursty spatiotemporal patterns. We also dis-
cuss their differences, as they emerge from the experimental
findings. The mined patterns are evaluated in terms of both
space (i.e. the streams that they include) and time (i.e. the
timeframe that they span). In Section 6.3 we evaluate and
compare the two frameworks in the context of the Bursty
Documents Problem. We complete our experiments in Sec-
tion 6.4, where we evaluate and discuss the performance of
the two algorithms.

6.1 Datasets
Topix Dataset: For lack of an openly available dataset
of proper sequences (with consecutive timestamps) of doc-
uments from different geographic locations, we composed a
corpus of articles from Topix.com, which hosts news-stories
from different countries around the world. This dataset con-
tains 305,641 articles, where the vast majority of them come
from local news sources from 181 different countries, posted
between Sep-08 and Jul-09. To project the sources’ locations
on the 2-D plane, we use Multidimensional Scaling [30] given
the pair-wise geographical distances of sources.

Major Events List: We composed a list of influential real-
life events that took place during the timeframe spanned by
the dataset. The events were taken from WikiPedia.com

which maintains a list of major events for every calendar
year. We identify three loosely-defined categories of events
in the list: events with a significant global impact (events 1–
6), major events that were reported in a significant number
of countries (7–12) and events with a more localized impact
(13–18). A short description of the selected events is given
in Table 9 of the Appendix. Each event was shown to a
human annotator, who was instructed to provide the query
that she would submit to a search engine, in order to retrieve
information on that event (second column of Table 9).

Artificial Data: Our work is the first to study spatiotem-
poral term-burstiness. Thus, the lack of real datasets with a
provided ground truth can be a problem for the evaluation
process. To address this, we apply two different genera-
tors for appropriate spatiotemporal data, which we refer to
as distGen and randGen. distGen emulates a realistic
scenario for the creation of spatiotemporal patterns, while
randGen takes a purely randomized approach. The gener-
ators are described in detail in section B of the Appendix.

6.2 Spatiotemporal Pattern Evaluation
In this experiment we use our two approaches to retrieve

the top-scoring burstiness pattern, given each of the queries
in Major Events List. Table 1 shows the number of countries
included in the top combinatorial pattern by STComb and
the top regional pattern by STLocal. For STComb, we also
report the number of countries included in the Minimum
Bounding Rectangle (MBR) of the set of countries included
in the top clique. This essentially gives us the number of
streams that were included in the region delimited by the
included streams.

Table 1 provides valuable insight on the behavior of the
two algorithms. For events with a significant global impact
(e.g. the death of singer Michael Jackson or the global fi-
nancial crisis), both STLocal and STComb report large spa-
tiotemporal patterns, covering the majority of the available
data sources. For the events of the middle tier (e.g. the acts
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Table 1: Top-Scoring Bursty Source Patterns.
# Query # countries # countries # countries

in STLocal in STComb in MBR

1 Obama 176 136 181
2 financial crisis 113 159 181

3 Jackson 132 151 181
4 terrorists 98 126 167

5 swine 174 157 181
6 earthquake 17 81 171

7 gaza 174 116 179
8 ceasefire 36 52 156

9 Yemenia 19 21 125
10 piracy 24 39 174

11 Air France 50 67 179
12 bush fires 3 30 168

13 Nkunda 30 2 118
14 Vieira 15 22 114

15 Tsvangirai 4 24 123
16 Rajoelina 4 30 154
17 Fujimori 5 19 158

18 Zelaya 26 55 171
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Figure 4: Timeframe length of the top pattern for
queries in the Major Events List.

of piracy in Somalia), the results of the two approaches begin
to differ, with STComb generally including more countries in
the top pattern. Finally, This difference becomes even more
apparent for events with a more localized impact (e.g. the
inauguration of M. Tsvangirai as the new Prime Minister
of Zimbabwe). For such events, STLocal reports small pat-
terns that focus around the event’s source. On the other
hand, STComb reports larger patterns with countries from
around the globe. This behavior can be explained by the
fact that STLocal is bounded by the geographical proxim-
ity among the streams. On the other hand, STComb focuses
exclusively on the maximization of burstiness, resulting in
larger patterns with sources from arbitrary locations on the
map. This is also demonstrated by the very large sets of
countries included in the MBR of the reported patterns.

