
Querying Schemas With Access Restrictions

Michael Benedikt
Oxford University, UK

michael.benedikt@cs.ox.ac.uk

Pierre Bourhis
Oxford University, UK

pierre.bourhis@cs.ox.ac.uk

Clemens Ley
EPFL, Switzerland

ley.clemens@gmail.com

ABSTRACT

We study verification of systems whose transitions consist of
accesses to a Web-based data-source. An access is a lookup
on a relation within a relational database, fixing values for
a set of positions in the relation. For example, a transition
can represent access to a Web form, where the user is re-
stricted to filling in values for a particular set of fields. We
look at verifying properties of a schema describing the possi-
ble accesses of such a system. We present a language where
one can describe the properties of an access path, and also
specify additional restrictions on accesses that are enforced
by the schema. Our main property language, AccLTL, is
based on a first-order extension of linear-time temporal logic,
interpreting access paths as sequences of relational struc-
tures. We also present a lower-level automaton model, A-
automata, which AccLTL specifications can compile into.
We show that AccLTL and A-automata can express static
analysis problems related to “querying with limited access
patterns” that have been studied in the database literature
in the past, such as whether an access is relevant to an-
swering a query, and whether two queries are equivalent in
the accessible data they can return. We prove decidability
and complexity results for several restrictions and variants
of AccLTL, and explain which properties of paths can be
expressed in each restriction.

1. INTRODUCTION
Many data sources do not expose either a bulk export

facility or a query-based interface, enforcing instead many
restrictions on the way data is accessed. For example, access
to data may only be possible through Web forms, which
require bindings for particular fields in the relation [16, 4].
Querying with limited access patterns also arises in other
middleware contexts (e.g. federated access to data in Web
services) as well as in construction of query interfaces on
top of pre-determined indexed accesses [20]. For example,
a Web telephone directory might allow several Web forms
that serve as access methods to the underlying data. It may

have an access method AcM1 accessing a relation

Mobile#(name,postcode, street,phoneno),
where AcM1 allows one to enter a mobile phone customer’s
name (the underlined field) and access the corresponding set
of tuples containing a postal code, mobile phone number and
street name. The same site might have an access method
AcM2 on relation

Address(street,postcode,name,houseno)
allowing the user to enter a street name and postcode, re-
turning all corresponding resident names and housenumbers.
Formally an access method consists of a relation and a col-
lection of input positions: for AcM1, position 1 is the sole
input position, while for AcM2 the first two positions are
input. An access consists of an access method plus a bind-
ing for the input positions – for example putting “Smith”
into method AcM1 is an access. The response to an access
is a collection of tuples for the relation that agree with the
binding given in the access. A schema of this sort defines a
collection of access paths: sequences consisting of accesses
and their responses.

The impact of “limited access patterns” has thus been the
subject of much study in the past decade. It is known that in
the presence of limited access patterns, there may be no ac-
cess path that completely answers the query, and there may
also be many quite distinct paths. For example, the query
Address(X,Y, “Jones”, Z) asking for the address of Jones is
not answerable using the access methods AcM1 and AcM2

above. There are certainly many ways to obtain the max-
imal answers: one could begin by obtaining all the street
names and postcodes associated with Jones in the Mobile#

table, entering these into the Address table to see if they
match Jones, then taking all the new resident names we
have discovered and repeating the process, until a fixedpoint
is reached. If, however, Jones does not occur as a name
in Mobile#, then this process will not yield Jones’ tuple in
Address. In general it is known [15] that for any conjunctive
query one can construct (in linear time) a Datalog program
that produces the maximal answers to a query under access
patterns: the program simply tries all possible valid accesses
on the database, as in the brute-force algorithm above.

In the absence of a complete plan, how can we determine
which strategy for making accesses is best? Recent works
[4, 3] have proposed optimizing recursive plans, using access
pattern analysis to determine that certain kinds of accesses
can not extend to a useful path. An example is the work in
[3] which proposes limiting the number of accesses to be ex-
plored by determining that some accesses are not “relevant”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 7
Copyright 2012 VLDB Endowment 2150-8097/12/03... $ 10.00.

634

Mobile#(“Smith”,

?,?,?)

Address(“Parks Rd”,OX13QD,?,?)

Known Facts=

Mobile#(“Smith”,OX13QD,“Parks Rd”,5551212)

…

Known Facts=

Address(“Parks Rd”,OX13QD,“Smith”,13),

Address(“Parks Rd”,OX13QD,“Jones”,16),

Mobile#(“Smith”,OX13QD,“Parks Rd”,5551212)…

Known Facts = ∅

Known Facts= ∅

...

...

Figure 1: Tree of possible paths associated with a

schema

to a query. An access is long term relevant if there is an
access path that begins with the access and uncovers a new
query result, where the removal of the access results in the
new result not being discovered. [3] gives the complexity of
determining relevance for a number of query languages.

