
SEAL: Spatio-Textual Similarity Search

Ju Fan Guoliang Li Lizhu Zhou Shanshan Chen Jun Hu
Department of Computer Science and Technology, Tsinghua National Laboratory for Information

Science and Technology (TNList), Tsinghua University, Beijing 100084, China.

fan-j07@mails.tsinghua.edu.cn, liguoliang@tsinghua.edu.cn,
dcszlz@tsinghua.edu.cn, aarifc33@gmail.com, j-hu08@mails.tsinghua.edu.cn

ABSTRACT

Location-based services (LBS) have become more and more
ubiquitous recently. Existing methods focus on finding rele-
vant points-of-interest (POIs) based on users’ locations and
query keywords. Nowadays, modern LBS applications gen-
erate a new kind of spatio-textual data, regions-of-interest
(ROIs), containing region-based spatial information and tex-
tual description, e.g., mobile user profiles with active regions
and interest tags. To satisfy search requirements on ROIs,
we study a new research problem, called spatio-textual sim-
ilarity search: Given a set of ROIs and a query ROI, we find
the similar ROIs by considering spatial overlap and textual
similarity. Spatio-textual similarity search has many impor-
tant applications, e.g., social marketing in location-aware
social networks. It calls for an efficient search method to
support large scales of spatio-textual data in LBS systems.
To this end, we introduce a filter-and-verification framework
to compute the answers. In the filter step, we generate signa-
tures for the ROIs and the query, and utilize the signatures
to generate candidates whose signatures are similar to that
of the query. In the verification step, we verify the candi-
dates and identify the final answers. To achieve high per-
formance, we generate effective high-quality signatures, and
devise efficient filtering algorithms as well as pruning tech-
niques. Experimental results on real and synthetic datasets
show that our method achieves high performance.

1. INTRODUCTION
Nowadays, as mobile devices (e.g., smartphones) with built-

in global position systems (GPS) become more and more
popular, location-based services (LBS) have been widely ac-
cepted by mobile users and attracted significant attention
from both the academic and industrial community. Many
location-based services, such as Foursquare1 and Facebook
Places2, bring unique location-aware experiences to users.

1http://foursquare.com
2http://www.facebook.com/placesband

Existing LBS systems employ a spatial keyword search
approach to provide LBS services [9, 7], which, given a set
of points of interest (POIs), and a user query with location
and keywords, finds all relevant POIs. For example, if a
user wants to find the coffee shops nearby, she can issue
a keyword query “coffee shop” to an LBS system, which
returns the relevant coffee shops by considering the user’s
location and query keywords.

Recently, many modern LBS applications generate a new
kind of spatio-textual data, regions-of-interest (ROIs), con-
taining region-based spatial information and textual descrip-
tion. For example, in Facebook Places, mobile users have
profiles consisting of active regions and interest tags. In
wildlife monitoring, wild species with their habitats and de-
scriptive features can be modeled by ROIs.

To satisfy search requirements on ROIs, we introduce a
new research problem, called spatio-textual similarity search
in this paper: Given a set of ROIs and a query ROI, we aim
to find the ROIs which are similar to the query by consid-
ering spatial overlap and textual similarity.

Spatio-textual similarity search can satisfy users’ infor-
mation needs in various real applications. The first one
is location-based social marketing using Facebook Places.
As mentioned above, in Facebook Places, mobile users have
profiles that can be modeled by ROIs. For example, consid-
er some users in Manhattan who are interested in tea and
coffee. A coffee shop (e.g., starbucks) can utilize user pro-
files in Facebook to provide location-specific advertisements
to the potential customers who not only are interested in it-
s products (e.g., {starbucks, mocha, coffee}) but also have
region-based spatial overlap with its service area. Another
example is friend recommendation in location-aware social
networks, e.g., Facebook, Foursquare and Twitter3. Spatio-
textual similarity search helps mobile users find potential
friends with common interests (e.g., playing basketball)
and overlap regions (e.g., Brooklyn), and thus facilitates
users to form various kinds of circles with the same interests,
such as sport games, shopping, and fans’ activities. Spatio-
textual similarity search can also support other application-
s, e.g., wildlife protection. Wild species have their habitats
(e.g., Yellowstone National Park for grizzly bears) and fea-
tures (e.g., mammal, omnivore, etc.). A zoologist can issue a
query to find all wild species having certain features (e.g.,
mammal) and inhabiting in a specific region (e.g., Idaho).

In this paper, we formalize the problem of spatio-textual
similarity search, and study the research challenges that nat-
urally arise in this problem. A challenge is how to evaluate

3http://www.twitter.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 9
Copyright 2012 VLDB Endowment 2150-8097/12/05... $ 10.00.

824

the similarity between two ROIs. Another challenge is how
to achieve high search efficiency as LBS systems are required
to support millions of users and respond to queries in mil-
liseconds. Given a query ROI, there may be a huge amount
of ROIs having significant overlaps with the query, thus it
is rather expensive to find similar answers. Take the real
dataset Twitter in our experiments (See Section 6) as an
example. We used a set of query regions in an average area
of 0.4 square kilometers. Even for one of the small query
regions, there were, on average, 8000 ROIs overlapping with
it. Moreover, similarity search needs to consider both spatial
and textual similarities. To address these challenges, we pro-
pose an efficient Spatio-tExtuAl simiLarity search method,
called Seal-Search. We combine spatial similarity function-
s and textual similarity functions to quantify the similarity
between two ROIs. To provide high performance, we in-
troduce a filter-and-verification framework to compute the
answers. In the filter step, our method generates signatures
for spatio-textual objects and queries, and utilizes the signa-
tures to generate candidates whose signatures are similar to
those of the queries. In the verification step, it verifies the
candidates and identifies the final answers. We develop ef-
fective techniques to generate signatures and devise efficient
filtering algorithms to prune dissimilar objects.
To summarize, we make the following contributions.

• To the best of our knowledge, we are the first to study
spatio-textual similarity search on ROIs. We propose a
filter-and-verification framework and signature-based
filtering algorithms to address this problem.

• For effective spatial pruning, we devise grid-based sig-
natures and develop threshold-aware pruning techniques.

• To utilize spatial and textual pruning simultaneously,
we judiciously select high-quality signatures and devise
efficient hybrid filtering algorithms.

• We have conducted extensive experiments on real and
synthetic datasets. Experimental results show that our
algorithms achieve high performance.

The paper is organized as follows. The problem formu-
lation and related works are presented in Section 2. We
introduce a signature-based method in Section 3. We devel-
op grid-based filtering algorithms in Section 4 and hybrid
filtering algorithms in Section 5. Experimental results are
provided in Section 6. Finally, we conclude the paper and
discuss the future work in Section 7.

2. PRELIMINARIES

2.1 Problem Formulation
Data Model. Our work focuses on supporting similarity
search for a set of spatio-textual ROI objects (or objects for
simplicity), O = {o1, o2, . . . o|O|}. Each object o ∈ O con-
sists of spatial information o.R and textual information o.T ,
denoted by o = (R, T). The spatial information o.R is a
region. We use the well-known minimum bounding rectan-
gle (MBR) to represent region o.R through the bottom-left
point and top-right point of the MBR. The textual descrip-
tion o.T is a set of tokens, i.e., {t1, t2, . . . , t|o.T |}, where each
token t ∈ o.T is associated with a weight w(t) to capture its
importance. Figure 1 illustrates an example of seven objects,
each of which has several tokens and a region.
Query Model. Our paper considers a spatio-textual simi-
larity search query q that also consists of a region q.R and a

R1

R3

R2

R4

R6

R7

Rq

120

100

80

60

40

20

0

200 40 60 80 100 120

g1 g2

g5

R5

g3 g4

g6 g7 g8

g9 g10 g11 g12

g13 g14 g15 g16
Objects

Query

o1: (R1, {t1, t2})

o2: (R2, {t1, t2, t3})

o3: (R3, {t3, t4, t5})

o4: (R4, {t2, t3, t5})

o5: (R5, {t1, t2, t5})

o6: (R6, {t2, t4})

o7: (R7, {t5})

Tokens (idf)
t1:mocha(0.8), t2:coffee(0.3),

t3:starbucks(0.8), t4: ice(1.3),

t5: tea (0.6)

q: (Rq, {t1, t2, t3})

Figure 1: An example of spatio-textual similarity
search with objects {o1, o2, . . . , o7} and query q.

set of tokens q.T = {t1, t2, . . . , t|q.T |}. Given a set of objects
O = {o1, o2, . . . , o|O|}, the answers of query q are a set of
objects A ⊆ O similar to q, i.e., for o ∈ A,

(1) The Spatial Similarity simR(q, o) ≥ τ
R
, and

(2) The Textual Similarity simT(q, o) ≥ τ
T
,

where τ
R
and τ

T
are respectively spatial and textual similar-

ity thresholds satisfying 0 ≤ τ
R
, τ

T
≤ 1. Notice that we use

the two thresholds to allow users to determine the spatial
relevance and textual relevance in a more flexible way.

We quantify the spatial similarity based on the overlap
of regions. Given two regions q.R and o.R, their overlap is
formally defined as the area of the intersecting region of q.R
and o.R, denoted by | q.R∩o.R |. Note that we use operator
| · | to represent both the cardinality of a set and the area of
a region, if there is no ambiguity. Based on the overlap, we
consider the Jaccard similarity in this paper.