6.2.1 Timeframe Evaluation

We complete our analysis with the evaluation of the time-
frames of the reported patterns, plotted in Figure 4: each
pair of bars corresponds to a query, following the same order
as in Table 1. The left bar of each pair represents the time-
frame spanned by the regional pattern given by STLocal.
The right bar represents the timeframe of the combinatorial
pattern given by STComb. The y-axis represents the length
of the timeframe in weeks. For most queries, the two ap-
proaches report timeframes of a similar length. For some
cases, however, we observe that STLocal reports longer time-
frames. This behavior is observed for events that remain in
the local spotlight even after the event has faced in locations
further from the source.

In conclusion, our experimental findings verify that the
two proposed algorithms fulfill the purposes for which they
were designed: STLocal can track the spatiotemporal impact
of events, which is especially meaningful for events that af-
fect specific regions. On the other hand, STComb can be used
to identify all the locations affected by an event, regardless
of their geographical coordinates.

6.2.2 Pattern Retrieval on Artificial data

Next, we use artificial data to evaluate our approaches
in the task of retrieving spatiotemporal patterns. For this
experiment, we generated two datasets of streaming data.
Each dataset was injected with 1000 spatiotemporal pat-
terns. The length of the timeline was set to 365 (to emulate
the number of days in a calendar year), and the number of
considered terms was set to 10000. The distgen process was
used to generate the patterns for the first dataset, and the
randgen process was applied for the second one (see Sec-
tion B of the Appendix for details on the generators). We
then used STLocal and STComb to retrieve the timeframe and
the included streams of the injected patterns. For each pat-
tern, we first check how each approach performs in retrieving
the included streams. Given the set of retrieved streams Y
and the actual set of streams included in the pattern Y ′, we
report the Jaccard Coefficient of the two values, defined as
|Y ∩Y ′|
|Y ∪Y ′|

. We refer to this quantity as JaccardSim. Higher val-

ues are desirable. In addition, we check how each approach
fared in finding the first and last timestamp of each pattern’s
timeframe. Let i be the actual value of the first timestamp
of the pattern, and let i′ be the respective value reported
by the approach. Then, we report the Start-Error |i − i′|.
We similarly compute the End-Error for the pattern’s last
timestamp. Finally, we report the average for each measure,
computed over all the patterns in each dataset.

A baseline: For this task, we compare our methods with
the following baseline. First, we compute the burstiness of
a given term t with respect to a stream Dx at timestamp i
by using Eq. 7. This gives us a sequence of scores for each
stream. Positive (bursty) scores are replaced with ’1’, while
negatives ones with ’0’. Contiguous segments of ones repre-
sent timeframes of bursty activity for the stream. To allow
for some gap in the segments we replace any contiguous seg-
ment of zeros that has length less than ℓ (and is not in the
beginning or end of the sequence) with an equal segment of
ones. This gives us the final set of bursty intervals for each
source. Given a random order of the streams, let I be the
set of intervals of the first stream. Then, for each interval
I in the interval-set of the next stream, check if there is an

interval I ′ ∈ I so that |I′∩I|
|I′∪I|

≥ δ. If such an interval exists,

I and I ′ are merged, and I ′ ∩ I replaces I in I. The process
continues until all streams have been processed. We refer
to this method as Base. For our experiments, we tune both
the ℓ and δ parameters to yield the best results.

The results of the experiment are shown in in Table 2.
Each row holds the values achieved by an approach for Jac-
cardSim, Start-Error and End-Error, for one of the two
datasets (i.e. the one generated via distgen or randgen).
As can be seen from the table, STLocal produces great re-
sults for the realistic distgen scenario, which emulates the
spatiotemporal patterns of real events. The high value of
of JaccardSim demonstrates that this approach can accu-
rately identify the streams that are affected by the pattern.
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The timeframe is also accurately gauged, as demonstrated
by the low Start-Error and End-Error values. For the rand-
gen scenario, STLocal was again accurate in identifying the
timeframe of the patterns. The method also achieves a sat-
isfactory JaccardSim value of 0.72, although still lower than
in the case of distgen. This can be explained by the lack
of spatial locality in the patterns generated by randgen.