Long term relevance is only one property that can be used
to measure the value of making a particular access – for ex-
ample we may want to know whether there is an access that
reveals several values in the query result. Furthermore, “lim-
ited access patterns” represent only one possible restriction
that limits the possible access paths through a web interface.
Many other restrictions may be enforced, e.g:

● Restrictions that follow from integrity constraints on
the data: e.g. a mobile phone customer name will not
(arguably) overlap with a street name. Thus in an it-
erative process for answering the query given above,
we should not bother to make accesses to the Mobile#

table using street names we have acquired earlier in
the process. It is also easy to see that key constraints,
and more generally functional dependencies, can play
a crucial role in determining whether an access is rel-
evant.

● Access order restrictions: e.g. before making any ac-
cess to Mobile#, the interface may require a web user
to have made at least one access to Address.

● Dataflow restrictions; before performing an access to
Mobile# on a name, the web user must have received
that name as a response to a call to Address.

Ideally, a query processor should be able to inspect an ac-
cess and determine whether it is a good candidate for use,
where the assumptions on the paths as well as the notion of
“good candidate” could be specified on a per-application ba-
sis. In this paper we look for a general solution to specifying
and determining which accesses are promising: a language
for querying the access paths that can occur in a schema.
We show that every schema can be associated with a labelled
transition system (LTS), with transitions for each access and
nodes for each “revealed instance” (information known after
a set of accesses). A fragment of the LTS for the schema
with access methods AcM1 and AcM2 is given in Figure 1.
Paths through the LTS represent possible access/response
sequences of the Web-based datasource. There are infinitely
many paths – in fact every access could have many possible
responses. But the access restrictions in the schema place
limitations on what paths one can find in the LTS. We can
then identify a “query on access paths” with a query over

this transition system. This work will provide a language
that allows the user to ask whether a given kind of path
through instances of the schema is possible: e.g. is there
a path that leads to an instance where a given conjunctive
query holds, but where the path never uses access AcM1? Is
there a path that satisfies a given set of additional dataflow,
access order restrictions, or data integrity constraints?

Paths are often queried with temporal logic [13]. We will
look at natural variations of First-Order Linear Temporal
Logic (FOLTL) for querying access paths. We look at a
family of languages denoted AccLTL(L) (“Access LTL”), pa-
rameterized by a fragment L of relational calculus. It has
a two-tiered structure: at the top level are temporal opera-
tors (“eventually”, “until”) that describe navigation between
transitions in a path. The second tier looks at a particular
transition, where we have first-order (i.e. relational calcu-
lus) queries that can ask whether the transitions satisfy a
given property described in L. The relational vocabulary we
consider for the “lower tier” will allow us to describe transi-
tions given by accesses; it allows us to refer to the bindings
of the access, the access method used, and the pre- and
post-access versions of each schema relation. Consider the
following AccLTL sentence:

(¬∃n∃p∃s∃ph Mobile#pre(n, p, s, ph)) U

(∃n IsBindAcM1
(n) ∧ ∃s∃p∃h Addresspre(s, p, n, h))

The relational query prior to the “until” symbol U states
that there are no entries in Mobile#pre – the Mobile# ta-
ble prior to the access. The query after the until symbol U

states that an access was done with method AcM1 and bind-
ing n, where value n appeared in the Address table prior to
the access. Hence this “meta query” returns the set of access
paths which have no entries revealed in relation Mobile# un-
til an access AC is performed, where AC has method AcM1

and uses a name that already exists in the Address table.
In this work we will not be interested in returning all paths
satisfying a query (there are generally infinitely many). We
will check whether there is a path satisfying a given spec-
ification. This is a question of satisfiability for our path
query language. We may also want to check that every path
through the system is of a certain form; this is the validity
problem for the language – bounds for validity will follow
from our results on satisfiability.

We denote the logic containing the above sentence by
AccLTL(FO∃+

Acc), where FO∃+
Acc is the collection of positive

existential queries over a signature consisting of: the ac-
cess methods, bindings, and the pre- and post- access ver-
sion of each relation used in a transition. AccLTL(FO∃+

Acc)
can express a wide variety of properties. Unfortunately we
show that satisfiability for the logic is undecidable. How-
ever, we show that a rich sublanguage of AccLTL(FO∃+

Acc),
denoted AccLTL+, has a decidable satisfiability problem.
In AccLTL+ the formulas involving the bindings only oc-
cur positively. We give bounds on the complexity of this
fragment, using a novel technique of reduction to contain-
ment problems for Datalog. We then look at the exact com-
plexity of smaller language fragments, and show that the
complexity can go much lower – e.g. within the polynomial
hierarchy. The main thing we give up in these languages is
the ability to express dataflow restrictions. We also study
the complexity and expressiveness of extensions of the lan-
guages with inequalities and with branching time operators.
In summary, our contributions are:

635

● We present the first query language for reasoning about
the possible paths of accesses and responses that may
appear in a Web form or other limited-access data-
source.

● We show that combining a natural decidable logic for
temporal data (LTL) with conjunctive queries gives an
undecidable path query language.

