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ABSTRACT
The k-truss is a type of cohesive subgraphs proposed recently for
the study of networks. While the problem of computing most co-
hesive subgraphs is NP-hard, there exists a polynomial time al-
gorithm for computing k-truss. Compared with k-core which is
also efficient to compute, k-truss represents the “core” of a k-core
that keeps the key information of, while filtering out less impor-
tant information from, the k-core. However, existing algorithms
for computing k-truss are inefficient for handling today’s massive
networks. We first improve the existing in-memory algorithm for
computing k-truss in networks of moderate size. Then, we propose
two I/O-efficient algorithms to handle massive networks that can-
not fit in main memory. Our experiments on real datasets verify the
efficiency of our algorithms and the value of k-truss.

1. INTRODUCTION
Given a graph G, the k-truss of G is the largest subgraph of G

in which every edge is contained in at least (k−2) triangles within
the subgraph [15, 16]. The problem of truss decomposition in G
is to find the (non-empty) k-trusses of G for all k.

The k-truss is a type of cohesive subgraphs (or cohesive groups)
of a network [18]. In the analysis of a massive network, it is often
more fruitful, and more feasible, due to the large size of the net-
work, to focus on smaller but more important areas of the network,
i.e., subgraphs that reflect, and/or can be used to study, important
properties of the network such as connectivity, robustness, self-
similarity, centrality, etc. Thus, network analysts have attempted
to identify various cohesive subgraphs for more efficient and effec-
tive analysis of a network.

In the literature, many notions of cohesive subgraphs were pro-
posed. The basic one are the cliques (i.e., a subset of vertices that
forms a complete subgraph) [21] and maximal cliques [7]. How-
ever, the definition of clique is often too rigid and thus other more
relaxed forms of cohesive subgraphs were proposed. The n-clique
[22] relaxes the distance between any two vertices in a clique from
1 to n. The k-plex [29] relaxes the degree of each vertex within a
clique of c vertices from (c − 1) to (c − k). The n-clan [24] is
the same as the n-clique except for imposing a constraint on the

diameter, while the n-club [24] removes the n-clique requirement
from the n-clan. The quasi-clique can be either a relaxation on the
density [1] or the degree [23, 26]. However, the computation of all
the above cohesive subgraphs is NP-hard.

All the above-mentioned cohesive subgraphs are relatively small
sub-structures in a graph. They may be scattered all over the graph,
and some of them may overlap largely with each other, while others
are disconnected from each other. For example, two cliques may
share all but one vertex with each other, or may be totally isolated
from each other.

On the contrary, k-trusses are hierarchical subgraphs that repre-
sent the cores of a network at different levels of granularity. In this
sense, k-truss is more similar to k-core [28], which is the largest
subgraph of a graph in which every vertex has degree at least k
within the subgraph. However, the k-core was described by Sei-
dman [28] as a “seedbed” within which cohesive subgraphs may
precipitate (e.g. a k-truss is a (k− 1)-core but not vice versa) [15].
Thus, though containing other cohesive subgraphs such as cliques
and k-truss, the k-core may also contain a lot more that can be fur-
ther filtered out for more effective and efficient network analysis.

Conceptually, the definition of k-truss is also more rigorous than
that of k-core since k-truss is defined based on triangles, which are
known as fundamental building blocks of a network [32, 33, 25,
6]. In a social network, a triangle implies a strong tie among three
friends, or two friends having a common friend. Thus, by enforcing
all edges to be contained in at least (k − 2) triangles, the k-truss
strengthens every (edge) connection in it by at least (k − 2) strong
ties. Intuitively, we may consider this as in a social network, the
more common friends two people have, the stronger their connec-
tion it implies. On the contrary, in a k-core we only have simple
edge connection (i.e., degree).

We give an example to illustrate the difference between k-truss
and k-core as follows.

Example 1. Figure 1(a) shows a graph,G, that displays the “seek-
advice-from” relationship among the managers of a high-tech man-
ufacturing firm in the west coast of the U.S. [19, 32, 15]. Figure
1(b) and 1(c) show the 3-core and 4-truss of G, which are also
given as an example in [15]. Note that no 4-core or 5-truss exist for
G, i.e., there is no subgraph of G that has all vertices with degree
at least 4 or all edges contained in at least (5 − 2) = 3 triangles
within the subgraph.

The figures show that the 3-core is not much different from the
original graphG, while the 4-truss is significantly different fromG.
The clustering coefficient [33] ofG, of the 3-core, and of the 4-truss
is calculated to be 0.51, 0.65, and 0.80, respectively, indicating that
the 4-truss tends to form clusters or communities at a degree much
higher than G and the 3-core.
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Figure 1: (a) A manager-relationship graph, G; (b) the 3-core
of G (no 4-core exists); (c) the 4-truss of G (no 5-truss exists)

The 4-truss also satisfies the requirement of a 3-core by defini-
tion (not vice versa); however, the 4-truss further filters out those
vertices with lower local clustering coefficient in the 3-core, i.e.,
those vertices that do not tend to form clusters or tightly-knit com-
munity structures with others.

From another angle, we may also see that the 4-truss contains all
the cliques with more than 3 vertices, namely {4,8,10,18}, {4,8,18,21},
{5,10,18,19}, {7,14,18,21}, and {10,15,18,19}, but it filters out all
the other less cohesive sub-structures that exist in the 3-core.

This example also shows that, as the “core” part of the k-core,
the k-truss has a smaller size and a clearer display of the essential
part of a network. Thus, k-truss can be more suitable than k-core in
applications such as visualization and fingerprinting of large-scale
networks [3], interpretation of cooperative processes in complex
networks [8], and analysis of network connectivity [4], etc. 2

On the computational aspect, the non-hierarchical cohesive sub-
graphs are mainly evolved from the cliques and therefore expensive
to compute. On the contrary, computing the hierarchical cohesive
subgraphs, k-core and k-truss, has a polynomial time complexity.

Cohen [15] proposed an algorithm for truss decomposition, which
requires random access to vertices/edges and hence the entire input
graph to be resident in main memory. However, real world net-
works have grown drastically in recent years. It is unrealistic to
assume that these graphs/networks can always fit in main memory.

Recently, Cohen [16] also proposed a parallel algorithm based
on the MapReduce framework which does not require keeping the
entire input graph in any single machine. To compute the k-truss,
the algorithm iteratively invokes a MapReduce procedure for trian-
gle listing whenever there are some edges that are contained in less
than (k − 2) triangles. The iterative counting of triangles enforced
in the definition of k-truss requires many iterations of a main pro-
cedure that makes parallelization of the entire process difficult.

In this paper, we first propose an efficient in-memory algorithm
for truss decomposition that has the same worst-case complexity
as the lower-bound complexity of in-memory triangle listing [30].
We also show that our algorithm is significantly more efficient than
the existing algorithms for truss decomposition [15, 16] in small
networks. However, for processing massive networks that cannot
fit in main memory, the existing algorithms become impractical due
to huge I/O cost.

We develop two I/O-efficient algorithms for truss decomposition
in massive networks that cannot fit in memory. The first one is a
bottom-up approach that employs an effective pruning strategy by

removing a large portion of edges before the computation of each
k-truss, thus significantly reducing both disk I/O cost and search
space during truss decomposition. The second one takes a top-
down approach, which is tailor-made for applications that prefer
the k-trusses of larger values of k, as they often represent the heart
or backbone of a network.

We evaluate our algorithms on a range of real world networks.
For networks of moderate sizes that can reside in memory, the re-
sults show that our in-memory algorithm significantly improves the
existing in-memory algorithm [15]. For larger networks that can-
not fit in memory, the results show that our I/O-efficient method is
much more efficient than the existing MapReduce algorithm [16].

Organization. Section 2 formally defines the problem and gives
the basic notations. Section 3 describes the in-memory algorithms
and identifies their limitations. Section 4 gives an overview of the
two I/O-efficient algorithms and highlights the challenges. Sections
5 and 6 discuss in details the bottom-up and top-down approaches.
Section 7 reports the experimental results. Section 8 discusses the
related work and Section 9 concludes the paper.

2. PROBLEM DEFINITION
We consider undirected, unweighted simple graphs. Given a

graph G, we denote by VG and EG the vertex set and edge set
of G, respectively. We define n = |VG| as the number of vertices,
and m = |EG| as the number of edges of G. We define the size of
G, denoted by |G|, as |G| = m + n. We use nb(v) to denote the
set of neighbors of a vertex v, that is, nb(v) = {u : (u, v) ∈ EG}.
We define the degree of v in G as deg(v) = |nb(v)|.