Table 2: Spatiotemporal pattern retrieval.
JaccardSim Start-Error End-Error

STLocal

distGen 0.88 6.4 9.8
randGen 0.72 16.6 15.2

STComb

distGen 0.69 6.2 10.6

randGen 0.91 12.6 9.3

Base

distGen 0.34 44.4 45.1
randGen 0.52 30.3 29.8

Contrary to STLocal, STComb achieves higher values for the
randgen scenario. Since this approach is not restricted by
spatial locality, it is better suited for identifying patterns of
arbitrary nature. On the other hand, this makes STComb less
effective in the distgen scenario, where the spatial locality
of the more realistic patterns is influential. A detailed study
of the results, revealed that, for distgen, STComb would
sometimes overlook bursty streams around the source of the
considered patterns, thrown off by irrelevant bursty behav-
ior from arbitrary locations on the map.

Finally, Base was consistently outperformed by the other
two approaches, achieving worse values for all considered
measures. In addition to verifying that the retrieval task
is non-trivial, this hints at the advantage of simultaneously
handling both the spatial and temporal dimensions of tex-
tual data, as performed by STLocal and STComb.

6.3 Bursty Documents Evaluation
In this experiment, we evaluate the two proposed ap-

proaches in the context of the Bursty Documents problem.
Given the set of events from Major Events List, and their
respective queries, we use STLocal and STComb to retrieve
the top-10 documents for each event. The retrieval pro-
cess is performed exactly as described in Section 5. The
retrieved documents are then given to a human annotator,
who marks each of them as “relevant” or “not relevant” to
the event. This allows us to evaluate the precision of the
two approaches.

We compare the results with the search engine described
in [14], which focuses exclusively on temporal term bursti-
ness. We refer to this approach as TB. Since this approach
disregards the origin of each document, the streams from
the various countries were merged to a single stream.

The three approaches consistently reported high precision,
as shown in Table 3. STLocal was perfect for all queries and
STComb for all except one (Q13, with 80% precision). TB had
a few false positives for the events in the 3rd category (i.e.
the ones with a more localized impact), with an average
of 80% precision. This can be explained by the fact that
TB focuses only on the global maximization of the temporal
burstiness, assuming a single source. Therefore, TB can be
less sensitive to events with a more limited, localized impact.
A characteristic example is the query “earthquake”: all 10

Table 3: Precision in top-10 documents.
# Query TB STLocal STComb

1 Obama 1.0 1.0 1.0
2 financial crisis 1.0 1.0 1.0

3 terrorist 1.0 1.0 1.0
4 Jackson 0.9 1.0 1.0

5 swine 1.0 1.0 1.0
6 earthquake 1.0 1.0 1.0

7 gaza 1.0 1.0 1.0
8 ceasefire 1.0 1.0 1.0

9 Yemenia 1.0 1.0 1.0
10 piracy 1.0 1.0 1.0
11 Air France 1.0 1.0 1.0

12 bush fires 1.0 1.0 1.0

13 Nkunda 0.7 1.0 0.8
14 Vieira 0.8 1.0 1.0
15 Tsvangirai 0.9 1.0 1.0

16 Rajoelina 0.7 1.0 1.0
17 Fujimori 0.8 1.0 1.0

18 Zelaya 1.0 1.0 1.0

documents returned by STLocal discussed the 2009 Costa
Rica Cinchona Earthquake. This was anticipated, since the
algorithm considers the geographical locations and proxim-
ity of the sources on the map.

Among the documents given by STComb, 3 were on the
Sichuan earthquake in China, 3 were on an earthquake in
Guerrero, Mexico and all the others discussed earthquakes
from different countries across the world. Finally, for TB, 3
articles were on the same earthquake from Bulgaria, while
all others discussed different locations.

To perform a more thorough analysis of the results, we
calculate the similarity between their top-k sets (defined as
the size of the overlap divided by 10) . The observed simi-
larity values where the following: STComb-TB: 0.61, STComb-
STLocal: 0.58, and TB-STLocal: 0.67. The relatively low
similarity values raise an interesting point: even though all
three algorithms achieve an extremely high precision, their
top-k sets can differ significantly. Therefore, by optimizing
different facets of burstiness, the three approaches report
diverse results and complement each other. Depending on
the occasional application, one may choose to focus on a
particular approach, or consider the rankings of all three
approaches toward a ensemble method.