Definition 1 (Spatial Similarity). The spatial Jac-
card similarity for two regions q.R and o.R is defined as

simR(q, o) =
| q.R ∩ o.R |

| q.R ∪ o.R |
,

where | q.R ∪ o.R |=| q.R | + | o.R | − | q.R ∩ o.R |.

For example, the overlap of regions o1.R and q.R in Fig-
ure 1 is | q.R∩ o1.R |= 1000 and | q.R∪ o1.R |= 4400. Thus
the spatial similarity is simR(q, o1)=1000/4400=0.23. Note
that our method can be easily extended to other overlap-
based functions, such as Dice Similarity.

On the other hand, textual similarity measures the simi-
larity between two token sets q.T and o.T . Many token-set
based similarity functions have been studied in string simi-
larity join/search [5, 18, 21], such as Jaccard similarity, Dice
similarity, Cosine similarity, etc. In this paper, we take the
weighted Jaccard similarity as an example.

Definition 2 (Textual Similarity). The textual
similarity simT(q, o) between q.T and o.T is defined as the
weighted Jaccard coefficient of the two token sets, i.e.,

simT(q, o) =

∑

t∈q.T∩o.T
w(t)

∑

t∈q.T∪o.T
w(t)

,

where w(t) is the weight of token t.

In this paper we use the inverted document frequency (de-

noted by idf) as token weight, i.e., w(t)=ln |O|
count(t,O)

, where

825

count(t,O) is the number of objects containing token t. Fig-
ure 1 shows five distinct tokens (i.e., t1 ∼ t5) with their
weights. Using the weights, we compute textual similarity
simT(q, o1) =

(

w(t1)+w(t2)
)

/
(

w(t1)+w(t2)+w(t3)
)

= 0.58.
Based on the above-mentioned notations, we formalize the

spatio-textual similarity search problem.

Definition 3 (Spatio-Textual Similarity Search).
Consider a set of spatio-textual objects O = {o1, o2, . . . , o|O|}
and a spatio-textual similarity search query q = (R, T, τ

R
, τ

T
).

It returns the objects A ⊆ O such that spatial similarity
simR(q, o) ≥ τ

R
and textual similarity simT(q, o) ≥ τ

T
, i.e.,

A = {o | o ∈ O, simR(q, o) ≥ τ
R
, simT(q, o) ≥ τ

T
}.

Example 1. Consider the objects {o1, o2, . . . , o7} and a
query q = (Rq, {t1, t2, t3}, 0.25, 0.3) in Figure 1. Object o2 =
(R2, {t1, t2, t3}) is an answer since it satisfies simR = 0.32 ≥
τ
R
(0.25) and simT = 1 ≥ τ

T
(0.3). In contrast, object o1 =

(R1, {t1, t2},) is not an answer due to simR = 0.23 < τ
R
,

although satisfying simT = 0.58 ≥ τ
T
. Considering all the

objects in O, we obtain the answer of q, A = {o2}.

2.2 Related Work

Spatial Keyword Search: There are many studies on
spatial keyword search [25, 6, 11, 9, 23, 7, 24, 22, 3, 20,
4, 16, 14, 13]. One problem is knn based keyword search,
which, given a query consisting of a location and a set of key-
words, finds top-k relevant POIs by considering distance and
textual relevance. Felipe et al. [9] integrated signature files
into R-tree, and Cong et al. [7] combined inverted files and
R-tree. Another problem is region-based keyword search,
which, given a query consisting of a region and a set of key-
words, finds the relevant POIs relevant to the keywords in
the region. The methods addressing the problem also em-
ployed the R-tree index, and integrated inverted lists of
keywords into R-tree nodes [25, 11, 6].
Our spatio-textual similarity search problem is substan-

tially different from the above-mentioned problems. The un-
derlying data is a set of spatio-textual objects consisting of
regions and tokens (i.e., ROIs), rather than POIs. Moreover,
the query model is different, and we focus on spatio-textual
similarity between objects and queries and devise efficient
filtering algorithms for similarity search.

String Similarity Search/Join: The problem of string
similarity search/join has been extensively studied [10, 1, 2,
5, 18, 19, 12]. Given a set of strings and a query string,
string similarity search finds the strings whose similarities
to the query are not smaller than a threshold τ . Existing
studies employed various functions, e.g., edit distance and
Jaccard similarity, to quantify the similarity. To improve the
performance, Chaudhuri et. al [5] proposed a prefix filtering
framework, and Bayardo et al. [2] employed this framework
to support Jaccard or Cosine similarity functions.
The basic idea of prefix filtering is to estimate a similarity

upper bound of two sets using their subsets. Consider a
string object o and a query string q. The prefix filtering
framework first maps both strings to sets, denoted by S(o)
and S(q), and transforms various similarity functions to the
overlap similarity on sets. More formally, if sim(q, o) ≥ τ ,
then the sets satisfy | S(q)∩S(o) |≥ c, where c is a threshold
deduced from τ . Then, the framework fixes a global order
on the elements of all sets, and sorts the elements in each
set based on the global order. Let Sp(o) denote the prefix

t1 t2 t3 t5

t3 t4 t5 t2 t4t1 t2 t3 t1 t2 t5

t1 t2 t3 t4 t5 t2 t3 t5

t1 t2

R1 R3 R6R2 R5

t5t2 t3 t5

R4 R7

R8 R9 R10

Figure 2: The IR-tree index of objects in Figure 1.

of set S(o) consisting of the first |S(o)| − c+ 1 elements. It
is easy to prove that if | S(q) ∩ S(o) |≥ c, their prefix sets
must have overlap, i.e., Sp(q)∩Sp(o) ̸= ∅. Therefore, we can
prune the dissimilar objects satisfying Sp(q) ∩ Sp(o) = ∅.

We utilize the prefix filtering framework to prune dissim-
ilar objects. Compared with existing methods, our method
focuses on devising effective threshold-aware pruning based
on judiciously selected spatio-textual signatures.

Grid-Based Spatial Index Structures: The grid-based
spatial indexes, such as Grid File and EXCELL, have been
studied in spatial databases [17]. These methods decom-
posed the underlying space into a set of grids, and stored
POIs into grids for fast access. We utilize grids in a dif-
ferent way: We employ grids as signatures of spatio-textual
objects, and develop efficient spatial pruning techniques.

2.3 Baseline Methods
We introduce several straightforward methods to address

the problem defined above, and will show their poor perfor-
mance using experimental results (see Section 6).

Keyword-first method. The method constructs inverted
indexes by mapping tokens to objects containing the tokens.
Given a query, it first finds the objects with simT ≥ τ

T

as candidates. Then, it verifies whether simR ≥ τ
R
. The

drawback of the method is that it may generate too many
candidates, leading to low search performance.

Spatial-first method. The method first finds the objects
with simR ≥ τ

R
as candidates, and then filters the candidates

whose simT < τ
T
. The method may also generate too many

candidates, and cannot find similar objects fast.

Spatial keyword search based method. We can ex-
tend the IR-tree method [7] to support our spatio-textual
similarity search as follows. Specifically, we construct an IR-
tree to index all objects, where each node contains an MBR
and an inverted file which maps a token to the child nodes
containing the token. In particular, we store the spatio-
textual objects in leaf nodes. Given a query q = (R, T), the
IR-tree based algorithm traverses the tree from the root to
its leaf nodes. The algorithm takes an intermediate node
n as a candidate and visits its descendants, if 1) the spa-
tial overlap |q.R ∩ n.R| ≥ c

R
and 2) the textual overlap

∑

t∈q.T∩n.T
w(t) ≥ c

T
, where c

R
and c

T
are thresholds de-

rived from τ
R
and τ

T
, which will be discussed respectively

in Sections 3 and 4. For a leaf node corresponding to an
object, we verify whether its spatial and textual similarities
to q are respectively not smaller than τ

R
and τ

T
.

The algorithm may visit too many unnecessary nodes and
lead to low search efficiency. We explain it by taking the
objects in Figure 1 as an example. Using a maximum fan-
out 3, we can construct an IR-tree as shown in Figure 2,
where leaf nodes correspond to objects and intermediate n-
odes (i.e., R8, R9 and R10) are MBRs bounding the objects.
For simplicity, we use R to represent both tree nodes and

826

their regions. Given query q in Figure 1, the algorithm has
to visit nodes R8, R9 and R10 and verifies their leaf nodes to
report the answer {o2}. Obviously, it is unnecessary to visit
the subtrees rooted at R9 and R10 as none of the five leaf
nodes is similar to q. Therefore, the IR-tree-based methods
have poor filtering power due to the hierarchical structure of
the IR-tree. Moreover, the IR-tree maintains a tree based
inverted index in each node for mapping tokens to its child
nodes. Let H denote the height of the IR-tree. In the worst
case, each token of every object needs to be indexedH times,
and this results in high space complexity. To address these
problems, in this paper we propose a novel method Seal.

3. THE SEAL METHOD
In this section, we first introduce a filter-and-verification

framework in Section 3.1, and then present a textual-based
filtering algorithm in Section 3.2.