Unless otherwise specified, we assume that a graph is stored in
its adjacency list representation (whether in memory or on disk).
Each vertex in the graph is assigned a unique ID. In the adjacency
list representation, vertices are sorted in ascending order of their
IDs. Given any two vertices u and v, we use u < v or v > u to
denote that u is ordered before v.

A triangle in G is a cycle of length 3. Let u, v, w ∈ VG be the
three vertices on the cycle, we denote this triangle by △uvw. In
addition, we denote the set of triangles of G by △G. On the basis
of triangles, we define the support of an edge [15] as follows.

Definition 1 (SUPPORT). The support of an edge e = (u, v) ∈
EG in G, denoted by sup(e,G), is defined as |{△uvw : △uvw ∈
△G}|. When G is obvious from content, we replace sup(e,G) by
sup(e).

The support of an edge e in G is simply the number of triangles
in G that contain e. Now we define the notion of k-truss [15, 16].

Definition 2 (k-TRUSS). The k-truss of G, where k ≥ 2, de-
noted by Tk, is defined as the largest subgraph of G, such that
∀e ∈ ETk , sup(e, Tk) ≥ (k − 2).

By definition, the 2-truss is simply G itself.
We define the truss number, or trussness, of an edge e in G,

denoted by ϕ(e), as max{k : e ∈ ETk}. It follows that given
ϕ(e) = k, we have e ∈ ETk but e /∈ ETk+1 . We use kmax to
denote the maximum truss number of any edge in G. From the
truss number comes our definition of the k-class.

Definition 3 (k-CLASS). The k-class of G, denoted by Φk, is
defined as {e : e ∈ EG, ϕ(e) = k}.

Problem definition. The problem of truss decomposition stud-
ied in this paper is defined as follows. Given a graph G, compute
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Table 1: Frequently Used Notations
Notation Description
G = (VG, EG) A undirected, unweighted simple graph G
n;m The number of vertices/edges in G
|G| The size of G, |G| = m+ n
nb(v) The set of neighbors of v ∈ VG
deg(v) The degree of vertex v ∈ VG
△uvw A triangle formed by u, v and w
sup(e) The support of e in G
sup(e,H) The support of e in a subgraph H of G
Tk The k-truss of G
ϕ(e) The truss number of e in G
ϕ(e,H) The truss number of e in a subgraph H of G
Φk The k-class of G, Φk = {e : e ∈ EG, ϕ(e) = k}
φ(e) The estimated lower bound of ϕ(e) for e ∈ EG

ψ(e) The estimated upper bound of ϕ(e) for e ∈ EG

M The size of available main memory
B The disk block size
scan(N) Θ(N/B)

the k-truss of G for all 2 ≤ k ≤ kmax. Equivalently, the k-truss
can be obtained from the set of edges ETk =

∪
j≥k Φj , i.e., the

union of all edges with truss number at least k. When the input
graph G cannot fit in memory, we propose I/O-efficient algorithms
to compute the k-classes.

The following example illustrates the concept of k-truss.

a

b

c

e

d

l

f

g h

k

i

j 5-class edge

4-class edge

3-class edge

2-class edge

Figure 2: A graph G and the k-classes of G (2 ≤ k ≤ 5)

Example 2. In the graph G in Figure 2, the different types of
edges indicate the different k-classes, where 2 ≤ k ≤ 5. In G,
the 2-class Φ2 has a single edge (i, k), i.e., Φ2 = {(i, k)}, since
(i, k) is the only edge in G with support 0. The 3-class Φ3 con-
sists of 9 edges, given by Φ3 = {(d, g), (d, k), (d, l), (e, f), (e, g),
(f, g), (g, h), (g, k), (g, l)}. The 4-class Φ4 contains 6 edges, given
by Φ4 = {(f, h), (f, i), (f, j), (h, i), (h, j), (i, j)}. The 5-class
Φ5 consists of 10 edges, given by Φ5 = {(a, b), (a, c), (a, d), (a, e),
(b, c), (b, d), (b, e), (c, d), (c, e), (d, e)}. We have kmax = 5.

From the k-classes we obtain the k-trusses as follows. The 2-
truss T2 is simply G itself. The 3-truss T3 is the subgraph of G
formed by the edge set (Φ3 ∪ Φ4 ∪ Φ5). The 4-truss T4 is the
subgraph formed by (Φ4

∪
Φ5), and the 5-truss T5 is the subgraph

formed by Φ5. We can verify that for 2 ≤ k ≤ 5, each edge of Tk

is contained in at least k − 2 triangles in Tk. The k-trusses display
the hierarchical structures of G at different levels of granularity, as
depicted by the shading of different gray scales in Figure 2. 2

Table 1 lists the notations that are frequently used in the paper.
When analyzing I/O complexity of our algorithms, we adopt the I/O
model in [2]: M is the main memory size and B is the disk block
size, where 1 ≪ B ≤M/2. Data is read/written in blocks from/to
disk. Thus, reading/writing a piece of data of size N from/to disk
requires (N/B) I/Os. We also define scan(N) = Θ(N

B
), where

N is the amount of data being read or written from/to disk.

Algorithm 1 Truss Decomposition
Input: G = (VG, EG)
Output: the k-truss for 3 ≤ k ≤ kmax

1. k ← 3;
2. for each e = (u, v) ∈ EG do
3. sup(e) = |nb(u) ∩ nb(v)|;
4. while(∃e = (u, v) such that sup(e) < (k − 2))
5. W ← (nb(u) ∩ nb(v));
6. for each e′ = (u,w) or e′ = (v, w), where w ∈W , do
7. sup(e′)← (sup(e′)− 1);
8. remove e from G;
9. output G as the k-truss;

10. if(not all edges in G are removed)
11. k ← (k + 1);
12. goto Step 4;

3. INMEMORY TRUSS DECOMPOSITION
We first describe an existing algorithm for truss decomposition.

Then, we propose an improved algorithm and prove that its time
complexity is bounded by that required for triangle listing. Finally,
we identify the limitation of the in-memory algorithms.

3.1 The Existing InMemory Algorithm
We outline the algorithm of [15] for truss decomposition in Al-

gorithm 1. The algorithm starts with an initialization by computing
the support of every edge in G (Steps 2-3). The intersection of
nb(u) and nb(v) for each edge e = (u, v) returns the set of ver-
tices that form triangles with u and v, and thus the cardinality of
the intersection gives the support of e.

After the initialization, for each k starting from k = 3, the algo-
rithm removes every edge e = (u, v) with support less than (k−2),
since e cannot be in the k-truss by definition (Steps 4-8). Remov-
ing e, however, may also invalidate all triangles consisting of e, i.e.,
∀△uvw, where w ∈ W = (nb(u) ∩ nb(v)), △uvw is no longer a
valid triangle after the removal of e = (u, v). Thus, we also decre-
ment the support of the other two edges (u,w) and (v, w) for each
△uvw, where w ∈ W . This process is repeated iteratively until all
the remaining edges in G have support at least (k − 2), which is
the k-truss.

If there are still some edges in G not yet removed, we continue
with the next k by repeating the above process, i.e., Steps 4-9.

In Step 4 of Algorithm 1, we need to find edges with support
less than (k − 2). This step can be efficiently processed by using
a queue. Whenever we compute (during initialization) or update
(upon the removal of an edge) the support of an edge, we push the
edge into the queue if its support becomes less than (k − 2) or
update its position in the queue if the edge is already in the queue.

In Step 8 of Algorithm 1, we remove edges from G. Explic-
itly deleting edges from G during every step of the process can
be expensive since it involves updating the adjacency lists of u
and v for each edge e = (u, v), which requires time linear in
(deg(u)+ deg(v)). Thus, an implicit approach by simply marking
that e has been deleted in nb(u) and nb(v) is more efficient.

Complexity. Algorithm 1 requires O(m + n) memory space to
keep the input graph as well as the support of all edges in mem-
ory. The initialization (Steps 2-3) can be made faster using the
in-memory triangle counting algorithm [27, 20]. However, Step 5
still requires O(deg(u) + deg(v)) time for each edge e = (u, v)
processed, thus giving a total of O(

∑
(u,v)∈EG

(deg(u)+deg(v))

= O(
∑

v∈VG
(deg(v))2) time. This can be expensive for large

graphs with vertices of high degree.
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Algorithm 2 Improved Truss Decomposition
Input: G = (VG, EG)
Output: the k-class, Φk, for 2 ≤ k ≤ kmax

1. k ← 2, Φk ← ∅;
2. compute sup(e) for each edge e ∈ EG;
3. sort all the edges in ascending order of their support;
4. while(∃e such that sup(e) ≤ (k − 2))
5. let e = (u, v) be the edge with the lowest support;
6. assume, w.l.o.g., deg(u) ≤ deg(v);
7. for each w ∈ nb(u) do
8. if((v, w) ∈ EG)
9. sup((u,w))← (sup((u,w))− 1),

sup((v, w))← (sup((v, w))− 1);
10. reorder (u,w) and (v, w) according to

their new support;
11. Φk ← (Φk ∪ {e});
12. remove e from G;
13. if(not all edges in G are removed)
14. k ← (k + 1);
15. goto Step 4;
16. return Φj , for 2 ≤ j ≤ k;

3.2 An Improved Algorithm
We now present an improved algorithm for truss decomposition,

as shown in Algorithm 2.
The algorithm also starts from an initialization that computes the

support of each edge in G. We then sort all the edges in ascending
order of their support. The computation of the support of the edges
can be done in O(m1.5) time by the in-memory triangle counting
algorithm [27, 20]. The sorting can be done in O(m) time with
O(m) space using bin sort. The sorted edges are then kept in an
array A, in a way similar to the sorted degree array in [5].