6.4 Performance Evaluation
As shown in Section A of the Appendix, the complexity

of the STLocal algorithm is O(|L|n3 log n), where n is the
number of data sources and |L| the length of the stream (i.e.
number of timestamps).

Figure 5: Distribution of the number of rectangles
per timestamp for STLocal on the Topix dataset.
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Figure 6: Number of open spatiotemporal windows.

This worst-case complexity assumes that, for a given term
t, there exist O(n) bursty rectangles in every 2-dimensional
snapshot taken at a single timestamp. However, in practice,
this number is a lot smaller than n. Next, we verify this on
the Topix dataset, for which n (number of countries) is equal
to 181. First, we compute the average number of bursty
rectangles reported for each term per timestamp. We then
build a histogram of the computed population, visualized as
a pie chart in Figure 5. The chart shows that, for the vast
majority of terms (92%), the average number of rectangles
per timestamp was between 0 and 1, far smaller than the
181 assumed by the worst-case scenario.

Another factor that affects the complexity of STLocal

is the number of spatiotemporal windows that need to be
maintained. The worst-case analysis assumes that, for a
timeline of length L, this number is O(n|L|) (i.e. n new win-
dows per timestamp). As we show using the Topix dataset,
the number in practice is considerably smaller. For this
dataset, n|L| translates to a total of 181×48=8,688 distinct
windows. The actual number of open windows per time in-
stance, as reported by STLocal, is shown in Figure 6. The
number shown is the average taken over all the terms in
the collection. We also plot the worst-case number for each
timestamp (181 for timestamp i=1, 362 for i=2, etc.). As
can be seen by the figure, the number assumed by the worst-
case scenario is several orders of magnitude larger than the
one observed for real data, which peeks at around 10 open
windows per term.
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Figure 7: Running time (ms) per timestamp.

Comparing STLocal and STComb in terms of speed:
Next, we compare the computational time required by our
proposed algorithms to process the Topix dataset. Our ex-
periment emulates the streaming scenario, i.e., we process
the collection one timestamp at a time, in sorted order by
timestamp. Since the processing of each term is independent
for both algorithms, we report the average time required to

process a single term in each timestamp. Figure 7 shows that
STLocal clearly outperforms STComb. This was anticipated,
since STLocal is an online algorithm, with the ability to
update the information for each term, every time new data
arrives. On the other hand, STComb needs to be re-applied to
the entire updated dataset. STLocal consistently required
times around 1ms, exhibiting great performance and scal-
ability. That being said, it is important to note that the
results for the STComb are encouraging: even when asked to
process the entire stream, the algorithm required as little as
20ms per term. This illustrates the potential of STComb and
motivates us to work on an online version of the algorithm.

6.4.1 Scalability on Artificial Data

We conclude our experiments by evaluating the scalability
of STLocal and STComb on large artificial corpora, created
via the distgen process. We prefer distgen over rand-

gen, since it emulates real spatiotemporal events and is
thus more realistic. In particular, we use distgen to gen-
erate datasets with a different number of streams |D|, with
|D| ∈ {500, 1000, 2000, 4000, 8000, 16000, 32000, 64000,
128000}. The length of the timeline was set to 365, and
each dataset was injected with 1000 patterns. The num-
ber of considered terms was set to 10000. We then use two
approaches to retrieve the spatiotemporal patterns on each
dataset. The results are shown in Figure 8.
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Figure 8: Running time Vs Number of streams.

The x-axis holds the number of streams, while the y-axis
holds the respective computational time (in seconds) per
term. As can be seen from the figure, both approaches
scale almost linearly with the number of streams. Further,
STLocal was consistently faster, even though the margin was
not very wide. The scalability and online nature of STLocal
make it an ideal candidate for streaming data.

7. RELATED WORK
To the best of our knowledge, ours is the first work to

formalize the spatiotemporal burstiness of terms and utilize
it toward an efficient search engine for the retrieval of docu-
ments on influential events. Nonetheless, we identify various
works that have ties to our own.