● We show that by restricting to queries that are “bind-
ing positive”, we get a decidable path query language.
In the process we introduce a new automaton model
that corresponds to a process repeatedly querying a
Web data source. We show that analysis of these
“access automata” can be performed via reduction to
(decidable) Datalog containment problems. The au-
tomaton and logic specification languages are power-
ful enough to express a rich set of data integrity con-
straints, access order restrictions, and data flow re-
strictions.

● We show that the complexity of the logic can be de-
creased drastically by restricting the ability to express
properties of the bindings that occur in accesses. The
resulting language can still express important access
order and data integrity restrictions, but no dataflow
restrictions.

● We determine the impact adding inequalities to the re-
lational query language, and of adding branching op-
erators, both in terms of expressing critical properties
of accesses and on complexity of verification.

Organization: Section 2 gives the basic definitions re-
lated to access patterns, along with our family of languages
AccLTL(L). Section 3 gives our results about the full lan-
guage AccLTL(FO∃+

Acc) while Section 4 deals with AccLTL+

and its restrictions. Section 5 discusses extensions of AccLTL+.
Section 6 gives conclusions and overviews related work. Most
proofs are deferred to the full paper.

2. DEFINITIONS

Schemas and paths through a schema. Let Types be
some fixed set of datatypes, including at least the integers
and booleans. Our schemas extend traditional relational
schemas under the “unnamed perspective” [1]. A schema
Sch includes a set of relations {S1 . . . Sn}, with each Si as-
sociated with a function from {1 . . . ni}, where ni is the arity
of Si, to Types. We refer to the set {1 . . . ni} as the positions
of Si and the output of the function as the domain of the jth

position. An instance I for the schema consists of a finite
collection I(Si) of tuples for each relation Si, where a tuple
is a function from the positions of Si to the corresponding
domain.

A schema will also have a collection of access methods,
where each method AcM is associated with a relation Si

and a collection of input positions Inp(AcM). Informally,
each access method allows one to input a tuple of values for
Inp(AcM) and get as a result a set of matching tuples.

An access consists of an access method and a binding – a
mapping taking the input positions of the method to their
domains. A boolean access is one where the access method
has as inputs every position of the relation – it is thus a mem-
bership test. We will use an intuitive notation for accesses,
often omitting the access method. Mobile#(“Jones”, ?, ?, ?)
is an access to relation Mobile# asking for all phone num-
ber information for people named “Jones”. A boolean access

is Mobile#(“Jones”, “OX13QD”, “Parks Rd”,23)?, where we
add the ? to make clear it is an access.

Given an access (AcM, b̄), a well-formed output for AcM

(on instance I) is any set of tuples r in I in the relation of
AcM that is compatible with b̄ on the input positions. We
also refer to this as a well-formed response.

A sequence ((AcM1, b̄1), r1), . . . , ((AcMn, b̄n), rn) of ac-
cesses and well-formed responses for some instance I is an
access path for the instance I. We also refer to any sequence
of accesses and responses as an access path (without refer-
ence to any instance). Note that every such sequence is an
access path for some instance – the instance containing all
returned tuples. Given an access path p and an initial in-
stance I0 the configuration returned by p on I0, Conf(p, I0)
is the instance where relation Si contains I0(Si) unioned
with all tuples returned by any access to Si in p. When I0 is
empty or understood from context we refer to the instance
resulting from p, or Conf(p).

As mentioned in the introduction, one is not interested in
arbitrary paths, but those satisfying additional “sanity prop-
erties”. We allow our schemas to prescribe some common
additional properties of access methods, while additional re-
strictions can be expressed in the logics. The weakest prop-
erty we consider here is called idempotence: an access path
is idempotent if whenever the path repeats the same access,
it obtains the same results. This corresponds to the require-
ment that accesses are deterministic. A stronger property
is that accesses are exact: an access path is exact on an
instance I if for every access (AcM, b̄), the corresponding re-
sponse R contains exactly the tuples in the relation of AcM

which agree with b̄ on the input positions. An access path is
exact if it is exact for some input instance. Put another way,
an exact access path is one that contains sound and com-
plete views of the input data for all accesses made. Most
web sources are not expected to be exact – an online music
site will generally not contain information about all online
music. However, some forms may be known to have canon-
ical information – e.g. a web form accessing data from a
trusted government agency. We allow situations which mix
exact and non-exact accesses. In general, a schema may say
that some access methods are exact, some are idempotent,
and some are neither. Given a set of access methods S, we
say that an access path is S-exact if there is an instance I

such that the path is exact for all accesses with methods in
S, and similarly talk about S-idempotence.

Finally, we often do not want paths in which values for
access method inputs are “guessed”, but are only interested
in paths where the input to an access method is a value
already known. Given an instance I0 (representing the ”ini-
tially known information”) an access path p = a1, r1 . . . is
grounded in I0 if every value in a binding ai occurs either in
I0 or in a response from some aj with j < i. Groundedness
is a special kind of dataflow restriction – our largest logics
will be able to specify groundedness, along with more spe-
cialized dataflow restrictions, but we allow them also to be
imposed in the schema.