3.1 A Filter-and-Verification Framework
To answer a spatio-textual similarity search query effi-

ciently, we want to prune dissimilar objects and only visit a
small amount of objects that may be similar to the query.
To this end, we propose a filter-and-verification framework.

Step 1 - Filter: We prune a large amount of objects which
cannot be similar to query q, and find a candidate set C,
which is a superset of the answer set A.

Step 2 - Verification: We verify the candidates generated
in the filter step by checking whether spatial and textual
similarities of each candidate are respectively not smaller
than thresholds τ

R
and τ

T
, and return the answer set A.

In this paper, we focus on the filter step and propose
efficient signature-based filtering algorithms. Consider a
spatio-textual object o ∈ O and a query q. We denote their
signatures as S(o) and S(q), where each s ∈ S(o) (or S(q))
is called a signature element (or element for simplicity). A
signature method must satisfy the following property:

o is similar to q only if S(o) and S(q) are similar.

Specifically, given a signature similarity function sim(·)
and a threshold c deduced from thresholds τ

R
and τ

T
, the

object o is similar to q only if sim
(

S(q),S(o)
)

≥ c.
A näıve method for generating candidates enumerates the

signature of each object o and checks if sim
(

S(q),S(o)
)

≥ c.
If so, we add o into candidate set C. However this method
is rather expensive and we want to build indexes to support
efficient filtering, which will be discussed later.
Next we introduce our algorithm SealSig and Figure 3

illustrates the pseudo-code. We first generate the signatures
for objects in O and build an index on top of the signatures
(line 2). Then for a query q, we use the index to find its
candidate set C (line 3). Finally, we verify the candidates in
C and return the answer set A (line 4).
In this paper we focus on generating effective signatures,

building indexes and devising efficient filtering algorithms.

3.2 A Textual-Based Filtering Algorithm
We introduce a textual-based filtering algorithm.

Textual Signatures. Since object o similar to query q
must satisfy simT(q, o) ≥ τ

T
, we can use the tokens in o as its

textual signature, i.e., ST(o) = o.T , where each token t ∈ o.T
is a signature element. Similarly, we can also generate a
textual signature for q, i.e., ST(q) = q.T .

Algorithm 1: SealSig (O, q)

Input: O: An object set; q: A query
Output: A: Answers of q
begin1

Generate signatures for O and build index I;2

C = Sig-Filter (q, I) ;3

A = Sig-Verify (q, C) ;4

end5

Function Sig-Filter(q, I)

Input: q: A query; I: An inverted index
Output: C: Candidate objects
begin1

Initialize a candidate set C ← ∅ ;2

Generate signature, S(q)← GenSig (q) ;3

Compute signature similarity threshold c ;4

for each element s in S(q) do5

Obtain objects in inverted list I(s) ;6

Merge objects with sim
(

S(q),S(o)
)

≥ c to C ;7

end8

Function Sig-Verify(q, C)

Input: q: A query; C: A set of candidate objects
Output: A: Answers of q
begin1

for each object o ∈ C do2

if simR(q, o) ≥ τ
R
& simT(q, o) ≥ τ

T
then3

A ← A
∪

{o} ;

end4

Figure 3: A Filter-and-Verification Framework

Then, we define the similarity between signatures ST(o)
and ST(q) as the weight summation of their common tokens,
i.e., sim

(

ST(q),ST(o)
)

=
∑

t∈ST(q)∩ST(o)
w(t), and threshold

c
T
= τ

T
·
∑

s∈ST(q)
w(t). It is easy to prove that simT(q, o) ≥

τ
T
only if

∑

t∈ST(q)∩ST(o)
w(t) ≥ c

T
. For example, we can re-

spectively generate textual signatures for o1 and q as ST(o1) =
{t1, t2} and ST(q) = {t1, t2, t3}. Given τ

T
= 0.3, the thresh-

old c
T
can be computed as 0.57. Obviously, since simT(q, o) ≥

τ
T
, we have

∑

t∈ST(q)∩ST(o7)
w(t) ≥ c

T
.

Indexing Structures. To avoid enumerating every object
o ∈ O for computing sim

(

S(q),S(o)
)

, we build an inverted
index on top of the signatures. Formally, an inverted index
I consists of a set of inverted lists, each of which maps an
element s to the objects containing the element, denoted by
I(s). Figure 4 provides the inverted index of the objects in
Figure 1. For example, since the signatures of object o3 and
o6 contain element t4, the inverted list of t4 is {o3, o6}. In
addition, since o2 has textual signature ST(o2) = {t1, t3, t2},
the object is contained in the inverted lists of t1, t3 and t2.

Filtering Algorithm. Given a query q with thresholds
τ
R
and τ

T
, the filtering algorithm Sig-Filter in Figure 3

is utilized to filter dissimilar objects and find the candi-
dates with signatures similar to S(q), i.e., C = {o | o ∈
O, sim

(

S(q),S(o)
)

≥ c}. Specifically, the algorithm gener-
ates a signature for q, i.e., S(q)← GenSig(q), and computes
threshold c. For each element s ∈ S(q), Sig-Filter probes
inverted list I(s) from the inverted index I, and merges the
objects in I(s) satisfying sim

(

S(q),S(o)
)

≥ c to C.

827

t2t4 t3 t5t1

o3
o6

o2
o5

t1ST (o2) = t3 t2{ }

Inverted
Index

o1

o4
o3
o2

o5
o4
o7
o3

o6
o5
o4
o2
o1

ST (q) = t1 t3 t2{ }

Candidates:

o1 sim(ST(q),ST(o1))=1.1

o2 sim(ST(q),ST(o2))=1.9

o3 sim(ST(q),ST(o3))=0.8

o4 sim(ST(q),ST(o4))=1.1

o5 sim(ST(q),ST(o5))=1.1

Result:{ }o2

Signature Similarity

Threshold cT=0.57

Figure 4: Textual signature based method.

Example 2. We use an example to illustrate how algo-
rithm SealSig works using textual signatures, as shown in
Figure 4. Consider the objects and query q with thresholds
τ
R
= 0.25 and τ

T
= 0.3 in Figure 1. The algorithm generates

the textual signature ST(o) for every object o ∈ O, and then
builds the inverted index on top of the signatures. Given
query q, the algorithm Sig-Filter generates its textual sig-
nature ST(q) = {t1, t2, t3} and computes the threshold c

T
=

0.57. Then, it probes the inverted lists of t1, t3 and t2, and
finds the candidate objects satisfying sim

(

S(q),S(o)
)

≥ c
T
,

i.e., C = {o1, o2, o3, o4, o5}. Finally, Sig-Verify verifies the
candidates and reports the answer A = {o2}.

The algorithm SealSig using textual signatures has a
limitation that it fails to consider the spatial information.
Recall that an object o is similar to query q if and only
if textual similarity simT(q, o) ≥ τ

T
and spatial similarity

simR(q, o) ≥ τ
R
. Obviously, it is rather limited to only con-

sider the textual information. For example, consider object
o4 in Figure 1. Although the textual similarity is larger than
τ
T
, o4 is not similar to q since its region R4 is dissimilar to

Rq. To address this problem, we propose to generate spatial
signatures for objects and queries, and devise efficient filter-
ing algorithms using spatial signatures for spatial pruning
in Section 4. In order to utilize spatial and textual prun-
ing simultaneously, we develop more efficient hybrid filtering
algorithms in Section 5.

4. GRID-BASED FILTERING ALGORITHM
In this section, we propose a grid -based filtering algorith-

m. We first define the grid-based signature in Section 4.1,
and then devise a threshold-aware pruning technique in Sec-
tion 4.2. Finally, we discuss how to select grid granularity
to achieve better performance in Section 4.3.

4.1 Grid-Based Signatures
Different from textual signatures, as the spatial informa-

tion has no inherent elements (e.g., tokens), it is not straight-
forward to generate spatial signatures for objects in O and
query q. To address this challenge, we propose to partition
the entire space R which is the MBR of the regions of all
objects in O, and generate a set of grids. Then, for an object
o, we use the grids intersecting with region o.R as its spatial
signature. More formally, let G = {g1, g2, . . . , g|G|} be a set
of grids in space R, where each grid is also an MBR, and
the grids have the following properties.

1) Completeness: All grids cover the space, i.e.,
∪

g∈G
= R.

2) Disjointness: Each pair of different grids is disjoinable,
i.e., ∀i, j, if i ̸= j, gi ∩ gj = ∅.

g6g7 g10 g11 g14 g15g9 g13

o7 o1
(2050) (3000)

o2
(1750)

o1
(2400)

o2
(1525)

o5
(1100)

o2
(1075)

o1
(1800)

o2
(700)

o1
(900)

o2
(550)

o5
(300)

o2
(250)

o3
(500)

o7
(250)

o6
(150)

g9SR (o2) = g10 g11 g13 g14 g15{ }
225 450 375 150 300 250w(g|o2)

……

SR (q) = g7 g10 g11 g14 g15 g6{ }
150 750 450 500 300 250

cR=600

Inverted
Index

Signature Prefix

Threshold

Bound

w(g|q)

Figure 5: Threshold-aware pruning.