A significant amount of work has been devoted to the
evaluation and utilization of temporal burstiness [7, 11, 10,
31, 35]. Contrary to our own work, all these papers dis-
regard the spatial dimension. Further, a number of works
explore the spatiotemporal aspects of textual collections, al-
beit in a different context. Singh et al. [25] give a very
brief overview of a pixel-based approach for the visualiza-
tion of spatiotemporal events discussed in microblogging
sites. Dalli [4] describes cpGeo, a system for large-scale
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analysis of blogs and online news. Yu and Mengham [20]
explore the spatiotemporal dimension of the data to iden-
tify emerging trends. Tsoukatos and Gunopulos [27] focus
on finding frequent patterns in spatiotemporal databases.
Sankaranarayanan et al. [23] present a clustering technique
that considers the users’ locations and the content of the
user’s tweets on Twitter to identify topic locations.

Mei et al. [19] focus on spatiotemporal theme mining on
blogs. Our problem setup is different in many ways. First,
our formulation is dynamic in the way it considers both spa-
tial and temporal information, since both the streams and
timeframe of a pattern are identified automatically. In con-
trast, Mei et al. focus on finding the life cycle (timeframe)
of a given theme, without reporting sets of bursty streams
or regions on the map. Instead, the spatial dimension is
only considered for a single fixed timestamp, for which they
return the map of of distributions over all locations, for a
given theme. In addition, they make no mention of docu-
ment search, which is one of our primary contributions.

Sakaki et al. [22] use a binary SVM to classify Twitter
feeds as relevant or non-relevant to a given event. They then
perform a spatiotemporal analysis of the relevant feeds. This
introduces the need for training data, contrary to our com-
pletely unsupervised approach. Bansal and Koudas [2] de-
scribe BlogScope, a search engine for blogs. In this work, the
spatial dimension is considered in restricted manner, since
users have to select a specific region of the map to view an-
alytics. In an extension of this work [18], the goal is to find
spatial bursts in a fixed temporal interval in a grid-based
spatial layout. In contrast, our approach can simultane-
ously track spatial and temporal burstiness, and also has no
requirement of a grid with fixed-cell size.

Moving objects: Even though our context differs in nu-
merous ways, our work also has ties to the extensive lit-
erature on indexing, querying and mining moving objects
through time and space. For instance, relevant research [9,
26] describes indexing techniques to efficiently find moving
objects that match a user defined spatiotemporal predicate
(e.g., “find all moving objects that are at most 1 mile to a
given spatial location between June-11 and July-11”). Vieira
et. al [29] propose a framework to query trajectories based
on motion pattern queries. A pattern query is defined as a
sequence of spatiotemporal predicates. Chen et. al [3] use
a similar idea to retrieve similar trajectories, given a query
set of spatial points. Another relevant line of work [33, 34,
17, 15], discusses mining techniques for discovering simi-
lar movement patterns and periodicities on historical spa-
tiotemporal data. In the same domain, relevant papers [12,
28, 16] explore methods to discover group of trajectories
that stay“close” together in space for a continuous time-
frame. Our work differs significantly from those described
above, since the queries we explore are purely textual and
make no use of spatial or temporal predicates.

8. CONCLUSION
In this paper we formalized and evaluated the spatiotem-

poral burstiness of terms. We proposed two alternative
approaches for mining spatiotemporal burstiness patterns,
STComb and STLocal. The two approaches are complemen-
tary, providing valuable insight on spatiotemporal burstiness
from different perspectives. We then showed how the mined
patterns can be utilized toward an efficient document-search
engine. Our engine returns documents on influential events

with a major spatiotemporal impact. Finally, we demon-
strated the efficacy and efficiency of our methods through
a rigorous experimental evaluation on real data. In future
work, we intend to extend our STLocal approach to handle
geographical regions of arbitrary size, as opposed to the rect-
angular shapes that it can currently address. In addition,
we intend to work on a purely online version of STComb, in
order to enhance its applicability in real-life applications.
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APPENDIX

A. ALGORITHM COMPLEXITIES

Complexity of R-Bursty: The complexity of the first step
is O(n2 log n) [5]. Since the number of non-overlapping rect-
angles is bounded by n = |D|, the complexity of R-Bursty is
O(n3 log n). This polynomial cost becomes even more sat-
isfactory if one considers that the number of streams n is
typically limited (i.e. in the tenths or hundreds).