A labelled transition system (LTS) is of the from (No,L,T)
where No is a collection of nodes, L is a collection of edge
labels, and T is a collection of transitions — elements of
No×L×No. With any schema and initial instance I0 we can
associate a labelled transition system where the nodes are all
the instances containing I0 as a subinstance, the labels are
all the accesses, and there is a transition (I,AC, I′) whenever

636

there is some response r to AC such that Conf((AC, r), I) =
I′. We can also consider the restricted LTS where we only
allow paths with transitions (I,AC, I′) in which the access
AC is grounded at I, only paths that are idempotent, or
only paths that are exact for a given subset of the access
methods.

Logics for querying access paths. To query paths it is
natural to use Linear Temporal Logic (LTL) [13]. LTL for-
mulas define positions within a path. In Propositional LTL,
the positions within paths are associated with a proposi-
tional model over some set of propositions, and one can then
build up formulas from the propositions using the modal op-
erators, S (since) , U (until), X

−1 (previously), X (next), and
F (eventually). For example F(Q ∧ XP) holds on positions
i in a path p that come before some position j such that
proposition Q holds at j and proposition P holds on posi-
tion j+1. We want to extend LTL to deal with access paths,
which are not just a sequence of propositional structures.
Each position in an access path consists of an access and its
response; the corresponding path through the LTS defined
above consists of transitions t1 . . . tn, where a transition ti is
of the form (Ii, (AcMi, b̄i), Ii+1). There is obviously a one-
to-one correspondence between access paths and LTS paths
as above, and we will often identify them. Since the posi-
tions carry with them a relational structure, we will use a
variant of First Order Linear Temporal Logic (FOLTL) [13],
which allows the use of first-order quantifiers and variables
along with modal ones. We will deal here with a variant of
FOLTL in which first-order sentences describing properties
of positions can be nested inside temporal operators, but
not vice versa.

The embedded FO formulas have the ability to constrain
the instance before the access as well as afterwards. Hence,
for a given vocabulary Sch, we will consider formulas over
the relational vocabulary SchAcc consisting of two copies
Rpre,Rpost of each schema relation R ∈ Sch. In addition
SchAcc contains predicates IsBindAcM for each access method
AcM in Sch. The arity of IsBindAcM is the number of in-
put positions of AcM. An LTS path t1 . . . tn is associated
with a sequence of SchAcc structures, where the ith structure
M(ti), corresponding to ti = (Ii, (AcMi, b̄i), Ii+1) interprets
each predicate Rpre using the interpretation of R in Ii, each
predicate Rpost as the interpretation of R in Ii+1. The pred-
icate IsBindAcMi

holds of exactly the tuple b̄i while all other
predicates IsBindAcM are empty.

We now introduce Access Linear Temporal Logic (AccLTL

for short), our main specification formalism.

Definition 2.1. Let L be a subset of first-order logic over
SchAcc. The logic AccLTL(L) has as atomic formulas every
sentence of L, and is built up by the usual LTL constructors:

¬ϕ ∣ ϕ ∨ϕ ∣ ϕ ∧ϕ ∣ Xϕ ∣ ϕU ϕ

The semantics of AccLTL(L) is given by the relation (p, i) ⊧
ϕ, where p = t1 . . . tn is an LTS path and i ≤ n. It combines
the standard semantics of L formulas with the usual rules
for the constructors of LTL: 1. (p, i) ⊧ ϕ iff ϕ ∈ L and M(ti)
satisfies ϕ in the usual sense of first-order logic. 2. (p, i) ⊧ ¬ϕ
iff (p, i) ⊭ ϕ. 3. (p, i) ⊧ Xϕ iff (p, i+1) ⊧ ϕ. 4. (p, i) ⊧ ϕU ψ
iff there exists j ≥ i (p, j) ⊧ ψ and ∀i ≤ k < j, (p, i) ⊧ ϕ.
5. (p, i) ⊧ ϕ ∨ψ iff (p, i) ⊧ ϕ or (p, i) ⊧ ψ.

In the rest of the paper, we make use of the temporal op-
erators G (“globally”) and F (“eventually”). These operators

can be expressed using X and U as usual in LTL. The lan-
guage of a formula ϕ is the set of paths p such that (p,1) ⊧ ϕ.

Our main language of interest is AccLTL(FO∃+
Acc), where

FO∃+
Acc consists of all positive existential FO sentences over

the signature SchAcc.

Example 2.2 [3, 5] study query containment under (in our
terminology, grounded) access patterns. Query Q1 is con-
tained in Q2 relative to a schema with access patterns means
that for every grounded access path p, if the configuration
resulting from p satisfies Q1, then it also satisfies Q2. In-
formally, the facts about Q1 that we can determine given
the schema restrictions are contained in the facts we can
determine about Q2. Using a containment algorithm, one
can perform query minimization in the presence of access
restrictions.