We only consider the uniform grids with equal size, i.e.,
|gi| = |gj | (i ̸= j) in this section, and will extend our tech-
niques to support grids with different sizes in Section 5. Fig-
ure 1 provides an example of uniform grids G = {g1, . . . , g16}
obtained by a 4 × 4 partition of the space R for regions
{R1, R2, . . . , R7}. Then, we define the grid-based signature
of object o (query q), denoted by SR(o) (SR(q)), as the grids
intersecting with region o.R (q.R) in Definition 4.

Definition 4 (Grid-Based Signature). Given objec-
t o, the grid-based signature of o is the grids in G intersecting
with region o.R, i.e., SR(o) = {g | g ∈ G, g ∩ o.R ̸= ∅}.

For example, Figure 5 shows the grid-based signature of
object o2, SR(o2) = {g9, g10, g11, g13, g14, g15}.

Next, we define similarity between grid-based signatures
SR(q) and SR(o) as weight summation of their common grid-
s, i.e., sim

(

SR(q),SR(o)
)

=
∑

g∈SR(q)∩SR(o)
w(g | q, o), where

w(g | q, o) is the weight of grid g with respect to query q
and object o. Intuitively, the weight captures the degree of
spatial similarity between q and o contributed by g.

It is not straightforward to define grid weight due to the
following reason. Ideally, if grid g is shared by q and o, the
weight should be the area of the intersecting region of q and
o in the grid, i.e., w(g | q, o) = |q.R ∩ o.R ∩ g|. However, in
practice, it is expensive to compute |q.R ∩ o.R ∩ g| at the
query time. Thus, we propose to employ an upper bound of
|q.R ∩ o.R ∩ g| to estimate the weight as,

w(g | q, o) = min
{

w(g | q), w(g | o)
}

, (1)

where w(g | o) (w(g | q)) is the weight of grid g with respect
to object o (or query q), and can be estimated by w(g | o) =
|g ∩ o.R| or w(g | q) = |g ∩ q.R|.

In addition, we define the threshold c
R
to be the area of

region q.R multiplied by threshold τ
R
, i.e., τ

R
· |q.R|. Now,

we can prove that the grid-based signature satisfies the key
property of signatures, as shown in Lemma 1.

Lemma 1. Spatial similarity satisfies simR(q, o) ≥ τ
R
, on-

ly if sim
(

SR(q),SR(o)
)

≥ c
R
.

Proof. The proofs are in our technical report [8].

For example, in Figure 5, based on the grids {g1, . . . , g16},
we generate grid-based signatures, SR(q) and SR(o2), for
query q and object o2. We also compute grid weights, e.g.,
w(g10 | q) = 750, w(g10 | o2) = 450. Thus, we obtain sig-
nature similarity sim

(

SR(q),SR(o2)
)

= 1375. Obviously, we

have sim
(

SR(q),SR(o)
)

≥ τ
R
· |q.R| = 600.

828

4.2 Threshold-Aware Pruning
Based on grid-based signatures, a straightforward method

to filter dissimilar objects is to simply employ the algorithm
Sig-Filter in Figure 3. The algorithm probes inverted lists
of grids in signature SR(q), and inserts the objects satisfying
sim

(

SR(q),SR(o)
)

≥ c
R
into candidate set C. However algo-

rithm Sig-Filter has the following limitations. Firstly, for
a large query region q.R, since it may generate many grids
as signature for q, the algorithm needs to probe many in-
verted lists, which may be very expensive. Secondly, when
probing the inverted list of a grid, we have to retrieve all
objects in the list, resulting in high probing costs for long
inverted lists.
To address the above-mentioned limitations, we devise a

threshold-aware pruning technique in this section. The ob-
jective of our technique is two-fold: 1) to reduce the number
of probed inverted lists; and 2) to reduce the number of ob-
jects retrieved from a probed inverted list. To this end, we
employ the prefix-filtering [5] mentioned in Section 2.2.
To use prefix filtering, we first fix a global order on the

generated signature elements of the objects in O. Then, we
sort the elements of every object based on the global order.
In the filter step, for each object o, instead of using signa-
ture S(o), we only select a prefix of the signature, denoted
by Sp(o). Similarly, we also select a signature prefix for
the query Sp(q). The signature prefixes must satisfy that
∑

s∈S(q)∩S(o) w(s) < c if Sp(q) ∩ Sp(o) = ∅.

Prefix Selection. Given a global order of signature ele-
ments, consider signature S(o) = {s1, s2, . . . , s|S(o)|} of ob-
ject o, where si is the i-th element based on the global order.
To select prefix Sp(o) = {s1, . . . , sp}, we can remove the last
elements with weight summation smaller than c and select
the remaining elements as the prefix, as shown in Lemma 2.

Lemma 2. Given a similarity threshold c, the signature
prefix Sp(o) = {s1, . . . , sp} can be selected as

p = min {i}, s.t.

|S(o)|
∑

j=i+1

w(s) < c. (2)

Grid Order. In this paper, we sort the grids in ascending
order of the number of the object regions intersecting with
them4. Formally, let count(g) denote the number of object
regions in O intersecting with grid g, i.e., count(g) = |{R |
R∩ g ̸= ∅}|. Then, we sort all grids in G in ascending order
of count(g). For example, in Figure 5 we sort the grids
intersecting with q.R as {g7, g10, g11, g14, g15, g6}. Observed
from this figure, we have c

R
= 600, w(g15 | q) = 300 and

w(g6 | q) = 250. According to Lemma 2, we can select
signature prefix as {g7, g10, g11, g14}, i.e., p = 4, because any
shorter prefix (p < 4) may cause the reduction of weights

larger than threshold c
R
, i.e.,

∑|S(o)|
j=p+1 w(g | q, o) ≥ c

R
.

Therefore, instead of considering all elements in S(q), we
only need to probe the inverted lists of the ones in Sp(q),
which can reduce the filtering complexity.

Inverted Index with Threshold Bounds. To further
improve the performance, we propose to reduce the number
of retrieved objects in a probed inverted list. Recall that, for
an object o, we only need to consider the signature elements

4Note that the global grid order will influence the perfor-
mance of filtering. We do not study the problem in this
paper due to the space limitation, and take it as future work.

Function Sig-Filter
+(q, I)

Input: q: A query; I: An inverted index
Output: C: Candidate objects
begin1

Initialize candidate set C ← ∅ ;2

Generate signature, S(q)← GenSig (q) ;3

Compute signature similarity threshold c ;4

Select prefix Sp(q) for query q ;5

for each element s in Sp(q) do6

Find the objects Ic(s) from inverted list I(s) ;7

C ← C
∪

Ic(s) ;8

end9

Figure 6: Filtering with threshold-aware pruning

in prefix Sp(o) rather than S(o). Thus, when probing the in-
verted list I(s) of element s ∈ S(o), we only need to retrieve
the objects in I(s) containing s in their signature prefixes
given threshold c, i.e., Ic(s) = {o | o ∈ I(s), s ∈ Sp(o)}.

A challenging problem is to efficiently compute Ic(s) based
on various thresholds c for different queries. To address this
problem, we augment a threshold bound to each object in ev-
ery inverted list. Specifically, for an object o in an inverted
list I(s) of element s, we maintain a threshold upper bound
cs(o), which represents the maximum threshold that we keep
for s in o’s signature prefix. Thus, if threshold c > cs(o),
object o can be pruned from Ic(s), as shown below.

Lemma 3. Let si be the i-th signature element in S(o)
(where 1 ≤ i ≤ |S(o)|) and c be a signature similarity thresh-
old. The object o can be pruned from Ic(si) if

c > csi(o) =

|S(o)|
∑

j=i

w(sj). (3)

We store bound cs(o) for each object o in inverted list
I(s), and sort the objects in descending order of the bounds.
Thus, given a threshold c, we can efficiently find Ic(s) =
{o | o ∈ I(s), cs(o) ≥ c}, when probing the inverted list of
element s. Figure 5 provides the inverted lists of eight grids.
For example, the inverted list of grid g14 contains objects
{o1, o2}, each of which is associated with a threshold bound,
e.g., cg14(o1) = 900. Given threshold c

R
= 600, we only

retrieve o1 when probing the inverted list of g14, because
bound cg14(o2) = 550 < c

R
.

Threshold-Aware Pruning. Based on the technique men-
tioned above, we devise an improved filtering algorithm Sig-
Filter+ in Figure 6. Compared with algorithm Sig-Filter,
Sig-Filter+ only selects signature prefix Sp(q) for query q.
For each element s ∈ Sp(q), it only retrieves objects in Ic(s)
instead of I(s), and merges the objects to the candidates
C. We use the following example to illustrate how algorithm
Sig-Filter+ works using grid-based signatures.

Example 3. Consider the objects O and query q with
thresholds τ

R
= 0.25 and τ

T
= 0.3 in Figure 1. We gen-

erate grid-based signatures and build the inverted index with
threshold bounds as shown in Figure 5. Given query q, we
first generate its signature prefix, Sp

R
(q) = {g7, g10, g11, g14}

based on threshold c
R
= 600 according to Lemma 2. Then,

for each element in SR(q), we probe its inverted list and only
retrieve the objects with bounds no smaller than c

R
, and ob-

tain the candidates CR = {o1, o2, o5, o7}. Finally, algorithm
Sig-Verify reports the answer of q, i.e., A = {o2}.