Complexity of STLocal: Since each term is processed inde-
pendently, the process can be easily parallelized. The com-
plexity is then as follows: let |L| be the length of the timeline
spanned by our collection. STLocal applies the R-Bursty

algorithm |L| times, thus requiring O(|L|n3 log n), where

n = |D| is the number of streams. Further, the maximum
number of sequences (i.e. bursty regions) that need to be
maintained is O(n|L|). As we show in the experiments, the
actual number is a lot smaller, since bursty artifacts are, by
definition, rare. By using GetMax, we can maintain each win-
dow in O(|L|) time, for a total of O(n|L|2). Therefore, the
overall complexity is O(|L|n3 log n+n|L|2) = O(|L|n3 log n).

A.1 Proof of Proposition 1
We prove Proposition 1 by showing that the two problems

are reducible to each other.

From CB to MWCI: Given a set I of temporal bursty in-
tervals I on the real line, we create a node v for every in-
terval I ∈ I and add it to a set of nodes V . We also set
c-score(v) = BT (I). We then add an edge between two
nodes, if their corresponding intervals intersect. Let E be
the set of created edges. The above steps can be completed
in O(|V | + |E|) time. Now, Let V ∗ ⊆ V be the Maximum-
Weight Clique of graph G(V,E) and let I∗ be the set of
intervals corresponding to the nodes in V ∗. Since V ∗ is a
clique, we know that Ii ∩ Ij 6= ∅, ∀(Ii, Ij) ∈ I∗. Therefore,
from Lemma 1, we know that

⋂

I∈I∗ I 6= ∅, which is the
1st condition for the CB problem. Further, since V ∗ is the
maximum-weight clique, we know that the 2nd condition
of the problem is also satisfied.

From MWCI to CB:We are given an Interval GraphG(V, E),
where each v ∈ V is associated with a weight c-score(v). We
can obtain an instance of the CB problem by simply map-
ping G(V,E) to its interval representation: we create a set
of intervals I = {Iv|∀v ∈ V }, which we then place on the
real line, so that two intervals intersect only if their corre-
sponding nodes are connected by an edge in E. This can
be done in linear time [24]. Each interval Iv is assigned a
burstiness score BT (Iv) = c-score(v).

Then, let I∗ ⊆ I be a solution of CB problem on I and let
V ∗ ⊂ V be the subset of nodes corresponding to the intervals
in I∗. From the 1st requirement of CB and Lemma 1, we
know that ∃(vi, vj) ∈ E, ∀vi, vj ∈ V ∗ and, therefore, V ∗ is a
clique. We also know that V ∗ is a maximum-weight clique,
since it maximizes

∑

v∈V ∗ c-score(v) =
∑

I∈I∗ BT (I).

B. ARTIFICIAL DATA GENERATION
The input to the generators consists of the length of the

considered timeline T , the number of streams |D|, the num-
ber of considered terms, and the number of spatiotemporal
patterns to be generated.

The first step is the creation of the frequency streams.
Each stream is populated as follows. First, a random fre-
quency is selected for each of the timestamps in the timeline.
This value is randomly sampled based on an exponential dis-
tribution. This process generates the typical frequency of
terms (i.e. not due to relevant events). Our experiments on
the Topix dataset verified that the exponential distribution
is a good fit for this task.

The next step is pattern generation. A pattern is gener-
ated as follows: first, the term that is to exhibit the pat-
tern is chosen uniformly at random. Then, the first and
last timestamps of the pattern’s timeframe are sampled uni-
formly at random. Next, we select the streams that are to be
included in the pattern. We use two alternative mechanisms
for this task. distGen emulates a realistic scenario for the
creation of spatiotemporal patterns. It starts by randomly
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Table 4: List of Major Events between September of 2008 and July of 2009, from www.wikipedia.com. The 2nd
column contains the query chosen for the event. The 3rd column shows a brief description of the event.
# Query Event Description