In [5] containment under access restrictions is shown to
be decidable for conjunctive queries, while [3] studies the
complexity of the problem. One can see that Q1 is con-
tained in Q2 under grounded access patterns iff the following
AccLTL(FO∃+

Acc) formula is a validity (over grounded paths):

G¬(Qpre

1 ∧ ¬Qpre

2)
Here Q

pre

i is obtained from Qi by replacing each schema
predicate S by Spre (one could as easily use Spost). We will
show that containment under grounded access patterns can
be expressed in a restricted fragment of AccLTL(FO∃+

Acc),
as well as in an automaton-based specification formalism
where validity relative to grounded access paths is decidable
in 2EXPTIME. Our results will thus give tight bounds for
containment under grounded access patterns.

Example 2.3 A boolean access AC1 is said to be long term
relevant [3] (LTR) for a query Q on an initial instance I0
if there is an access path p = AC1, r1AC2, r2 . . . such that
the configuration I resulting from applying p to I0 satisfies
Q, and the configuration resulting from the path with AC1

dropped (i.e. AC2, r2 . . .) leads to a configuration where Q
does not hold. In the terminology of [3] we say it is LTR
under grounded accesses if there is a grounded access path
satisfying the above.

This property can be expressed in AccLTL(FO∃+
Acc) in the

following sense: for each I0,AC1 = (AcM1, b̄1), and Q there
is an AccLTL(FO∃+

Acc) formula ϕ which is satisfiable iff AC1

is LTR. Below we give the formula for I0 being the empty
instance:

F (¬Qpre ∧ IsBindAcM1
(b̄1) ∧Qpost)

The formula checks that there is a path p and a response r1
to AC1, such that Q holds after p but not after p,AC1, r1.
But for a boolean access AC1, the instance after p,AC1, r1
is the same as the one after AC1, r1, p.

As mentioned in the introduction, we often want addi-
tional data integrity restrictions to hold on the path. In
AccLTL(FO∃+

Acc), we can add on many data integrity restric-
tions, such as the disjointness of names from streets, which
would be expressed by a conjunction of several formulas,
including:

G(¬∃n∃p∃s∃ph∃hn∃n′ ∃pc Mobile#pre(n, p, s, ph)
∧ Addresspre(n, pc, n′, hn))

Similarly we can add access order restrictions and dataflow
restrictions. For example, the following would restrict to

637

paths in which names input to Mobile# must have appeared
previously in Address:

G((∃n IsBindAcM1
(n))→

∃n∃s∃hn∃pc IsBindAcM1
(n) ∧Addresspre(s, pc, n, hn))

Example 2.4 (Data integrity restrictions, continued) Let
Sch be a schema that includes, in addition to the access
methods, a set of functional dependencies di = Ri ∶ posi → ai,
where posi are positions of Ri and ai is a position of Ri. We
say that an access AcM is long-term relevant for Q under
Sch if there is an instance I ⊇ I0 satisfying all the FDs and
an access path that reveals Q to be true, as in Example 2.3,
but where each response returns only tuples in I.

This can be expressed in AccLTL(L≠∃), where L≠∃ is the
set of conjunctive queries with inequalities.

F (¬Qpre ∧ IsBindAcM(b̄1) ∧Qpost)∧
⋀
i

¬F[∃~y ~y′ Ri
pre(~y) ∧Ri

pre(~y′)∧

⋀
k ∈posi

yk = y′k ∧ yai
≠ y′ai

]

where Qpre and Qpost are defined as in the previous example.
We will look at languages with inequalities in Section 5.

Basic Computational Problems. The basic problem we
consider is satisfiability of a sentence ϕ, which by default
means that there is some access path p such that (p,1) ⊧ ϕ.
We will also consider satisfiability over grounded, idempo-
tent, and (S-) exact paths.

3. AN EXPRESSIVE LANGUAGE FOR AC

CESS RESTRICTIONS
Since satisfiability for first-order logic is undecidable, it

is clear that AccLTL(FO) has an undecidable satisfiability
problem. Our first main result is that the same holds even
when first-order formulas are restricted to be existential.

Theorem 3.1. Satisfiability of AccLTL(FO∃+
Acc) is unde-

cidable.

This is surprising, in that AccLTL(FO∃+
Acc) formulas deal

with a fixed set of existential sentences on the configuration,
and as a path progresses these queries can only move from
false to true as more tuples are exposed by accesses.

The proof works by reducing the problem of determin-
ing whether a collection Γ of functional dependencies (fds)
and inclusion dependencies (ids) implies another functional
dependency σ. Since this problem is known to be unde-
cidable [6], it suffices to reduce it to unsatisfiability of an
AccLTL(FO∃+

Acc) formula.
The difficulty here is that functional dependencies seem

to require negation inside a universal quantification, while
inclusion dependencies require quantifier alternation – in
AccLTL(FO∃+