829

Algorithm Sig-Filter+ can be also applied to textual sig-
natures. Specifically, we can sort tokens in descending order
of their idfs, and build the inverted index with threshold
bounds. Given query q, we only consider the tokens in the
signature prefix, denoted by Sp

T
(q), and only retrieve the ob-

jects with thresholds no smaller than c
T
in each inverted

list. For example, we only retrieve inverted lists of t1 and t3
in Figure 4, and obtain candidates CT = {o1, o2, o3, o4, o5}.
Notice that algorithm Sig-Filter+ may produce different
sizes of candidates when using different signatures.

4.3 Grid Granularity Selection
An essential task in algorithm Sig-Filter+ is to generate

grid-based signatures, i.e, GenSig. Obviously, the perfor-
mance of Sig-Filter+ is affected by grid granularity and
a key challenge is to select an appropriate grid granulari-
ty. More specifically, coarse granularity achieves high filter-
ing performance but weakens the filtering power and leads
to low verification performance. On the contrary, the fine
granularity reduces the number of candidates, but leads to
low filtering performance. For instance, in Example 3, o5
is a candidate of query q as o5.R and q.R share grid g15.
However, the two regions do not intersect with each other
at all, and thus o5 can be actually pruned.
To alleviate the problem, we propose a method for select-

ing grid granularity in this section. We introduce a proba-
bilistic model to measure the expected query cost for grids
of specific granularity. To answer a query q, the overall
cost cost(q) consists of filtering cost costF (q) and verifi-
cation cost costV (q), i.e., cost(q) = costF (q) + costV (q).
The filtering cost costF (q) depends on the number of ob-
jects retrieved from the inverted index, i.e., costF (q) =
π1 ·

∑

g∈S
p
R
(q) |I

c(g)|, where π1 is the average cost of retriev-

ing an object from an inverted list and merging it to can-
didates. On the other hand, verification cost costV (q) de-
pends on the number of candidates, i.e., costV (q) = π2 · |C|,
where π2 is the average cost of verifying an object. Thus, we
have cost(q) = π1 ·

∑

g∈S
p
R
(q) |I

c(g)|+ π2 · |C|. For example,

we have cost(q) = 6π1 + 4π2 for query q in Figure 5.
Notice that the above analysis is based on a single query.

To analyze the expected query cost of grid setG with specific
granularity, we suppose that we have a query workload Q.
Then, each grid g ∈ G has a probability P (g) representing
the likelihood that g is used by queries. In addition, when
inverted list I(g) is probed by different queries, the returned
objects Ic(g) may be different. For ease of analysis, we
consider the worst case that all objects need to be returned,
i.e., |Ic(g)| = |I(g)|. Thus, we can estimate the expected
query cost of all grids in G with the specific granularity as

ĉost(G) = π1 ·
∑

g∈G

P (g) · |I(g)|+ π2 · |C|, (4)

where |C| is the average size of candidates given the query
workload. Now, we can define the grid granularity selection
problem: Find the best set of grids G with specific granu-
larity that minimize the expected cost ĉost(G).
Since it is intractable to solve the problem by considering

arbitrary grid partition schemes, we devise an approximate
algorithm for selecting grid granularity as illustrated in Fig-
ure 7. The basic idea is to decompose the underlying space
R into a grid tree with height H, where the grids in level l,
denoted by Gl, is obtain by a 2l × 2l partition of space R.
For example, at level 0, there is 1*1 grid, level 1 partitions

Entire Space R

2×2 Grids

4×4 Grids

g1
1

g1
2

g2
2

g3
2

g4
2

g1
0

…

…

(Level 0)

(Level 1)

(Level 2)

P ()g1
1

P ()g1
0

P ()g1
2

P ()g2
2

P ()g3
2

P ()g4
2

Grid Tree

G
0

G
1

G
2

Figure 7: Grid Granularity Selection

R into 2 ∗ 2 grids, and so forth. Therefore, we reduce grid
granularity selection to the problem of finding the best level
l∗ in the grid tree to minimize the expected cost.

We devise an approximate algorithm to solve this prob-
lem. We traverse the grid tree from the root to its leaves,
and compute the expected cost of each level. For two adja-
cent levels, l and l+ 1 (0 ≤ l < H), we compute the benefit
of the partitioning as B(l, l + 1) = ĉost(Gl) − ĉost(Gl+1).
If the benefit is smaller than a threshold B, the algorithm
terminates, where B > 0 is used to balance efficiency and
storage. Then, we prove that for any B, we can find a level
l, which satisfies that for any level l > l the filtering benefit
B(l, l + 1) < B as formalized in Lemma 4.

Lemma 4. ∀B > 0, there exists a level l which satisfies
that for levels l > l filtering benefit BF (l, l + 1) < B.

We briefly show the correctness of Lemma 4 (The proof is
in [8]). Based on Equation (4), we have BF =

∑

gl∈Gl BF (g
l),

where BF (g
l) is the benefit of partitioning grid gl into fine-

grained grids. We use the example of partitioning g11 in-
to {g21 , g

2
2 , g

2
3 , g

2
4} to show how to compute BF (g

l). Based
on the probabilistic theory, we have P (g11) =

∑

i
P (g2i) −

∑

i̸=j
P (g2i g

2
j) +

∑

i,j,k
P (g2i g

2
j g

2
k) − P (g21g

2
2g

2
3g

2
4). Since no

query region can intersects with three grids, P (g2i g
2
j g

2
k) = 0.

We denote
∑

i̸=j
P (g2i g

2
j)+P (g21g

2
2g

2
3g

2
4) as θ. Thus, the ben-

efit of partitioning g11 is π1·
(
∑

g2
i
P (g2i) · (|I(g

1
1)| − |I(g

2
i)|)−

θ · |I(g11)|
)

. With the increase of l, the benefit of parti-
tioning a grid becomes less and less significant, since 1)
|I(gl1)| − |I(g

l+1
i)| eventually decreases, and 2) θ eventually

increases since it becomes more likely that queries intersect
with more grids. Thus, we can find a level l which satisfies
that for levels l > l filtering benefit BF (l, l + 1) < B.

Verification benefit BV also has the similar property. How-
ever, it is difficult to analyze BV , as estimating the average
candidate size |C| is very hard. Thus, we take theoretical
analysis as a future work and only show the experimental
results in Section 6.

5. HYBRID FILTERING ALGORITHMS
In this section, we develop hybrid filtering algorithms to

simultaneously utilize textual and spatial signatures. We
first introduce the hash-based hybrid signature and present
a filtering algorithm based on the signature in Section 5.1,
and then propose the hierarchical hybrid signature to further
improve the performance in Section 5.2.

5.1 Hash-Based Hybrid Signature
A straightforward method is to respectively apply algo-

rithm Sig-Filter+ using textual and grid-based signatures,
and compute the intersection of candidate sets CT and CR.

830

This method, although reducing the number of candidates,
may increase the number of objects retrieved from inverted
indexes, and thus result in higher filtering cost.
In order to reduce the filtering cost, we propose the hash-

based hybrid signature to efficiently find possibly similar
objects. The basic idea is to hash tokens and grids of each
same object into buckets using a hashing function, and then
use each bucket as a hybrid signature element.

Definition 5 (The Hash-Based Hybrid Signature).
For each object o with textual signature ST(o) and grid-based
signature SR(o), the hash-based hybrid signature of o is de-
fined by SH(o) = {h = (t, g) | t ∈ ST(o), g ∈ SR(o)}, where h
is a hash value by hashing t and g into a bucket.

Based on hash-based hybrid signatures, we develop a more
efficient filtering algorithmHybrid-Sig-Filter+ in Figure 8.
The algorithm respectively generates textual and grid-based
signatures ST(o) and SR(o) for each object o ∈ O. It hashes
tokens in ST(o) and grids in SR(o) into buckets to generate
a hybrid signature SH(o). Then, the algorithm builds an in-
verted index I for the hybrid signatures generated from all
objects in O. Compared with the inverted list introduced
in Section 4.2, we augment both spatial and textual thresh-
old bounds for each object o in each inverted list of element
h, denoted by cTh (o) and cRh (o). The two bounds can be
computed according to Lemma 3, and satisfy that if either
c
T
> cTh (o) or c

R
> cRh (o), o can be safely pruned from the

inverted list of element h. Moreover, to avoid generating
too many inverted lists, we introduce a constraint of index
sizes to guarantee that the number of hash buckets is smaller
than a given number, which is explained in Section 5.2.
Given query q, the algorithm respectively generates textu-

al and grid-based signatures ST(q) and SR(q), and computes
signature similarity thresholds c

T
and c

R
. Then, it respec-

tively selects prefixes Sp
T
(q) and Sp

R
(q). Next, for each token

t ∈ Sp
T
(q), the algorithm examines each grid g ∈ Sp

R
(q), and

computes the hash-based signature element h = (t, g). Us-
ing element h, the algorithm probes its inverted list I(h) and
retrieves the objects satisfying cTh ≥ c

T
and cRh ≥ c

R
, denoted

by I{cR ,c
T
}(h) = {o ∈ I(h) | cTh (o) ≥ c

T
, cRh (o) ≥ c

R
}. Final-

ly, the algorithm merges the retrieved objects I{cR ,c
T
}(h) to

the candidate set C.