1 Obama Events regarding the actions of B. Obama, the new President of the USA since January of 2009.
2 financial crisis Events regarding the global financial crisis.
3 terrorists Events regarding terrorism.
4 Jackson American entertainer Michael Jackson passes away.
5 swine Events regarding the 2009 swine flu pandemic.
6 earthquake Events regarding earthquakes.
7 gaza Events regarding the Israeli Palestinian conflict in the Gaza Strip.
8 ceasefire Israel announces a unilateral ceasefire in the Gaza War.
9 yemenia Yemenia Flight 626 crashes off the coast of Moroni, Comoros, killing all but one of the 153 passengers and crew.
10 piracy Events regarding incidents of Piracy off the Somali coast.
11 Air France Air France Flight 447 from Rio de Janeiro to Paris crashes into the Atlantic Ocean killing all 228 on board.
12 bush fires Deadly bush fires in Australia kill 173, injure 500 more, and leave 7,500 homeless.
13 Nkunda Congolese rebel leader L. Nkunda is captured by Rwandan forces.
14 Vieira The President of Guinea-Bissau, J. B. Vieira, is assassinated.
15 Tsvangirai M. Tsvangirai is sworn in as the new Prime Minister of Zimbabwe.
16 Rajoelina Andry Rajoelina becomes the new President of Madagascar after a military coup d’etat.
17 Fujimori Former Peruvian Pres. Fujimori is sentenced to 25 years in prison for killings and kidnappings by security forces.
18 Zelaya The Supreme Court of Honduras orders the arrest and exile of President M. Zelaya.

Figure 9: PDF curves for the weibull distribution, for dif-

ferent values of the shape (k) and scale (c) parameters

.

choosing the first stream D1 to be included. Then, each
additional streams is added with a probability proportional
to its distance from D1. On the other hand, randGen ran-
domly samples the number of streams to be included. It
then samples as many streams uniformly at random.

Finally, we need to inject the extra frequency that is due to
the created patterns into the streams. Each pattern captures
the burstiness of a term relevant to an event. Following the
event’s occurrence, the term’s burstiness builds up until it
reaches a peek. It then starts to deflate until finally the
impact of the event wears off. Depending on the nature of
the event, burstiness can rise sharply (e.g. an unexpected
earthquake), or build up slowly (e.g. the occurrence of big
sports game) to reach its peek. Similarly, it may persist for
an extended timeframe or quickly dissipate.

Taking the above into consideration, we utilize theWeibull
Distribution to sample frequency values. The density func-
tion of this distribution emulates the burstiness process, and
is thus ideal for our purpose. By setting the distribution’s
shape (k) and scale (c) parameters, we can tune the curve to
emulate virtually any type of frequency pattern. The PDF
for a random variable x is computed as follows:

f(x; c, k) =

{

k
c

(

x
c

)k−1
e−(x/c)k x ≥ 0

0 x < 0
(12)

Figure 9 shows examples of PDF curves for different val-
ues of these parameters. As can be seen in the Figure, the
curve can be tuned to emulate the progress of virtually ev-
ery type of event. This includes, for example, events that
slowly build up and fade away or unexpected bursty events.
In our case, the random variable x is the order of the times-
tamp (i.e. 1,2,...,|T |). The respective PDF values are then
the desired frequency values. The highest point of the curve
is the distribution’s mode m (i.e. the most frequent value).
Thus, we can easily set the frequency P at which the curve
peeks to any given value v, by simply multiplying all the
values in the sequence with v/m.

In realistic scenarios, the frequency pattern of the same
event may differ from stream to stream. To account for this
in our experiments, the values for c, k, P are chosen uni-
formly at random for each stream, to ensure high variability
in the produced patterns.

C. THE GETMAX ALGORITHM
GetMax reads the values from left to right. Segments that

are candidates for maximality are kept in a list. For each
candidate Ij , we record the sum lj of all scores up to the
leftmost score of lj (exclusive) and the sum rj up to the
rightmost score of Ij (inclusive). Non-positive scores re-
quire no special handling. If a positive score is read, a new
sequence Ik containing only this score is created and pro-
cessed as follows:

1. Search the list from right to left for the maximum value
of j satisfying lj < lk.

2. If there is no such j or there is such a j and rj ≥ rk,
append Ik to the list. If there is such a j but rj < rk,
extend Ik up to the leftmost score in Ij (inclusive).
Remove candidates Ij , Ij+1, ..., Ik−1 from the list and
consider Ik (now numbered Ij) from step 1.

After the entire input has been processed, the candidates
left in the list are the maximal segments. We refer the reader
to the original paper [21] for a more detailed analysis.
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