Acc) we have only boolean combinations of pos-
itive formula. We now explain the main idea involved in
bridging this gap, which will also be used in later unde-
cidability arguments (Theorem 5.2). The schema for our
accesses includes a successor relation of a total order over
the tuples of each relation in Γ∪{σ}. The successor relation
is “created” via accesses – that is, we perform accesses that
reveal associations between a tuple and its successor. For

each relation R mentioned in Γ∪ {σ} we also have relations
Beg(R) and End(R). Our formula will enforce that these
contain the first and the last tuples in the total order, re-
spectively, by asserting the existence of additional accesses
to these relations that reveal the first and last tuple. After
all the relations are filled, the satisfaction of the different fd’s
and id’s in Γ and the failure of σ are verified. The satisfac-
tion of the dependencies makes use of the successor relation,
and we explain the idea for FDs. We verify a dependency for
one tuple at a time, iterating on the tuples according to the
order. We will use a new predicate ChkFD(R) whose arity
is twice the arity of R. This predicate will have a boolean
access. ChkFD(R)(~t,~t′) holding at some instance indicates
that ~t,~t′ is in accordance with the FDs on R. This will be
done in a “nested loop” (a pair of nested “untils” in the logic)
in which we iterate first over tuples ~t, then over tuples ~t′,
accessing them progressively within ChkFD(R). At every
access, we check whether the FD is satisfied, and if it is we
continue the iteration.

4. VERIFIABLE SPECIFICATIONS:

THE POSITIVE TRANSITION SUBLAN

GUAGE
The undecidability proof of AccLTL(FO∃+

Acc) makes use of
the ability of the logic to enforce that an access is made to
a binding that does not satisfy a certain relation. We now
consider a restriction of AccLTL(FO∃+

Acc) which adds an ad-
ditional monotonicity condition. A AccLTL(FO∃+

Acc) formula
ϕ is binding-positive if every atom of the form IsBind(~w) oc-
curs only positively in ϕ – that is, under an even number of
negations.

Definition 4.1. The logic AccLTL+ is the set of binding-
positive formulas in AccLTL(FO∃+

Acc).
Note that in AccLTL+ we can describe the most basic

dataflow constraint, the property of an access path being
grounded: an access is grounded iff for every transition in a
path, for every value that occurs in a binding, it occurs in
some relation in the instance prior to the access:

G(∃~x IsBindAcM(x1 . . . xm) ∧

⋀
i≤m

⋁
R ∈Sch

∃~yR(y1 . . . yn) ∧ ⋁
j ≤n

yj = xi)

Thus we can reduce satisfiability over grounded instances to
satisfiability over all instances. Furthermore all the exam-
ples in the introduction are expressible in this fragment; we
can express relevance of an access to a query as well as con-
tainment of queries under access patterns, restricting the
paths to satisfy many data integrity, dataflow, and access
ordering restrictions.

Our next main result is that this restriction suffices to give
decidability:

Theorem 4.2. Satisfiability of AccLTL+ is decidable in
3EXPTIME. The same is true for satisfiability over grounded
instances and satisfiability over idempotent and exact ac-
cesses.

We will show Theorem 4.2 by going through another spec-
ification formalism of interest in its own right, a natural au-
tomaton model for access paths. These are Access-automata

638

(A-automata for short), which run over access paths, using a
finite set of control states. At each transition (I, (AcM, b̄), I′)
of an access path the evolution function of the automaton
tells what new states (if any) it can move to at the next
position. The evolution function is a relational query that
makes use of the binding, pre- and post- condition of the
transition.

Definition 4.3 (A-Automaton). Let Sch be a schema,
SchAcc the corresponding schema with accesses (as defined in
Section 2), and C a set of constants. An Access-automaton
(A-automaton for short) over (Sch,C) is a tuple (S, s0, F, δ)
where

● S is a finite set of states, s0 ∈ S is an initial state,
F ⊆ S is a set of accepting states

● δ is a finite set of tuples of the form (s,ψ− ∧ ψ+, s′)
where s, s′ are states, ψ− is a positive boolean combina-
tion of negated FO∃+

Acc sentences that can not mention
the predicate IsBind, while ψ+ is a FO∃+

Acc sentence; all
these formulas can use constants in the given set C.

Semantics. Let A = (S, s0, F, δ) be an A-automaton and let
p be a path t1 . . . tn through the LTS associated with Sch,
where ti = (Ii, (AcMi, b̄i), Ii+1). A run of A on p assigns
to every ti a δi of the form (si, ϕi, si+1) in δ so that the
relational structure M(ti) associated with ti satisfies ϕi. A
run of A is further said to be accepting iff its first state is
initial and its last state is final. The language L(A) accepted
by an A-automaton A is the set of access paths for which
there is an accepting run. Note that an automaton only
accepts access paths, which by definition must satisfy at
least the property that for each i, Ii+1 extends Ii solely by
adding tuples to the relation of AcMi, and all tuples added
are consistent with the binding on the input positions of
AcMi. The definition of L(A) can be further qualified to
account for other sanity conditions (e.g. exactness).

A-automata are powerful enough to directly express rel-
evance of an access in the presence of dataflow restrictions
as well as disjointness constraints:

Proposition 4.4. Let Q and Q′ be two positive queries,
ACS a set of access methods, and Σ a set of disjointness
constraints. One can efficiently produce an A-automaton A
such that Q is contained in Q′ under limited access patterns
with disjointness constraints iff the language recognized by A
is empty. A similar statement holds for long-term relevance
of an access to Q under disjointness constraints.