Example 4. Figure 9 shows how algorithm Hybrid-Sig-
Filter+ works. For each object, the algorithm hashes its
tokens and grids into buckets to generate a hybrid signature.
For example, the signature of object o1 consists of elements
such as (t1, g10), (t1, g11), (t1, g14), etc. Given query q with
prefixes Sp

T
(q) = {t1, t3} and Sp

R
(q) = {g7, g10, g11, g14}, the

algorithm obtains hash-based hybrid signatures, and probes
the corresponding inverted lists. When probing a list, the
algorithm only retrieves the objects satisfying cTh (o) ≥ c

T

and cRh (o) ≥ c
R
. For example, the inverted list of element

(t1, g14) only returns o1. Finally, the algorithm produces
candidates C = {o1, o2, o5}.

5.2 Hierarchical Hybrid Signatures
Algorithm Hybrid-Sig-Filter+ generates hybrid signa-

tures using grids with fixed granularity. As different regions
can use grids with different granularities, this method has
the following limitations. Generating coarse-grained grids

Function Hybrid-Sig-Filter
+(q, I)

Input: q: A query; I: A hybrid inverted index
Output: C: Candidate objects
begin1

Initialize candidate set C ← ∅ ;2

Generate signatures ST(q) and SR(q) ;3

Compute signature similarity thresholds c
T
and c

R
;4

Select prefixes Sp
T
(q) and Sp

R
(q) ;5

for each token t in Sp
T
(q) do6

for each grid g in Sp
R
(q) do7

Compute the hybrid signature h = (t, g) ;8

Find object list I{cR ,c
T
}(h) from I ;9

C ← C
∪

I{cR ,c
T
}(h) ;10

end11

Figure 8: Hybrid signature based filtering algorithm

o1
2400/1.1

Inverted Index

(t1,g10) (t1,g11) (t1,g14) (t3,g10) (t3,g11)

o2
1525/1.9

o5
1100/1.7

o1
1075/1.9

o1
900/1.7

o2
550/1.9

o2
1525/1.1

o2
1075/1.1

SR (q) =
p

{ g7 g10 g11 g14}ST (q) =
p

{ t1 t3 }cT=0.57 cR=600

… …

Figure 9: Example of algorithm Hybrid-Sig-Filter+

for small regions may weaken the filtering power and intro-
duce more candidates. For example, the element (t1, g11)
in Figure 9 involves a dissimilar object o5 as the estimated
grid weight w(g | o5) = 200 is much larger than the real
weight w(g | o5, q) = 0. On the other hand, generating fine-
grained grids for large regions may involve too many useless
signature elements, leading to high costs of both storage of
inverted lists and filtering. In Figure 1, any fine-grained
grid covered by g14 is useless to region R1, because g14 has
already provided an accurate grid weight for R1.

In order to address the problem, we propose to judiciously
select hierarchical grids for each token t given a constraint
of index sizes (i.e., the maximum number of hybrid signa-
ture elements), and generate hierarchical hybrid signatures
to improve the performance. We first formalize the hierar-
chical hybrid signature selection problem as follows.

Hierarchical hybrid signature selection. Intuitively,
our objective is to select at most mt hierarchical grids for
the objects containing each token t and optimize the filtering
power. As mentioned in Section 4.3, optimizing the filtering
power can be reduced to minimizing filter and verification
costs. Since verification is the bottleneck as shown in Sec-
tion 6.3, we focus on minimizing verification cost, i.e., the
average size of candidates |C| in this section. It is known

that the estimation of |C| is very difficult, so we consider a
simplified version of the problem.

Ideally, suppose that we have a set of grids with finest
granularity, such that each finest grid is totally covered by
or exclusive from object regions. Using the finest grids,
we can obtain the most compact candidate set satisfying
|C| = |A|. Obviously, the amount of the finest grids must be
very huge. Therefore, given a number mt, we need to merge
the finest grids to at most mt hierarchical grids. Different

831

R1

R2

R5g2
1

g4

3

g1
0

g2
1 g4

1

g1
2 g2

2 g4
2g3

2

g2
3 g4

3g3
3

Generating
Signatures

(mt=8)

(Level 1)

(Level 2)

(Level 3)

Rq

o1

o2
1750/1.9

o5
2000/1.7

o1
625/1.9

g2
1 g2

2

1250

g3
3

o2
375/1.93000/1.1

300 225

cR=600

Pruned

SR (q) ={ g2
1

g2
2

g3
3

}

w(g|q)

Inverted
Index

Spatial Pruning
for Token t1

g4
2

g3
2

g2
2

g3
3

g2
3

Figure 10: Hierarchical hybrid signatures of t1

grids merged from the finest grids may lead to different up-
per bounds of grid weights (See Section 4.1) and result in
different candidate sizes. To measure quality of the grids, we
introduce the error of each grid. Formally, we define the er-
ror as follows. Consider a grid g with inverted list I(g). Us-
ing uniform assumption, we can estimate the expected size of

inverted list as |̂I(g)| =
∑

o∈I(g)
|g∩o.R|

|g|
, where |g∩o.R|

|g|
is the

probability that query region q.R intersects with each object
region o.R. For example, consider grid g13 in Figure 1. We

can compute ̂|I(g13)| = (|g13 ∩R1|+ |g13 ∩R2|)/|g| = 1.7.

Definition 6 (Error of Grid). Consider grid g cov-

ering finest grids {gf1 , . . . , g
f

l }. The error of g, denoted by

Error(g), is
∑

g
f
i

(|̂I(g)| − ̂|I(gfi)|)
2.

Based on the errors of grids, we formally define our hierar-
chical hybrid signature selection (HSS) problem as follows.

Definition 7 (The HSS Problem). Given a token t
and a number mt > 1, find at most mt hierarchical grids Gt

such that
∑

g∈Gt
Error(g) is minimized.

We can prove that the HSS problem is NP-hard by a re-
duction from a known NP-hard problem, a rectangular par-
titioning problem in [15].

Theorem 1. The HSS problem is NP-Hard.

To solve the HSS problem, we propose a greedy algorith-
m to find the grids with the minimum errors, as shown in
Figure 11. Given all objects indexed by a token t, i.e., I(t),
the algorithm first constructs a grid tree, and initializes a
priority queue where elements are sorted in descending or-
der of their scores. Then, it inserts the root with its grid
error as the score. Here, for a node n, the algorithm ap-
proximately computes its error based on the child nodes,

Error(n) =
∑

child(n) (|̂I(n)| −
̂|I(child(n))|)2. Next, the

algorithm traverses the grid tree until the queue is empty as
follows. It removes the front element in the queue, denoted
by n. If n is a leaf node, the algorithm inserts it into Gt. If n
is an intermediate node, the algorithm examines whether to
split n using its child nodes Nc. If the number of grids after
the splitting is larger than mt, i.e., |Gt|+ |Q|+ |Nc|−1 > mt,
the algorithm does not split the node and only inserts n into
Gt; otherwise, it inserts the child nodes of n into the queue.
Figure 10 provides an example to show how algorithm

HSS-Greedy generates hierarchical hybrid signatures for re-
gions {R1, R2, R5} of token t1. The algorithm first enqueues

Algorithm 2: HSS-Greedy (I(t),mt)

Input: I(t): objects containing token t; mt: A number
Output: Gt: The selected grids
begin1

Construct a grid tree GT for objects in I(t) ;2

Initialize a priority queue Q ;3

Q.Enqueue
(

GT.root, Error(GT.root)
)

;4

while Q is not empty do5

n← Q.Dequeue() ;6

if n is a leaf node then Gt ∪ {n} ;7

else8

Nc ← Child nodes of n ;9

if |Gt|+ |Q|+ |Nc| − 1 > mt then Gt ∪ {n} ;10

else for Each child node nc in Nc do11

Q.Enqueue
(

nc, Error(nc)
)

;12

end13

Figure 11: Greedy Algorithm for the HSS problem.

the root grid g01 , i.e., the space R. Then, the algorithm re-
peatedly dequeues the front element, and enqueues its child
nodes. For example, since Error(g14) = 0.1 > Error(g12) =
0.09, the algorithm dequeues grid g14 and enqueues its child
nodes. Thus, given mt = 8, we obtain hierarchical hybrid
signatures represented as bold circles in Figure 10.

Hierarchical signature-based filtering algorithm. Us-
ing the generated hierarchical hybrid signatures, we can im-
prove the performance of algorithm Hybrid-Sig-Filter+

(in Figure 8) as follows. For each token t, we first fix a
global order of its hierarchical grids. We sort the grids in
ascending order of their levels in the grid tree. For grids in
the same level, we sort them in ascending order of the num-
ber of object regions intersecting with them. For example,
based on the global order, the hierarchical hybrid signature
of token t1 can be sorted as {g12 , g

2
3 , g

2
4 , g

2
2 , g

3
2 , g

3
3 , g

3
4}. Then,

we can employ algorithm Hybrid-Sig-Filter+ to filter dis-
similar objects, as illustrated in the following example.

Example 5. Figure 10 provides an example of algorithm
Hybrid-Sig-Filter+ using hierarchical hybrid signatures.
Consider token t1 in textual signature prefix Sp

T
(q). We can

generate three hierarchical grids {g12 , g
2
2 , g

3
3} and compute the

weight w(g | q) for each grid. Using threshold-aware prun-
ing, we can prune inverted lists of grids g12 and g22, and only
need to probe the inverted list of hybrid signature (t1, g

1
2).