After the initialization, for each k starting from k = 2, the al-
gorithm iteratively removes a lowest support edge e = (u, v), i.e.,
the first edge in the sorted edge array A, while the support of e is
not greater than k − 2. The removed edge e is added to Φk since
sup(e) ≤ (k−2) and thus e cannot be in Φk+1. Upon the removal
of e, we also decrement the support of all other edges that form a
triangle with e, and update their new positions in the sorted edge
array A. The membership test of whether (v, w) ∈ EG at Step 8
can be done efficiently by keeping EG in a hashtable. The location
of each edge in A is stored in the hashtable. Each update can be
done in A in constant time in a way similar to that in the sorted de-
gree array in [5]. We do not explicitly remove e fromG, but simply
move a pointer one position forward in A to point to the next edge
with the lowest support (i.e., all edges to the left of the pointer have
been removed). This process continues until all edges with support
less than or equal to (k − 2) are removed.

In this way, we compute each k-class until all edges in G are
removed.

Algorithm 2 is similar to Algorithm 1 but there is one subtle
difference between Steps 5-6 of Algorithm 1 and Steps 6-8 of Al-
gorithm 2 in the search for △uvw. This difference significantly
reduces the time complexity of Algorithm 2 as shown in Theorem
1. We also show by experiments that Algorithm 2 is indeed signifi-
cantly faster than Algorithm 1.

The correctness of Algorithm 2 is apparent since the algorithm
essentially computes the k-truss by its definition. We show the
complexity of this algorithm as follows.

THEOREM 1. Algorithm 2 computes the k-truss, for all k ≥ 3,
in O(m1.5) time using O(m+ n) space.

PROOF. The support computation at Step 2 uses O(m1.5) time

and O(m + n) space [27, 20], while Step 3 uses O(m) time with
O(m) space using bin sort.

In the main iterative loop (i.e., Steps 4-12), Step 8 can be done
in expected constant time by hashing and all other individual oper-
ations at other steps (except Step 7) can done in constant time (see
the details in the algorithm description above). Thus, the total time
depends on how many times these individual operations are exe-
cuted. Steps 11-12 are obviously executedO(m) times. Therefore,
we only need to analyze how many times the individual operations
at Steps 8-10 are executed.

For each edge e = (u, v) removed, where deg(u) ≤ deg(v), as
indicated by Step 6, the operations at Steps 8-10 are executed for
at most deg(u) times. Let nb≥(u) be {v : v ∈ nb(u), deg(v) ≥
deg(u)}. Thus, the loop at Steps 7-10 is executed for |nb≥(u)|
times for the vertex u, and the operations at Steps 8-10 are executed
for at most (deg(u) · |nb≥(u)|) times.

We prove that for any u ∈ VG, |nb≥(u)| ≤ 2
√
m. If deg(u) ≤√

m, then trivially |nb≥(u)| ≤ deg(u) ≤ 2
√
m. If deg(u) >√

m, we prove by contradiction. Suppose |nb≥(u)| > 2
√
m.

Then,
∑

v∈nb≥(u) deg(v) ≥ (|nb≥(u)|·deg(u)) > (2
√
m·

√
m)=

2m, contradicting the fact that
∑

v∈VG
deg(v) = 2m. Thus, the

total time is
∑

u∈VG
(deg(u) · |nb≥(u)|) ≤

∑
u∈VG

(deg(u) ·
2
√
m) = (m · 2

√
m) = O(m1.5). Summing up, the total time

complexity is O(m1.5).
Algorithm 2 usesO(m+n) space to hold the input graph,O(m)

space for the hashtable for edge membership test at Step 8, and
O(m) space for the edge arrays for the bin sort. Thus, the space
complexity is O(m+ n).

Note that the complexity, both time and space, of Algorithm 2
in the worst case is the same as the lower-bound complexity for
triangle listing [30].

3.3 Limitations of InMemory Algorithms
Both Algorithm 2 and Algorithm 1 are in-memory algorithms

that require O(m+n) memory space. The constant factor is small
as we only need extra space for the queue or sorted edge array, the
hashtable or for marking whether an edge is deleted, in addition to
the space used to hold the input graph. However, for processing
a large graph in practice, any small multiplicative factor results in
huge amount of extra memory space needed. With the drastically
increased volume of graphs/networks in recent years, it is unrealis-
tic to assume that the input graph can always fit in memory.

When the input graph cannot fit in memory, Algorithm 2 and Al-
gorithm 1 reveal that random access to vertices and edges stored on
disk is necessary, which can incur prohibitively high I/O cost. The
effect of locating an edge to be removed may trigger the removal
of other edges and this propagating effect can spread to random lo-
cations in the graph. Moreover, the removal of an edge may lead to
multiple iterations of support downgrading. These may become se-
rious bottlenecks when the relevant parts of the graph do not reside
in memory. Therefore, identifying distinct iterative steps and the
relevant subgraphs for such iterations can be a key factor in reduc-
ing the disk I/O cost for truss decomposition. How to design I/O
efficient algorithms is the main focus of the subsequent sections.

4. I/OEFFICIENT DECOMPOSITION
In Sections 5 and 6, we will present two different algorithms that

aim at reducing the I/O cost for truss decomposition in large graphs
that cannot fit in memory. We briefly discuss the main objectives
of the two algorithms and their differences in this section.
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• Bottom-up approach. The bottom-up approach starts from
the smallest k, i.e., k = 2. The algorithm determines a lower
bound on the truss number of the edges in G, extracts a can-
didate subgraph that contains all edges in the k-class, Φk,
computes Φk in memory, removes all edges in Φk from the
input graph G, and then moves on to compute Φk+1. This
process repeats iteratively until all edges in G are removed.

• Top-down approach. The top-down approach starts from
largest possible k. The algorithm determines an upper bound
on the truss number of the edges in G, extracts a candidate
subgraph that contains all edges in Φk, computes Φk in mem-
ory, removes all irrelevant edges from G, and then moves on
to compute Φk−1.

The bottom-up approach extracts a smaller candidate subgraph
than the top-down approach in most cases and is also more effective
in removing irrelevant edges for the computation of the subsequent
k-classes. The top-down approach, though less efficient when all
the k-classes need to be computed, is particularly suitable for appli-
cations that demand only the top k-trusses, i.e., the k-trusses with
the largest values of k, which is reasonable since those top k-trusses
are the more important and core part of a graph or network.

The main idea of both bottom-up and top-down approaches is
simple but there are a number of technical challenges: (1) all the
steps (e.g., lower/upper bound estimation, candidate subgraph ex-
traction) need to be made I/O-efficient, and it is not straightforward
to avoid random access in these steps; (2) many steps in our algo-
rithms apply local computation of global result, ensuring the cor-
rectness of the k-class globally is a challenge; and (3) pruning is
essential for truss decomposition in large graphs but effective and
correct pruning is difficult, especially for the top-down approach,
due to the tight inter-connections among edges via triangles. We
address all these issues in our algorithms.

5. BOTTOMUP TRUSS DECOMPOSITION
In this section, we discuss in details the bottom-up approach for

truss decomposition. We first outline the framework of the algo-
rithm, which consists of the following two main stages.

Lower-bounding: This stage forms the basis for the later stage of
truss decomposition. We compute a nontrivial lower bound
on the truss number of each edge. We also remove the 2-
class, Φ2, which can be directly obtained from lower-bounding,
to reduce the input size to the subsequent computation.

Bottom-up truss decomposition: This stage computes the k-
classes iteratively bottom-up, i.e., start from the 3-class to
the kmax -class. We use the lower bound to extract a small
candidate subgraph, which can be loaded in main memory
in most cases to avoid random disk access. After comput-
ing each k-class, we remove all the edges in the k-class, thus
reducing the costs for computing the remaining k-classes.

5.1 Lower Bounding
We first define the concept of neighborhood subgraph of a set of

vertices, which is frequently used in our algorithms.