The proposition above can be extended to a general result
stating that high-level logical specifications can be compiled
into A-automata. We say that an A-automaton A is equiv-
alent to an AccLTL sentence ϕ if the language of the ϕ is
the same as the language of A. The following result shows
that each AccLTL+ formula can be converted into an A-
automaton.

Lemma 4.5. For each AccLTL+ formula ϕ there is an
equivalent A-automaton of size exponential in the size of ϕ.

We will show that emptiness of A-automata is decidable.
Note that this decidability result together with Lemma 4.5
completes the proof of Theorem 4.2. Again, there are vari-
ants of the theorem for the various types of access, but we
focus on the case of general accesses in the body of the pa-
per.

Theorem 4.6. Emptiness of A-automata is decidable in
2EXPTIME. The same holds if accesses are restricted to be
exact or idempotent.

Notice that from Theorem 4.6 and Proposition 4.4 we get
a 2EXPTIME upper bound for containment and long-term
relevance. This improves on the prior known bounds [3, 5].

The proof uses a tight connection between A-automata
and the containment problem for Datalog queries within
positive first-order queries. This connection can also be ex-
ploited to give a corresponding lower bound:

Theorem 4.7. Emptiness of A-automata and satisfiabil-
ity of AccLTL+ are both 2EXPTIME-hard.

4.1 Automata, Datalog, And Proof Sketch of
Theorem 4.7

The proof of this result makes use of some new tools that
we overview here. We reduce the emptiness problem for
A-automata to the problem of whether a Datalog program
is contained within a positive first-order query. Roughly
speaking, we show that these automata can be captured
by a conjunction of a Datalog query and the negation of a
union of conjunctive queries. The reduction to this prob-
lem involves several stages, and the first step goes through
a syntactic subclass of A-automata, called “progressive A-
automata”, defined below. We will show that the problem of
testing emptiness of A-automata can be reduced to check-
ing the emptiness of a bounded number of progressive A-
automata.

Progressive Automata. In the following, given a boolean
combination of FO∃+

Acc formulas ϕ, we denote by ϕ̃ the for-
mula ∃x̄ ϕ′ where ϕ′ is obtained from ϕ by replacing each
atom IsBindAcM(t̄) by t̄ = x̄ and by replacing each predicate
Rpre by Rpost. For a set Φ of sentences, we say that a for-
mula is a complete Φ-type if it is a conjunction that contains
every formula of Φ either positively or negated. A formula is
a “pure pre” (resp. “pure post”) formula if it only mentions
predicates of the form Rpre (resp. Rpost).

Definition 4.8 (Progressive A-automaton). An
A-automaton A = (S, s0, F, δ) over (Sch,C) is progressive if
there is a pure pre formula Υpre(s0) that does not use the
predicate IsBindAcM, a set of pure post FO∃+

Acc sentences Φ,
and a function Υpost mapping the states of A to complete
Φ-types such that:

1. For any transition (s,ϕ, s′), if both IsBindAcM(t̄) and
IsBindAcM′(t̄′) are atoms in ϕ, then AcM = AcM′.

2. For any transition (s,ϕ, s′), ϕ implies Υpost(s′).
3. For any transition (s0, ϕ, s′) that leaves the initial state,
ϕ implies Υpre(s0).

4. For any transition (s,ϕ, s′) for which s and s′ are in
the same strongly connected component, Υpost(s) is
equivalent to Υpost(s′); also Υpost(s′) implies ϕ̃.

5. The maximal strongly connected components of A form
a sequence C1, . . . ,Ch. That is, for each i < h, there
is exactly one transition (s,ϕ, s′) such that s ∈ Ci and
s′ ∈ Ci+1. For such a transition that connects two max-
imal strongly connected components, all atoms of the
form IsBindAcM(t̄) must not contain variables; that is,
t̄ must be a sequence of constants.

6. The initial state is in C1 and all accepting states are
in Ch.

639

We will call h the height of A. A-automata correspond,
up to emptiness, to unions of progressive automata.

Lemma 4.9. For every A-automaton A, there are pro-
gressive A-automata A1, . . . ,An, such that, for each i ≤ n,
the size of Ai is polynomial in the size of A, n is exponential
in the size of A, and L(A) is empty iff L(A1) ∪ . . . ∪L(An)
is empty.

From progressive A-automata to containment of Dat-

alog in Positive Queries. We now proceed to show that
emptiness of progressive A-automata is decidable. Together
with Lemma 4.9 this implies the decidability of (general) A-
automata. This will involve reducing the emptiness of a pro-
gressive A-automaton to the problem of whether a Datalog
program is contained in a positive first order logic sentence.

Recall that a Datalog program is defined with respect to
two database schemas, called the extensional schema and
the intensional schema. A Datalog program P is a finite
set of rules of the form “head ∶ − body” where head is
an atomic formula R(x̄) with a relation symbol R in the
intensional schema, and where body is a conjunctive query
that can use relation symbols from the intensional and the
extensional schema. Each Datalog program P contains a
distinguished goal predicate Q. We use the standard notions
of the least fixedpoint of a Datalog program P on a database
D (see [1]), and we denote this fixedpoint by P(D). We say
that a Datalog program P accepts a database D if the goal
predicate of P is not empty in P(D).