Similarly, we probe the inverted lists of other tokens in Sp
T
(q)

and obtain a candidate set C = {o1, o2}. Notice that the can-
didate set is more compact than the one in Example 4.

6. EXPERIMENTS
In this section, we report experimental results. We ex-

tended the state-of-the-art spatial keyword search method
IR-tree [7] to support spatio-textual similarity search as
mentioned in Section 2.3. We compared our Seal method
with this method.

6.1 Experiment Setup
We used two datasets. The first one was a real dataset

Twitter. We collected 60 million tweets from May 2011 to
August 2011, among which about 13 million tweets had lo-
cations (i.e., points with longitudes and latitudes). We ran-
domly selected 1 million users, and obtained ROI objects

832

 0

 50

 100

 150

 200

 0.1 0.2 0.3 0.4 0.5

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Spatial Similarity Threshold

TokenFilter
GridFilter(256)
GridFilter(512)

GridFilter(1024)

(a) Large-Region Queries.

 0

 50

 100

 150

 200

 0.1 0.2 0.3 0.4 0.5

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Texual Similarity Threshold

TokenFilter
GridFilter(256)
GridFilter(512)

GridFilter(1024)

(b) Large-Region Queries.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.1 0.2 0.3 0.4 0.5

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Spatial Similarity Threshold

TokenFilter
GridFilter(256)
GridFilter(512)

GridFilter(1024)

(c) Small-Region Queries.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.1 0.2 0.3 0.4 0.5

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Textual Similarity Threshold

TokenFilter
GridFilter(256)
GridFilter(512)

GridFilter(1024)

(d) Small-Region Queries.

Figure 12: TokenFilter vs. GridFilter on the Twitter data set.
Table 1: Data statistics and index sizes.

Twitter USA
Object number 1 million 1 million

Avg region area (sq.km.) 115 5
Entire space (million sq.km.) 1342 473

Avg token number 14.3 12.5
Data size (GB) 0.34 0.22

IR-tree size (GB) 2.37 1.14
TokenInv size (GB) 0.17 0.07

GridInv (1024) size (GB) 0.018 0.016
HashInv (1024) size (GB) 0.57 0.44
HierarchicalInv size (GB) 0.30 0.34

from their profiles. On the one hand, we selected frequent
words in her tweets as the token set for each user, and the
average token number of objects was 14.3. On the other
hand, we took the MBR of all of her tweets as each us-
er’s active region, and the average area of the regions was
115 square kilometers (sq.km.). Specifically, the distribu-
tions of the region sizes were: 0.0001 sq.km. (4.4%), 0.01
sq.km. (15.4%), 1 sq.km. (29.7%), 100 sq.km. (73%), etc,
where “x sq.km. (y%)” means there are y% regions with
areas not greater than x sq.km. We can see that the region-
s had various sizes due to different spatial distributions of
users’ tweets, and most of regions sizes were not very large.
Note that more complicated methods can be used to obtain
the active regions from users’ tweets. For example, we can
compute multiple active regions for each user by clustering
tweets’ locations. We take it as a future work, and only fo-
cus on the general spatio-textual similarity search problem
in this paper. In addition, we generated two query sets to e-
valuate the performance of different algorithms. Each query
set contained 100 queries.

Large-Region Queries: We generated a set of queries with
large regions. The average query token number was 6.97,
and the average area of regions was 554 sq.km, which was
equivalent to the area of a district.
Small-Region Queries: We generated a set of queries with
small regions. The average query token number was 12.9,
and the average area of query regions was 0.44 sq.km, which
was equivalent to the area of a small neighborhood.

We also used a synthetic dataset by combing POIs in USA
and the publication records in DBLP. We selected 1 million
POIs from the USA dataset as centers and extended the POIs
with random widths and heights to generate regions. Then,
we randomly distributed publication records to the regions
to generate token sets. The average area of regions was 5.4
sq.km and the average token number was 12.5. We also gen-
erated 100 large-region queries and 100 small-region queries
for this dataset. Note that the experimental results on the
two datasets were similar. Due to the space constraints, we
only provide experimental results of method comparison on
the USA data set in Section 6.5.
The IR-tree index was disk-resident, and its page size was

4KB. The inverted indexes of our signature-based methods
were also disk-resident, and we maintained an index that
mapped each signature element to the disk offset of its in-
verted list in memory. Note that this index was small e-
nough to be maintained in memory. For example, for the
Twitter dataset, the index only occupied 19 MB. Table 1
summarizes the data statistics and index sizes. For simplic-
ity, we respectively use TokenInv, GridInv, HashInv and
HierarchicalInv to represent inverted indexes of textual,
grid-based, hash-based hybrid and hierarchical hybrid sig-
natures. For GridInv and HashInv we also present the
granularity. For example, GridInv (1024) represents the
GridInv index with granularity 1024× 1024. Due to space
constraints, we only show sizes of the indexes we used in
method comparison in Section 6.5. Besides, we varied both
spatial and textual similarity thresholds from 0.1 to 0.5, and
the default value of the thresholds was 0.4.

In the paper, we only show the running time and the
numbers of candidate numbers of different methods are in
our technical report [8].

All the programs were implemented in JAVA and all the
experiments were run on the Ubuntu machine with an Intel
Core 2 Quad X5450 3.00GHz processor and 4 GB memory.

6.2 Token Filter vs. Grid Filter
We first evaluated algorithm Sig-Filter+ in Figure 6

using textual signatures and grid-based signatures, which
are respectively denoted by TokenFilter and GridFil-
ter. We examined the GridFilter using grid-based sig-
natures with different granularities. Figure 12 provides the
experimental results. We can see that the performance of
TokenFilter and GridFilter depended on the similarity
thresholds, τ

R
and τ

T
. Observed from Figure 12(a), Token-

Filter outperformed GridFilter for small τ
R
. However,

with the increase of τ
R
, GridFilter became faster. For ex-

ample, given τ
R
= 0.5, GridFilter (1024) took 30 millisec-

onds, while TokenFilter took 64 millisecond. Similarly,
with the increase of τ

T
, TokenFilter became better (See

Figures 12(b) and 12(d)). Therefore, it is better to combine
both filters instead of using either one individually.

6.3 Evaluating Different Grid Granularities
We then evaluated the performance of GridFilter with

different grid granularities. We partitioned the entire space
into p× p uniform grids as mentioned in Section 4, where p
denotes the granularity. Then, we ran GridFilter based on
different granularities and compared the filtering time and
verification time. Figure 13 shows the experimental results.
We can see that with the increase of granularity, the verifi-
cation time always decreased. For example, the verification
time decreased from 466 milliseconds at granularity 64 to 90
milliseconds at granularity 8192 in Figure 13(b). Moreover,

833

the decrease of verification cost became more and more in-
significant as the granularity increased. The filtering step
was not always improved with the increase of granularity,
which was consistent with our cost-based analysis in Sec-
tion 4.3. For example, in Figure 13(a), the filtering time
first decreased and then increased after granularity 1024.

 1

 10

 100

1 2 4 8 16 32 64 128

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Granularity (* 64)

Verification
Filter

(a) Large-Region Queries.

 1

 10

 100

 1000

1 2 4 8 16 32 64 128

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Granularity (* 64)

Verification
Filter

(b) Small-Region Queries.

Figure 13: Evaluation on grid granularity selection
on the Twitter data set.

6.4 Evaluating Hybrid Filtering Algorithms
We evaluated hybrid filtering algorithms mentioned in

Section 5. We first compared the algorithm using hash-based
hybrid signatures (HybridFilter) with GridFilter. Fig-
ure 14 shows the experimental results, where G and H respec-
tively stand for GridFilter and HybridFilter. We can
see that HybridFilters significantly outperformed Grid-
Filters for both large-region and small-region queries. For
example, in Figure 14(a), HybridFilters with different
granularities (i.e., 256, 512, 1024) were one order of mag-
nitude faster than GridFilters with the same granularity.
This is because HybridFilter utilized both spatial and tex-
tual pruning simultaneously and had larger filtering power
than GridFilter with only spatial pruning.

 0

 2

 4

 6

 8

 10

 12

280 320 360 400

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Index Size (MB)

Hash
Hierarchical

(a) Large-Region Query.

 0

 10

 20

 30

 40

 50

 60

 70

 80

280 320 360 400

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Index Size (MB)

Hash
Hierarchical

(b) Small-Region Query.

Figure 15: Comparison of hybrid signatures on the
Twitter data set (τ

R
= 0.4, τ

T
= 0.1).

Then, we evaluated the effect of hierarchical hybrid sig-
natures, which were judiciously selected to improve the per-
formance of hybrid filtering. We compared filtering algo-
rithms with hash-based hybrid signatures and hierarchical
hybrid signatures given different constraints of index sizes
(i.e., maximum numbers of signature elements as mentioned
in Section 5.2). Figure 15 shows the experimental results.
Hierarchical hybrid signatures achieved better performance
compared with hash-based hybrid signatures in various in-
dex sizes. For example, in Figure 15(b), the elapsed time
of algorithm with hierarchical hybrid signatures was 30 mil-
liseconds given index size 280 MB, while that of hash-based
hybrid signatures was 70 milliseconds. The main reason is
that we judiciously selected hybrid signatures with hierar-
chical grids. These signatures improved the filtering power,
and thus pruned a large number of dissimilar objects.