Definition 4 (NEIGHBORHOOD SUBGRAPH). Let U ⊆ VG.
The neighborhood subgraph of U , denoted by NS(U), is a sub-
graph of G which is defined as NS(U) = (VNS(U), ENS(U)),
where VNS(U) = U ∪ {v : v ∈ nb(u), u ∈ U} and ENS(U) =
{(u, v) : (u, v) ∈ EG, u ∈ U}.

Algorithm 3 LowerBounding
Input: G = (VG, EG)
Output: Φ2, and a new graph Gnew , each edge e in Gnew is asso-
ciated with a lower-bound on the truss number, φ(e)

1. ∀e ∈ EG: φ(e)← 0;
2. while(not all edges in G are removed)
3. partition VG into P = {P1, P2, . . . , Pp},

s.t. each Pi ∈ P fits in memory;
4. for each Pi ∈ P do
5. let H be the neighborhood subgraph NS(Pi) of Pi;
6. compute ϕ(e,H) for each edge e in H by Algorithm 2;
7. φ(e)← max{φ(e), ϕ(e,H)} for each edge e in H;
8. Φ′

2 ← {internal edge e of H : sup(e) = 0};
9. output Φ′

2 as part of Φ2,
and remove Φ′

2 from H and G;
10. output each remaining internal edge e of H , with φ(e),

as part of Gnew , and remove e from G;

Intuitively, the neighborhood subgraph of U is a subgraph ob-
tained by adding to G[U ] those edges from the vertices in U to
those neighboring vertices of U in VG\U , where G[U ] is the in-
duced subgraph of G by U . We refer to U and EG[U ] as the inter-
nal vertices and internal edges of NS(U), respectively, while the
remaining vertices and edges inNS(U) are called external vertices
and external edges.

We now outline the algorithm for lower-bounding the truss num-
ber of the edges in Algorithm 3. The algorithm iterates over Steps
2-10, computes the lower-bound on the truss numbers for a portion
of edges at each iteration, and removes these edges, until all edges
in the input graph G are removed.

At each iteration, we partition the vertex set of the current graph
G (note that G is shrinking at each iteration) into p ≥ 2|G|/M
parts (Step 3). Chu and Cheng proposed three linear-time parti-
tioning algorithms for triangle listing in large graphs that cannot
fit in memory [13]. The first one sequentially partitions G, which
is fast but does not have a theoretical guarantee on the number of
iterations. The second one uses a dominating vertex set of G as
seeds to guide the partitioning, which usesO(n) memory space but
the number of iterations can be bounded by O(m/M). The third
one is a randomized partitioning algorithm that removes the space
requirement of the second algorithm and still bounds the number
of iterations by O(m/M) with high probability. Since their algo-
rithms partition G into p approximately equal-sized neighborhood
subgraphs, where each subgraph fits in main memory, we can apply
any of them in our algorithm.

For each of the p neighborhood subgraphs, H , we compute the
truss number ϕ(e,H) for each edge e locally in H . Since H fits in
main memory, we apply the in-memory truss decomposition algo-
rithm, Algorithm 2. Then, we assign ϕ(e,H) as the lower bound
φ(e) of the truss number of e globally as in G. The following
lemma establishes the relationship between the local truss number
ϕ(e,H) in H and the global lower bound φ(e) in G.

LEMMA 1. Given a graph G and any neighborhood subgraph
H of G, we have ϕ(e) ≥ ϕ(e,H).

PROOF. The proof follows directly from the fact that H is a
subgraph of G.

Lemma 1 implies that the maximum ϕ(e,H) of any neighbor-
hood subgraph H (at any iteration) can be used as a lower bound
of the truss number of an edge e in G, as done in Steps 6-7.

In the process of computing ϕ(e,H) by Algorithm 2, we can
also obtain sup(e) for each internal edge e = (u, v) in H . Note
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that sup(e) computed locally inH is the exact support of e globally
in the current G, since both nb(u) and nb(v) are in H as u and v
are internal vertices. Here in Steps 8-9, however, we only need to
determine whether sup(e) = 0 for an internal edge e in H . If
sup(e) = 0, then by definition of truss e belongs to the 2-class
Φ2. Thus, we output all internal edges in H with support 0 as the
2-class and also remove them from G to reduce the search space in
the subsequent iterations.

Then at Step 10, we output each remaining internal edge e of H ,
with lower bound φ(e). All these edges form a new graph, Gnew ,
which is stored as a list of edges on disk.

At the end of each iteration, all internal edges of each neigh-
borhood subgraph H are removed from G. At the next iteration
when the shrunk graph G is re-partitioned, some of the external
edges in the previous G at the previous iteration now become in-
ternal edges, which are processed and finally also removed at the
end of the current iteration. This process continues until the shrunk
graph G can finally fit in main memory, in which case all edges are
internal edges.

5.2 BottomUp Truss Decomposition
The second stage of the bottom-up approach is the process of

bottom-up truss decomposition in the new graph Gnew obtained by
Algorithm 3, where each edge e inGnew is associated with a lower-
bound on the truss number φ(e). We give the algorithm outline in
Algorithm 4 and Procedure 5.

Algorithm 4 starts from k = 3, extracts a candidate subgraph
H for computing Φk (Steps 3-5), compute Φk from H (Step 6),
and then moves on to (k + 1), until all edges in Gnew are removed
(edges are removed at Step 6).

The candidate subgraph H is extracted from Gnew as follows.
We first scan Gnew once to obtain the set of candidate vertices Uk.
Then, we scanGnew again to extract all edges that have at least one
end vertex in Uk, which givesH = NS(Uk). If Uk fits in memory,
a single scan of Gnew suffices.1 We also need to convert the set of
edges extracted from Gnew into the adjacency list representation.
If H fits in memory, the conversion is straightforward.2

The correctness of the candidate subgraph for computing Φk will
be proved in Theorem 2. We now discuss the main step in Algo-
rithm 4, i.e., Step 6, which computes Φk from the candidate sub-
graph H by Procedure 5 as follows.

Steps 1-5 of Procedure 5 are similar to Steps 2-11 of Algorithm
2, except that Procedure 5 only computes Φk and focuses on the
internal edges of H . After outputting an edge e as a Φk edge,
we remove e from H to reduce search space. The correctness and
completeness of Φk computed will be proved in Theorem 2.

At the end of the procedure, we also remove all edges in Φk

from Gnew to reduce both search space and disk I/O cost for com-
puting the remaining k-classes. This step requires reading Gnew

and re-writing the reduced Gnew back to disk. Checking whether
an edge of Gnew is in Φk can be done efficiently by keeping Φk

in a hashtable in memory. If Φk cannot fit in memory, we need
|Φk|/M scans of Gnew to remove all edges in Φk from Gnew .

1It is very rare that even Uk cannot fit in main memory of an ordi-
nary PC today, for which case Gnew and hence the input graph G
must be extra-ordinarily large. In this case, we need |Uk|/M scans
of Gnew to extract H .
2Otherwise, we can first write the edge list of H to disk when it is
extracted from Gnew . Next, we read in H again and distribute the
edges into different buckets on disk, according to the end vertices.
Then, we read in each bucket, which fits in memory (otherwise we
can use smaller buckets). And finally, we do the conversion for the
edges in the bucket in memory and write the converted adjacency
list to disk.

Algorithm 4 Bottom-Up Truss Decomposition
Input: G = (VG, EG)
Output: the k-class, Φk, for 2 ≤ k ≤ kmax

1. call LowerBounding (i.e., Algorithm 3);
2. k ← 3;
3. let Uk = {v : v ∈ VGnew , ∃e = (u, v) ∈ EGnew , s.t. φ(e) ≤ k};
4. let H be the neighborhood subgraph NS(Uk) of Uk;
5. scan Gnew to extract H;
6. call Bottom-Up-Procedure(H, k);
7. if(not all edges in Gnew are removed)
8. k ← (k + 1);
9. goto Step 3;

Procedure 5 Bottom-Up-Procedure(H, k)
1. compute sup(e) for each internal edge e of H in memory;
2. while(∃ internal edge e = (u, v) of H s.t. sup(e) ≤ k − 2)
3. output e as a Φk edge;
4. for each triangle△uvw in H containing e do
5. decrease the support of (u,w) and (v, w) by 1;
6. remove e from H and Gnew ;

In the above discussion, we have assumed thatH can fit in mem-
ory, which is true in most cases. When the input graph is very large
or the available memory size is small, H may not fit in memory. In
this case, we need to scan H multiple times to compute Φk, in a
similar way as in Algorithm 3. We partition H into p = 2|H|/M
subgraphs and compute each subgraph in memory. The computa-
tion in each subgraph in memory is the same as in Procedure 5.
Since we focus on the internal edges of each subgraph only, itera-
tively processing the above steps in memory finds all internal edges
of H that are in Φk. The detailed algorithm description is omitted
here for simplicity of presentation but is attached in Appendix.

The following example illustrates how bottom-up truss decom-
position is processed.

Example 3. We illustrate the two stages of the bottom-up algo-
rithm on our running example in Figure 2. In stage 1, Algorithm
3 partitions G into three subgraphs P1, P2, P3 as shown in Figure
3. Initially all the edges e of G have a lower bound φ(e) = 2.
Let Φk(G

′) be the k-class of graph G′. Given NS(P1), Algo-
rithm 2 returns Φ2(P1) = {(d, l), (g, l)}. All the remaining edges
in NS(P1) belong to Φ4(P1), and φ(e) for each such edge e is
set to 4. In NS(P2), the local classes are computed as Φ2(P2) =
{(f, i), (f, j)} and all the other edges inNS(P2) belong to Φ3(P2);
the lower bound φ(e) of each edge e in Φ3(P2) is increased from
2 to 3. P3 is processed in the same way. We add the internal edge
(i, k) ofNS(P3) to Φ2 and remove it, and update the lower bounds
of the 6 edges in the clique {f, h, i, j} to 4. At the end of stage
1, all edges which have not been removed are written to disk as
Gnew. In stage 2, we compute the k-classes for k ≥ 3. To compute
the 3-class, it is sufficient to load into main memory the subgraph
NS(U3), which is shown in Figure 4(a). Procedure 5 computes
the 3-class from this graph, giving Φ3 = {(d, g), (d, l), (g, l),
(g, k),(h, g), (d, k), (e, f), (e, g), (f, g)}. We remove Φ3 from
Gnew. We check that Gnew is not empty at Line 7 of Algorithm
4, so continue with k = 4. NS(U4) is loaded into memory. It
is shown in Figure 4(b). Φ4 is determined in this step to be the 6
edges in the clique {f, h, i, j}. This is deleted from Gnew. The
remaining graph will trigger another call of Procedure 5 at which
point the 5-class will be determined. 2
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Figure 3: A partition P = {P1, P2, P3} of G where P1 =
{a, b, c, l}, P2 = {d, e, f, g}, P3 = {h, i, j, k}
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(b) NS(Uk) for k = 4

Figure 4: Subgraphs of relevant vertices for bottom-up steps

5.3 Correctness and Complexity
We first prove the correctness of Algorithm 4 as follows.

THEOREM 2. Given a graph G, Algorithm 4 correctly com-
putes Φk in G, for 2 ≤ k ≤ kmax.

PROOF. First, Φ2 is correctly computed since Algorithm 3 com-
putes the exact support (in G) of each internal edge of a subgraph
H and we output all internal edges with support 0 as Φ2 edges. All
remaining edges in G must have support at least 1 and thus cannot
be in Φ2. The remaining edges are written to disk as Gnew .

Next, we prove each Φk, where 3 ≤ k ≤ kmax, is computed
correctly. We first make an assumption, Assumption 1: the can-
didate subgraph H contains all edges of Φk as internal edges. If
Assumption 1 is true, then clearly Procedure 5 (or Procedure 9 in
Appendix if H cannot fit in memory) correctly computes Φk since
the procedures simply follow the definition of Φk. Thus, what re-
mains to be proved is Assumption 1.

Let us make another assumption, Assumption 2: Gnew contains
all edges of Φk at Step 3 of Algorithm 4 when H is to be extracted
for Φk. At Steps 3-5 of Algorithm 4, we extract all edges e with
φ(e) ≤ k from Gnew as well as their neighboring edges that may
form triangles with e. From Lemma 1, all edges with ϕ(e) = k
will be extracted as internal edges. Thus, if Assumption 2 is true,
then Assumption 1 must be also true.

Now, we show that Assumption 2 is also true. When k = 3,
Assumption 2 is clearly true since initially Gnew contains all edges
in Φk, for k ≥ 3. Referring to the algorithm,Gnew is only modified
when some Φk is computed and all edges in Φk are removed at Step
6 of Procedure 5 (or Step 12 of Procedure 9 in Appendix). Since all
edges in Φk are not used in the computation of Φj , for all j > k,
removing all edges of Φk from Gnew does not take away any edge
in Φj . Thus, Assumption 2 is also true and we have established the
correctness of Algorithm 4.

Next, we analyze the complexity of Algorithm 4.

THEOREM 3. Let G be the input graph. Let H be the set of
candidate subgraphs extracted at Steps 3-5 of Algorithm 4. Let
H′ ⊆ H be the subset of candidate subgraphs that cannot fit in
memory. Algorithm 4 computes Φk in G, for 2 ≤ k ≤ kmax, using

O((m
M

+ kmax)scan(|G|) +
∑

H∈H′ |△H |) I/Os and O(m1.5 +∑
H∈H |△H |) CPU time.

PROOF. Algorithm 4 calls Algorithm 3 once, which has the same
I/O complexity as that of I/O-efficient triangle listing algorithm
[13], i.e., O(m

M
scan(|G|)) I/Os. If a candidate subgraph H fits in

memory, extracting H at Steps 3-5 of Algorithm 4 and processing
Procedure 5 require O(scan(|Gnew |)) = O(scan(|G|)) I/Os. For
each H ∈ H′, where H cannot fit in memory, we take a heuristic
approach, i.e., Procedure 9, which requires only a few scans of H
for real graphs in practice. In the worst case, if the procedure does
not terminate after c scans ofH for some constant c, we can simply
take a naive approach by removing the edges with lowest support
and the corresponding triangles one by one, which gives the worst
case I/O complexity of O(|△H |).

Algorithm 3 uses O(|△G|) = O(m1.5) CPU time in the worst
case, since its complexity is the same as triangle listing [13]. For
the computation of each Φk, we at most enumerate all triangles in
the correspondingH , which givesO(

∑
H∈H |△H |) CPU time.

In the worst case, |△H | = O(|EH |1.5). In practice, |△H | is
significantly smaller than |EH |1.5 for real world sparse graphs.

6. TOPDOWN TRUSS DECOMPOSITION
In many applications, one may not want all k-trusses; instead,

one may be interested in only the top-t k-trusses for k > (kmax −
t). Some applications may even be just interested in the top-1 k-
truss, i.e., the kmax-truss, since it represents the very heart of a
network/graph. For such applications, applying the bottom-up ap-
proach can be wasteful. Therefore, we propose a top-down ap-
proach as a solution.

6.1 Algorithm Framework
Similar to the bottom-up approach, the framework of the top-

down approach also consists of two main parts.

Upper-bounding: This part computes a nontrivial upper bound
on the truss number of each edge.

Top-down truss decomposition: This part computes the top-t k-
classes iteratively top-down, i.e., from the kmax -class down
to the (kmax − t+ 1)-class. We use the upper bound of the
truss number to extract a small candidate subgraph to com-
pute a k-class. After obtaining a k-class, we remove those
edges that do not affect the computation of any k′-classes,
for k′ < k, in order to enhance the I/O and CPU perfor-
mance for computing the k′-classes.

Note that the above framework is similar to the top-down core
decomposition framework [9]. However, the definition of k-truss
is based on triangles instead of simple vertex degree as in k-core.
Thus, the detailed operations in the algorithm are considerably dif-
ferent. In particular, the top-down approach was shown to be more
effective than the bottom-up approach for core decomposition [9],
but is much less efficient for truss decomposition. This is mainly
because the computed edges cannot be effectively removed (unlike
the computed vertices in core decomposition) due to the more in-
tricate definition of k-truss. Therefore, the top-down approach is
only effective for computing the top-t k-classes, for some reason-
ably small t.

6.2 Upper Bounding
To avoid operating on the entire input graph, the top-down ap-

proach first obtains a candidate subgraph for computing the k-class

818



Procedure 6 UpperBounding(Gnew )
1. partition VGnew into P = {P1, P2, . . . , Pp},

s.t. each NS(Pi) fits in memory;
2. for each Pi ∈ P do
3. let H be the neighborhood subgraph NS(Pi) of Pi;
4. for each internal edge e = (u, v) of H do
5. let xu (or xv) be the maximum value of x s.t.

there are x edges incident to u (or v),
excluding (u, v), with support at least x;

6. ψ(e)← (min{sup(e), xu, xv}+ 2);

for a given k. To extract a candidate subgraph for this purpose, we
need to determine an upper bound of the truss number of the edges
in the input graph G.