6.5 Comparison with Existing Methods
We compared our algorithm using hierarchical hybrid sig-

natures (denoted by Seal) with the keyword-first method

(Keyword), the spatial-first method (Spatial), and state-
of-the-art spatial keyword search method IR-tree [7] as dis-
cussed in Section 2.3. Figures 16 and 17 respectively show
the experimental results on Twitter and USA datasets.

We can see that Keyword and Spatial could not ef-
fectively prune dissimilar objects. Specifically, Keyword
sometimes performed worse than Spatial (See Figure 17(a)),
as it did not have spatial pruning power. On the other hand,
for large textual thresholds, Spatial might achieve lower
efficiency (See Figures 16(d) and 17(d)), as it did not have
textual pruning power. In addition, IR-tree also achieved
low performance, and it was even worse than Spatial (See
Figures 16). This is because the method, which is designed
for spatial keyword search, visited too many unnecessary
nodes and involved a huge number of dissimilar objects as
mentioned in Section 2.3. In addition, IR-tree had to probe
the inverted file associated in each R-tree node, resulting
in a large overhead.

Our method Seal always achieved the highest perfor-
mance for any type of queries and any threshold on the
two datasets. In Figures 16 and 17, our method was several
tens of times faster than the baseline methods. For exam-
ple, in Figure 16(c), given spatial threshold 0.1 and textual
threshold 0.4, our method took 5 milliseconds, while IR-
tree, Keyword and Spatial respectively took 253, 52 and
182 milliseconds. The better performance of our method is
attributed to the signature-based methods integrating both
spatial and textual pruning simultaneously, and the hierar-
chical hybrid signatures we selected for large filtering power.

6.6 Scalability
We evaluated the scalability of our hybrid filtering algo-

rithm by varying the numbers of objects. Figure 18 shows
the results. We can see that our method scaled very well,
and with the increase of the numbers of objects, the elapsed
time increased sub-linearly. This is because our algorithm
could prune a huge amount of dissimilar objects even if the
number of objects increases.

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Number of Objects (* 0.1 million)

Spatial Threshold=0.1
Spatial Threshold=0.3
Spatial Threshold=0.5

(a) Large-Region Queries.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Number of Objects (* 0.1 million)

Textual Threshold=0.1
Textual Threshold=0.3
Textual Threshold=0.5

(b) Large-Region Queries.

Figure 18: Scalability on the Twitter data set.

7. CONCLUSION AND FUTURE WORK
In this paper, we have studied a new research problem

called spatio-textual similarity search. We introduced a
filter-and-verification framework to compute the answers.
We devised efficient signature-based filtering algorithms and
developed effective pruning techniques. For spatial pruning,
we proposed grid-based signatures by decomposing the un-
derlying space, and developed threshold-aware pruning tech-
niques. To utilize spatial and textual pruning simultaneous-
ly, we judiciously selected hierarchical hybrid signatures and
devised hybrid filtering algorithms. We have implemented
our method and examined it on real and synthetic datasets.
Experimental results show that our method achieves very
high search performance.

834

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Spatial Similarity Threshold

G-256
H-256
G-512

H-512
G-1024
H-1024

(a) Large-Region Query.

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Textutal Similarity Threshold

G-256
H-256
G-512

H-512
G-1024
H-1024

(b) Large-Region Query.

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Spatial Similarity Threshold

G-256
H-256
G-512

H-512
G-1024
H-1024

(c) Small-Region Query.

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Textual Similarity Threshold

G-256
H-256
G-512

H-512
G-1024
H-1024

(d) Small-Region Query.

Figure 14: Comparison of grid-based and hybrid filters on the Twitter data set.

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Spatial Similarity Threshold

IR-Tree
Keyword

Spatial
SEAL

(a) Large-Region Query.

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Textual Similarity Threshold

IR-Tree
Keyword

Spatial
SEAL

(b) Large-Region Query.

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Spatial Similarity Threshold

IR-Tree
Keyword

Spatial
SEAL

(c) Small-Region Query.

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Textual Similarity Threshold

IR-Tree
Keyword

Spatial
SEAL

(d) Small-Region Query.

Figure 16: Comparison with existing methods on the Twitter data set.

 0.1

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Spatial Similarity Threshold

IR-Tree
Keyword

Spatial
SEAL

(a) Large-Region Query.

 0.1

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Textual Similarity Threshold

IR-Tree
Keyword

Spatial
SEAL

(b) Large-Region Query.

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Spatial Similarity Threshold

IR-Tree
Keyword

Spatial
SEAL

(c) Small-Region Query.

 0.1

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5

E
la

p
s
e

d
 T

im
e

 (
m

s
)

Textual Similarity Threshold

IR-Tree
Keyword

Spatial
SEAL

(d) Small-Region Query.

Figure 17: Comparison with existing methods on the USA data set.

We believe this study on spatio-textual similarity search
opens many new interesting and challenging problems that
need further research investigation, such as how to extend
the textual similarity measure to more sophisticated schemes,
how to provide a theoretical analysis of the approximate so-
lutions presented in this paper, etc.

Acknowledgement. This work was partly supported by
the National Natural Science Foundation of China under
Grant No. 61003004 and No. 60833003, the National Grand
Fundamental Research 973 Program of China under Grant
No. 2011CB302206, a project of Tsinghua University under
Grant No. 20111081073, and the “NExT Research Center”
funded by MDA, Singapore, under the Grant No. WBS:R-
252-300-001-490.

8. REFERENCES
[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact

set-similarity joins. In VLDB, pages 918–929, 2006.

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs
similarity search. In WWW, pages 131–140, 2007.

[3] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k
prestige-based relevant spatial web objects. PVLDB,
3(1):373–384, 2010.

[4] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective
spatial keyword querying. In SIGMOD Conference, pages
373–384, 2011.

[5] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator
for similarity joins in data cleaning. In ICDE, pages 5–16, 2006.

[6] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query
processing in geographic web search engines. In SIGMOD

Conference, pages 277–288, 2006.

[7] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the
top-k most relevant spatial web objects. PVLDB, 2009.

[8] J. Fan, G. Li, L. Zhou, S. Chen, and J. Hu. Seal:
Spatio-textual similarity search. In Technical Report, 2012.
http://dbgroup.cs.tsinghua.edu.cn/fanju/seal-tr.pdf.

[9] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on
spatial databases. In ICDE, 2008.

[10] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string joins
in a database (almost) for free. In VLDB, pages 491–500, 2001.

[11] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing
spatial-keyword (SK) queries in geographic information
retrieval (GIR) systems. In SSDBM, 2007.

[12] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A
partition-based method for similarity joins. PVLDB,
5(3):253–264, 2011.

[13] G. Li, J. Xu, and J. Feng. Desks: Direction-aware spatial
keyword search. In ICDE, pages 459–470, 2012.

[14] J. Lu, Y. Lu, and G. Cong. Reverse spatial and textual k
nearest neighbor search. In SIGMOD Conference, pages
349–360, 2011.

[15] S. Muthukrishnan, V. Poosala, and T. Suel. On rectangular
partitionings in two dimensions: Algorithms, complexity, and
applications. In ICDT, pages 236–256, 1999.

[16] S. B. Roy and K. Chakrabarti. Location-aware type ahead
search on spatial databases: semantics and efficiency. In
SIGMOD Conference, pages 361–372, 2011.

[17] H. Samet. Foundations of Multidimensional and Metric Data

Structure. 2006.

[18] S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. In SIGMOD Conference, pages 743–754, 2004.

[19] J. Wang, G. Li, and J. Feng. Trie-join: Efficient trie-based
string similarity joins with edit-distance constraints. PVLDB,
3(1):1219–1230, 2010.

[20] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong. Efficient
continuously moving top-k spatial keyword query processing. In
ICDE, pages 541–552, 2011.

[21] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity
joins. In ICDE, pages 916–927, 2009.

[22] B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou. Approximate
string search in spatial databases. In ICDE, 2010.

[23] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and
M. Kitsuregawa. Keyword search in spatial databases: Towards
searching by document. In ICDE, 2009.

[24] D. Zhang, B. C. Ooi, and A. K. H. Tung. Locating mapped
resources in web 2.0. In ICDE, pages 521–532, 2010.

[25] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid
index structures for location-based web search. In CIKM, 2005.

835

	Introduction
	Preliminaries
	Problem Formulation
	Related Work
	Baseline Methods

	The SEAL Method
	A Filter-and-Verification Framework
	A Textual-Based Filtering Algorithm

	Grid-Based Filtering Algorithm
	Grid-Based Signatures
	Threshold-Aware Pruning
	Grid Granularity Selection

	Hybrid Filtering Algorithms
	Hash-Based Hybrid Signature
	Hierarchical Hybrid Signatures

	Experiments
	Experiment Setup
	Token Filter vs. Grid Filter
	Evaluating Different Grid Granularities
	Evaluating Hybrid Filtering Algorithms
	Comparison with Existing Methods
	Scalability

	Conclusion and Future Work
	References