We outline the algorithm for computing the upper bound in Pro-
cedure 6. The input to Procedure 6 is a graph, Gnew , where each
edge e in Gnew is associated with sup(e) (computed at Step 1 of
Algorithm 7). The algorithm partitionsGnew into p ≥ 2|Gnew |/M
neighborhood subgraphs [13], so that each neighborhood subgraph
H fits in memory. Then, for each H , the upper bound of the truss
number of an internal edge e = (u, v) of H , denoted by ψ(e), is
computed as follows.

Let w be an end vertex of the edge e = (u, v), i.e., w = u or
w = v. We compute the maximum value of xw such that there
are xw edges incident to w, excluding e, with support at least xw.
Then, we set ψ(e) = (min{sup(e), xu, xv}+ 2).

Example 4. Consider Figure 2. For each edge e in the 5-class,
ψ(e) = 5. Next consider (d, g). The support sup((d, g)) is 3.
xd = 3 since there are 3 edges other than (d, g) incident to d with
support 3. However xg = 2 since there are only 2 edges other than
(d, g) with support at least 2. Hence ψ((d, g)) = 2 + 2 = 4.

The following lemma shows that ψ(e) is an upper bound of ϕ(e).

LEMMA 2. Given a graph G and any neighborhood subgraph
H of G, we have ϕ(e) ≤ ψ(e), where e = (u, v) is an internal
edge of H and ψ(e) is computed in H .

PROOF. First, since e is an internal edge ofH , all edges incident
on u or v are also present inH . Suppose to the contrary that ϕ(e) >
ψ(e). Then, by the definition of k-truss, e is contained in more
than (ψ(e) − 2) triangles, which also means that there are more
than (ψ(e)− 2) edges incident on both u and v with support more
than (ψ(e)− 2). However, this implies that sup(e) > (ψ(e)− 2),
xu > (ψ(e)− 2) and xv > (ψ(e)− 2), which contradicts the fact
that ψ(e) = (min{sup(e), xu, xv}+ 2).

6.3 Enumerating Topt Truss Classes
The second part of the top-down approach mainly concerns with

the computation of the top-t k-classes, from kmax down to (kmax−
t+ 1), for a given t, as outlined in Algorithm 7.

The first step in Algorithm 7 calls Algorithm 3. However, since
the top-down approach has no need of the lower-bound on the truss
number, φ(e), of each edge e, we do not compute φ(e) in Algo-
rithm 3. Instead, we require sup(e) for computing an upper-bound
on the truss number, as discussed in Section 6.2. That is, Steps 6-7
of Algorithm 3 are not processed and we replace φ(e) by sup(e).
However, Algorithm 3 still removes all the edges that belong to Φ2

to reduce the search space for the later stage of top-down truss de-
composition. Note that removing Φ2 does not affect the support of
any other edge that is part of some triangle.

The top-down computation then starts from the largest possible
k based on the upper-bounds of the truss numbers, extracts a candi-
date subgraph H for computing Φk (Steps 4-6), compute Φk from

Algorithm 7 Top-Down Truss Decomposition
Input: G = (VG, EG)
Output: the top-t k-class, Φk, for kmax ≥ k > (kmax − t)

1. call Algorithm 3, but computing sup(e) instead of φ(e);
2. call UpperBounding(Gnew );
3. k ← max{ψ(e) : e ∈ EGnew };
4. let Uk = {v : v ∈ VGnew , ∃e = (u, v) ∈ EGnew , s.t. ψ(e) ≥ k

and ∀i > k: e ̸∈ Φi};
5. let H be the neighborhood subgraph NS(Uk) of Uk;
6. scan Gnew to extract H;
7. call Top-Down-Procedure(H, k);
8. k ← (k − 1);
9. repeat Steps 4-8 until the top-t k-classes are computed

or Gnew becomes empty;

Procedure 8 Top-Down-Procedure(H, k)
1. compute sup(e) for each internal edge e of H in memory;
2. while(∃ internal edge e = (u, v) of H s.t. sup(e) < k − 2)
3. for each triangle△uvw in H containing e do
4. decrease the support of (u,w) and (v, w) by 1;
5. remove e from H;
6. remove any edge e ∈ Tj (j > k) from H and

output all remaining internal edges of H as Φk;
7. for each edge e = (u, v) ∈ Φj , where e in Gnew and j ≥ k, do
8. if(for every triangle△uvw in Gnew: ∃i1, i2 ≥ k s.t.

(u,w) ∈ Φi1 and (v, w) ∈ Φi2)
9. remove e from Gnew ;

H (Step 7), and then moves on to (k − 1), until all the top-t k-
classes are computed, or Gnew becomes empty (in which case all
the k-classes, for 2 ≤ k ≤ kmax, are computed).

The candidate subgraph H is extracted from Gnew in the same
way as Steps 3-5 of Algorithm 4, except that Uk is computed based
on ψ(e) instead of φ(e). However, the first value of k (let it be
k1st ) computed by Step 3 of Algorithm 7 may be much greater
than the true kmax, in which case we will need to repeat Steps 4-
8 for (k1st − kmax) times before the first non-empty k-class, i.e.,
Φkmax , is computed. To avoid this, we may use the smallest k (let
it be kinit ) such that the corresponding candidate subgraphH fits in
memory. We may then simply apply the in-memory truss decom-
position algorithm to compute all k-classes, for k in the range from
kinit to k1st . Then, we start the top-down process from (kinit − 1).

Step 7 of Algorithm 7 calls Procedure 8 to compute Φk from the
candidate subgraph H . The algorithm is similar to the bottom-up
procedure given in Procedure 5, except for the following differ-
ences. First, we iteratively remove all internal edges of H with
support less than (k − 2), and then output the remaining internal
edges as Φk. Second, we remove an edge e from Gnew only if it
is no longer involved in any triangle that contains an edge whose
truss number is yet to be computed.

Procedure 8 assumes thatH can fit in main memory. We process
the case that H cannot fit in main memory in a similar way as we
do for the same case in the bottom-up computation, as discussed in
Section 5.2. A similar version of Procedure 8 for handling the case
that H cannot fit in memory is given in the Appendix.

The following example illustrates how top-down truss decompo-
sition is processed.

Example 5. Consider top-down truss decomposition for our run-
ning example in Figure 2. After Step 1 of Algorithm 7, Gnew con-
tains all edges in G except for (i, k). After calling Procedure 6,
UpperBounding(Gnew), we get all the ψ(e) values for edges e in
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Figure 5: Top-Down Truss Decomposition for t = 2

Gnew, and k is set to 5 in Step 4 of Algorithm 7. The induced
subgraph of U5 in Gnew is shown in Figure 5(a). H = NS(U5)
contains also vertices f, g, l, k. Next we call Procedure 8 to ex-
tract Φ5, which is determined to be the graph in Figure 5(a). We
can remove all of these edges except for (e, d), which is involved
in △edg and the truss numbers of (e, g) and (d, g) are not ≥ 5.
Next we set k = 4, and repeat Steps 4-8 of Algorithm 7. The in-
duced subgraph of U4 in Gnew is shown in Figure 5(b). Note that
the upper bounds ψ(e) for all edges here are 4 except for (e,d),
ψ((e, d)) = 5. H = NS(U4) also contains vertices l and k. Next
we run Procedure 8 to compute Φ4, which is the set of edges in the
clique {f, h, i, j}. The 6 edges involved are then removed from
Gnew except for (f, h). Since t = 2, the algorithm terminates
here.

6.4 Correctness and Complexity
We first prove the correctness of Algorithm 7 as follows.

THEOREM 4. Given a graph G, Algorithm 7 correctly com-
putes the top-t Φk in G, for kmax ≥ k > (kmax − t).

PROOF. In order to prove the correctness of Algorithm 7, we
prove that Procedure 8 (or Procedure 10 in the Appendix) correctly
computes Φk, we need to show that the following statement holds,
Statement 1: the candidate subgraph H contains all edges of Φk

as internal edges and all edges that form triangles with any edge
in Φk, let us refer to this set of edges as Φ∆

k . If Statement 1 is true,
then Procedure 8 (10) returns Φk since these procedures simply
operate by following the definition of Φk. Statement 1 is true if
Gnew contains Φ∆

k because H is the neighborhood subgraph of
all edges e in Gnew with unknown truss number where φ(e) ≥
k. From Lemma 2, this set of edges includes all edges of Φ∆

k if
Gnew contains Φ∆

k at the time H is to be extracted at Steps 4-6 of
Algorithm 7. Next we prove Statement 2: Gnew contains Φ∆

k .
When k ≥ kmax, apparently Gnew contains Φ∆

k since no edge
has been removed fromGnew yet. According to Steps 7-9 (or Steps
15-17 of Procedure 10 in Appendix), edges are removed fromGnew

only if they are no longer involved in any triangle that contains an
edge whose truss number is yet to be computed. Thus, by induction
on k for Statement 2 and the correctness of Algorithm 7, with a
base case of k = kmax, Gnew always contains Φ∆

k when H is
to be extracted for the enumeration of the k-class and the theorem
follows.

Next, we analyze the complexity of Algorithm 7.

THEOREM 5. Let G be the input graph. Let H be the set of
candidate subgraphs extracted at Steps 4-6 of Algorithm 7. Let
H′ ⊆ H be the subset of candidate subgraphs that cannot fit in
memory. Algorithm 7 computes the top-t Φk in G, for kmax ≥
k > (kmax − t), using O((m

M
+ t)scan(|G|) +

∑
H∈H′ |△H |)

I/Os and O(m1.5 +
∑

H∈H |△H |) CPU time.

PROOF. The analysis is similar to that of Theorem 3.

7. EXPERIMENTAL EVALUATION
We compare the performance of our algorithms with the existing

in-memory and MapReduce algorithms [15, 16]. All the sequen-
tial algorithms were tested on a machine with the Intel Core2 Duo
2.80GHz CPU, 4GB RAM, and the Ubuntu 11.04 operating sys-
tem. The MapReduce algorithm [16] was ran on an Amazon Elas-
tic MapReduce cluster with 20 nodes, each of which has the com-
puting capacity of a 1.0 GHz 2007 Xeon processor, 1.7GB RAM,
and 160GB instance storage; the Hadoop (version 0.20.205) im-
plementation of MapReduce is deployed and the default setting is
assumed.

Datasets. We use the following nine datasets: Gnutella Internet
peer-to-peer network (P2P), High Energy Physics collaboration
network (HEP), Amazon product co-purchasing network (Amazon),
Wikipedia Talk network (Wiki), Autonomous systems by Skitter (Skit-
ter), LiveJournal (LJ), Blogs (Blog), Billion Triple Challenge (BTC),
and World Wide Web of UK (Web). The first six are from the Stan-
ford Network Analysis Project (snap.stanford.edu). P2P represents
hosts as vertices and the connections between the hosts as edges.
HEP represents each paper as a vertex and each citation between
two papers as an edge. Amazon represents products as vertices and
edges exist between frequently co-purchased products. Wiki repre-
sents Wikipedia users as vertices and an edge indicates that a user
once edited a talk page of another user. Skitter describes an internet
topology constructed from several sources to about a million des-
tinations. LJ is from the free online community LiveJournal (live-
journal.com), which represents members as vertices and friend hip
as edges. Blog is from the blogs network and has vertices as blogs
and an edge indicates that two blogs appear in the same search re-
sult of the top-15 queries published by Technorati (technorati.com).
BTC is an RDF graph cosntructed from the Billion Triple Chal-
lenge (vmlion25.dei.de). Web is from the Yahoo! webspam dataset
(barcelona.research.yahoo.net) in which webpages are represented
as vertices and hyperlinks as edges. Some statistics of the datasets
are shown in Table 2. Note that the median degree of most datasets
is rather small due to the heavy tail of power-law degree distribu-
tion observed in these graphs.

Table 2: Statistics of datasets (K = 103, M = 106, G = 109):
the number of vertices and edges (|VG| and |EG|), disk storage
size (in bytes), maximum and median degree (dmax and dmed ),
and the largest k for any k-truss (kmax )

|VG| |EG| size dmax dmed kmax

P2P 6.3K 41.6K 237K 97 3 5
HEP 9.9K 52.0K 317K 65 3 32

Amazon 0.4M 3.4M 47.9M 2752 10 11
Wiki 2.4M 5.0M 66.5M 100029 1 53

Skitter 1.7M 11.0M 149.1M 35455 5 68
Blog 1.0M 12.8M 177.2M 6154 2 49
LJ 4.8M 69M 809.1M 20333 5 362

BTC 165M 773M 10.0G 1637619 1 7
Web 106M 1092M 12.2G 36484 2 166

7.1 Performance of InMemory TD Algorithms
We first assess the efficiency of the improved in-memory algo-

rithm (i.e., Algorithm 2), denoted by TD-inmem+ (TD for Truss
Decomposition), compared with the in-memory algorithm [15], de-
noted by TD-inmem.

Table 3 reports the results on the following four datasets, Wiki,
Amazon, Skitter, and Blog, which can fit in memory. For the
other larger datasets, LJ, BTC, and Web, both algorithms did not
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complete within reasonable time (longer than a week) due to large
amount of memory usage (over 4GB memory).

Table 3: Running time (wall-clock time in seconds) and peak
memory usage (bytes) of TD-inmem+ and TD-inmem

Wiki Amazon Skitter Blog
Time (TD-inmem) 8856 68 9204 1261
Time (TD-inmem+) 121 31 281 361
Speedup ratio 73.2 2.2 32.8 3.5
Mem-usage (TD-inmem) 966M 295M 1.4G 715M
Mem-usage (TD-inmem+) 846M 398M 1.6G 1.1G

The results show that TD-inmem+ is apparently much faster than
TD-inmem for all datasets. The speedup is from 2.2 times up to
73.2 times faster, with comparable memory consumption. The re-
sults suggest that our improved in-memory algorithm not only at-
tains a lower theoretical time complexity, but also significantly im-
proves the efficiency in practice.

7.2 Performance of BottomUp TD Algorithm
We evaluate the performance of the I/O-efficient bottom-up algo-

rithm, denoted by TD-bottomup, compared with Cohen’s MapRe-
duce algorithm [16] that also does not require to keep the entire
input graph in main memory, denoted by TD-MR.

Table 4 reports the running time of TD-bottomup and TD-MR.
Note that when the input graph can fit in memory, our I/O-efficient
algorithms are simply the in-memory algorithm, TD-inmem+. Thus,
we skipped the smaller datasets (which are shown in Table 3) and
ran TD-bottomup on the larger networks, LJ, BTC, and Web.

However, we were not able to obtain the result on these large
datasets for TD-MR because it is at least more than 3 orders of
magnitude slower than our algorithm. In fact, we were only able
to obtain the results for TD-MR on the two smallest datasets, HEP
and P2P, as shown in Table 4.

Table 4: Running time (wall-clock time in seconds) of TD-
bottomup and TD-MR

P2P HEP LJ BTC Web
Time (TD-bottomup) <1 <1 664 1768 6314
Time (TD-MR) 4200 14760 - - -

The results show that TD-bottomup takes less than 1 second to
perform truss decomposition in HEP and P2P, but TD-MR takes
4200 and 14760 seconds on 20 machines. The drastically worse
performance of TD-MR is because MapReduce is not a suitable
framework for the task of truss decomposition. On the contrary,
TD-bottomup uses a single machine and takes less or similar amount
of time on datasets with size over 30000 times larger than HEP. The
results thus verify that our I/O-efficient algorithm is more feasible
for truss decomposition in massive networks.

7.3 Performance of TopDown TD Algorithm
For the top-down algorithm, denoted by TD-topdown, we focus

on the three large graphs, LJ, BTC, and Web.
We used TD-topdown to compute both the top-20 k-classes and

all the k-classes. Table 5 reports the running time of TD-topdown,
where we also show the running time of TD-bottomup as a refer-
ence.

The results show that for LJ and Web, the top-down approach
has a significant benefit in computing the top-20 results than the
bottom-up approach. For the BTC dataset, since kmax < 20, TD-
topdown computes all the k-classes and has a comparable speed

Table 5: Running time (wall-clock time in seconds) TD-
topdown and TD-bottomup

LJ BTC Web
TD-topdown (top-20) 149 1744 2354

TD-topdown 941 1744 -
TD-bottomup 664 1768 6314

to that of TD-bottomup. However, TD-topdown is about 6.3 times
slower than TD-bottomup for computing all the k-classes, and it
cannot finish within reasonable time for the largest dataset, i.e.,
Web. The results thus show that TD-topdown is suitable for com-
puting the top-t results for some small t or for processing datasets
that have a small kmax .

7.4 KTruss vs. KCore
In this experiment, we show that k-truss is better than k-core

as a type of cohesive subgraphs. We compute the k-core that has
the maximum core number, i.e., the non-empty k-core that has the
largest value of k. We use cmax to denote the maximum core num-
ber, in order to distinguish it from the maximum truss number (i.e.,
kmax ), since cmax ̸= kmax in general. We denote the kmax -truss
by T and the cmax -core by C in this experiment.

Table 6: Statistics of the kmax -truss, T , and the cmax -core, C,
of various datasets (K = 103): the number of vertices (VT /VC ),
the number of edges (ET /EC ), the maximum truss/core num-
ber (kmax /cmax ), and the clustering coefficient (CCT /CCC ) of
T and C, respectively

VT /VC ET /EC kmax /cmax CCT /CCC

Amazon 5K/33K 55K/442K 11/10 0.99/0.72
Wiki 237/700 32K/147K 53/131 0.64/0.42
Skitter 185/222 16K/33K 68/111 0.95/0.71
Blog 49/387 2K/54K 49/86 1.00/0.52
LJ 383/395 146K/155K 362/372 1.00/0.99
BTC 653/1295 10K/838K 7/641 0.45/0.00002
Web 498/862 82K/148K 166/165 1.00/0.59

Table 6 reports some statistics of T and C. The results show that
the size of T , in terms of both the number of vertices and edges,
is significantly smaller than that of C, indicating that the “core” of
a network represented by the kmax -truss (i.e., T ) and that by the
cmax -core (i.e., C) are radically different.

From another angle, the result that kmax is much smaller than
cmax for most datasets implies that although the cmax -core is a sub-
graph in which vertices have a large number of edge-connections to
each other, most of these connections do not really form tightly-knit
clusters or communities as do in the kmax -truss. This is verified by
the clustering coefficient [33] of T and C, i.e., CCT and CCC

in Table 6. The result clearly indicates that the kmax -truss and its
vertices tend to form clusters much more likely than the cmax -core.

It is also worth noting that kmax and cmax are differed by only
1 for Amazon and Web. Since the k-truss is a (k − 1)-core but
not vice versa, e.g., the 11-truss of Amazon is a 10-core or more
precisely a subgraph of the 10-core, the result that the 11-truss is
so much smaller than the 10-core reveals that out of a large part of
a network seemingly to be well-connected, it is possible that only a
small portion is truly tightly connected.

The k-core can be used as an effective heuristic for maximal
clique enumeration [17], since a clique of size k must be in a
(k − 1)-core, which can be significantly smaller than the original
graph. However, our result shows that the k-truss can be a much
better candidate since its size is in general much smaller than the
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k-core. Note that triangles are fundamental units in a clique and a
clique of size k must be in a k-truss.

We also know that the size of the maximum clique is bounded
by (cmax + 1) and kmax . Thus, our result shows that kmax gives a
much lower upper bound on the size of the maximum clique. For
example, we know that the maximum clique in the Wiki graph has
at most 53 vertices as bounded by kmax , instead of 132 vertices as
bounded by (cmax + 1).

In conclusion, the results demonstrate that the “core” of a net-
work represented by the kmax -truss (i.e., T ) is significantly more
cohesive or tightly-knit than that by the cmax -core (i.e., C). The
results verify that triangle-based connection (as in k-truss) is more
robust than edge-based connection (as in k-core). As cohesive sub-
graphs are useful for studying important properties (e.g., connec-
tivity, robustness, centrality, etc.) of a network, k-truss is a better
candidate than k-core for network analysis and related tasks. In
addition, we also show that k-truss can be employed as a more
effective heuristic for maximal clique enumeration and maximum
clique finding.

8. RELATED WORK
The most closely related works to k-truss are the cohesive sub-

graphs [18], such as clique [21, 7], n-clique [22], k-plex [29], n-
clan [24], n-club [24], various types of quasi-cliques [23, 1], and
k-core [28], which we have discussed in Section 1.

In addition to the cohesive subgraphs, k-truss is also related to
dense subgraphs, in particular, the DN-graph [31], which is a con-
nected subgraph in which the lower bound on the number of tri-
angles of edges is locally maximized. Their definition renders the
problem NP-hard and their solution is approximate.

The only existing algorithms for truss decomposition were pro-
posed by Cohen [15, 16]. Their first algorithm is an in-memory
algorithm [15], which is slow for handling large real-world graphs
with power-law distribution. Our in-memory algorithm improves
their algorithm by removing the bottleneck for processing vertices
with high degree. Their second algorithm is a MapReduce algo-
rithm [16], which is actually not suitable for the task of truss de-
composition due to the iterative process that blocks parallelization.
We verified in our experiments that this MapReduce algorithm is
inefficient and cannot handle large graphs. On the contrary, our
I/O-efficient algorithm handles large graphs efficiently.

The framework of our top-down algorithm is similar to that of
the algorithm for core decomposition [9], but the detailed design of
our algorithms is totally different from theirs and also more com-
plicated than theirs. In particular, the strong triangular connection
within the k-truss does not allow effective pruning in top-down
truss decomposition as in top-down core decomposition [9]. As
a solution for finding k-truss for all k, this paper proposes a more
effective bottom-up approach. In direct contrast, the bottom-up ap-
proach is not suitable for core decomposition in large graphs [9],
since the k-cores for small k are generally too large.

Truss decomposition is different from triangle counting [27, 20]
since triangle counting is only one step invoked in the iterative pro-
cess of k-truss computation, and any efficient triangle counting al-
gorithm can be applied. In particular, we apply the I/O-efficient al-
gorithms [14, 13] to compute the support of edges. However, ensur-
ing I/O-efficient support counting is only one part of our algorithms
and we still have to ensure all the other steps in truss decomposition
also I/O-efficient. For example, the bottom-up/top-down steps for
iterative truss decomposition.

Other related work includes I/O-efficient maximal clique enu-
meration [10, 11, 12]. Their algorithms cannot be extended to
compute k-truss. In fact, both the graph partitioning step and the

subgraphs being extracted out of the partition in their algorithms
are different from our algorithms.

9. CONCLUSIONS
We proposed efficient algorithms for truss decomposition: an in-

memory for fast truss decomposition in networks of moderate size,
a bottom-up I/O-efficient algorithm for massive networks that are
too large to fit in memory, and a top-down algorithm tailored for
applications that prefer the top-t k-trusses. We verified by experi-
ments on a range of real datasets that our algorithms significantly
outperform the existing in-memory algorithm [15] and the MapRe-
duce algorithm [16] on both small and large networks. We also
showed that k-truss is more suitable than k-core as a cohesive sub-
graph and it reveals tightly-knit clusters of a network.
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APPENDIX
Procedure 9 is called at Step 6 of Algorithm 4 in Section 5.2, to
compute Φk in the candidate subgraph H for the case when H
cannot fit in memory. The framework of Procedure 9 is similar
to Algorithm 3, while the computation of the Φk edges at Steps
7-11 of Procedure 9 is similar to that at Steps 1-5 of Procedure
5. The detailed explanation is thus omitted here but can be found
in Sections 5.1 and 5.2 where Algorithm 3 and Procedure 5 are
discussed.

Procedure 9 Bottom-Up-Procedure-2(H, k)
1. sup(e)← 0 for all internal edges of H;
2. H′ ← H;
3. while(not all edges in H′ are removed)
4. partition VH′ into P = {P1, P2, . . . , Pp},

s.t. each Pi ∈ P fits in memory;
5. for each Pi ∈ P do
6. let F be the neighborhood subgraph NS(Pi) of Pi;
7. compute sup(e) for each internal edge e of F ;
8. while(∃ internal edge e = (u, v) of F,

s.t. sup(e) ≤ (k − 2) )
9. output e as a Φk edge;

10. for each triangle△uvw in F containing e do
11. decrease the support of (u,w) and (v, w) by 1;
12. remove e from F , H , and Gnew ;
13. remove all internal edges of F from H′;
14. repeat Steps 2-13 until all remaining internal edges of H

have support greater than (k − 2);

Procedure 10 is called at Step 7 of Algorithm 7 in Section 6.3,
to compute Φk in the candidate subgraph H for the case when H
cannot fit in memory. The framework of Procedure 10 is similar
to Procedure 9, while the other computation details are the same as
Procedure 8.

Procedure 10 Top-Down-Procedure-2(H, k)
1. sup(e)← 0 for all internal edges of H;
2. H′ ← H;
3. while(not all edges in H′ are removed)
4. partition VH′ into P = {P1, P2, . . . , Pp},

s.t. each Pi ∈ P fits in memory;
5. for each Pi ∈ P do
6. let F be the neighborhood subgraph NS(Pi) of Pi;
7. compute sup(e) for each internal edge e in F ;
8. while(∃ internal edge e = (u, v) of F,

s.t. sup(e) < (k − 2) )
9. for each triangle△uvw in F containing e do

10. decrease the support of (u,w) and (v, w) by 1;
11. remove e from F and H;
12. remove all internal edges of F from H′;
13. repeat Steps 2-12 until all remaining internal edges of H

have support at least (k − 2);
14. remove any edge e ∈ Tj (j > k) from H and

output all remaining internal edges of H as Φk;
15. for each edge e = (u, v) ∈ Φj , where e in Gnew and j ≥ k, do
16. if(for every triangle△uvw in Gnew : ∃i1, i2 ≥ k s.t.

(u,w) ∈ Φi1 and (v, w) ∈ Φi2)
17. remove e from Gnew ;
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