Lemma 4.10. Let A be a progressive A-automaton. Then
there exists a Datalog program PA and a positive first order
logic sentence P ′

A such that L(A) is not empty iff PA is
not contained in P ′

A. One can construct these in polynomial
time in the size of A.

The proof of this lemma is itself quite involved. The basic
idea of this proof is that PA enforces the positive constraints
of A while P ′

A enforces the negative constraints. Recall that
in a progressive automaton, the evolution is in a fixed num-
ber of stages, based on the number of subqueries satisfied. A
stage represents a strongly connected component of the au-
tomaton. The extensional database D will have predicates
BackgroundRi representing the part of relation R that be-
comes visible to A at the end of each stage i, along with
predicates IntBackgroundRi representing the data that be-
comes visible when crossing from one stage to the next. The
important intensional predicates ViewRi will represent in-
termediate stages of the predicates BackgroundRi within the
evolution of each stage. The Datalog program PA will have
rules corresponding to the evolution of ViewRi by adding
tuples from BackgroundRi. To ensure that the tuples corre-
spond to some valid binding, PA will have rules guaranteeing
that only tuples that satisfy the appropriate formulas can be
added to ViewRi. We can do this with a Datalog program
by adding appropriate intermediate relations, exploiting the
fact that the constraints on the guards are positive, and
hence represented in non-recursive Datalog.

The role of the positive query P ′
A is twofold: First, P ′

A

will enforce the negated conjunctive queries in the tran-
sitions – in particular, P ′

A will contain constraints on the
relations BackgroundRi and IntBackgroundRi that enforce
that these only contain tuples that satisfy these negated con-
straints. In this way, whenever the Datalog program adds

tuples to the intensional relations, these tuples are guaran-
teed to satisfy the corresponding negative constraints. The
second purpose of P ′

A is to enforce that for each i, only one
relation among the IntBackgroundRi is non-empty. This
is important, as these relations contain the tuples that the
Datalog program might add when simulating the automaton
transitioning from one strongly connected component to the
next. On such a transition an A-automaton can only per-
form one access, and hence the Datalog program should only
be able to add tuples from one relation IntBackgroundRi

into ViewRi.
In the proof that our construction is correct, we show

that the Datalog program PA can be decomposed into sub-
programs P1, . . . ,Ph that correspond to the decomposition
of the A-automaton into strongly connected components
C1, . . . ,Ch in the following sense: Whenever an A-automaton
has a run that ends in its strongly connected component Ci,
i ≤ h then the subprogram P1 ∪ . . . ∪ Pi of P adds tuples to
the intensional database that correspond in a certain way to
the tuples that A has obtained using accesses.

Completion of the proof of Theorem 4.6. Let us review
what we have accomplished thus far: we have reduced ques-
tions about our logic to non-emptiness of the automata, and
non-emptiness of an automaton we have reduced to deter-
mining whether a Datalog program is contained in a positive
query. To complete the proof of Theorem 4.6 we need the
following new result, that generalizes a theorem of Chaud-
huri and Vardi [7]:

Proposition 4.11. The containment problem of a Dat-
alog program P in a positive first-order sentence ϕ, where
both P and ϕ may make use of constants, is in 2EXPTIME.

The proof of this result is in the appendix. Theorem 4.6
follows from the proposition and the reduction given earlier.

4.2 Restricted Binding Predicates And Reduc
tion To Propositional LTL

We now look for path query languages where the satis-
fiability problem has lower complexity. We will do this by
giving up the ability to talk about the exact dataflow from
data instances to bindings. This will allow us to get veri-
fication algorithms based on reduction to standard Propo-
sitional Linear Temporal Logic verification, a well-studied
problem for which many tools are available [8].

For a relational schema Sch, we define the vocabulary
Sch0−Acc as in SchAcc but instead of the n-ary predicates
IsBindAcM, we have only a 0-ary predicate IsBindAcM. A
transition ti = (Ii, (AcMi, b̄), Ii+1) is now associated with
the relational structure M ′(ti) in which Spre, Spost are in-
terpreted as before, and IsBindAcM() holds exactly if AcM =
AcMi. We will now consider AccLTL(FO∃+

0−Acc), in which
the first-order formulas use only Sch0−Acc. That is, in the
logic we can refer to which access was performed, but can
not express anything about the bindings used.

Going back to Example 2.2 and 2.3 we say that the ba-
sic relevance properties are in this language, provided that
we do not impose any dataflow restrictions – including any
restrictions that access paths are grounded. On the other
hand, we can still impose the access order restrictions of Ex-
ample 2.3. We now see that by curtailing the expressiveness,
the complexity goes down significantly.

640

Theorem 4.12. Satisfiability of an AccLTL(FO∃+
0−Acc) for-

mula (over all access paths) is PSPACE-complete. The
same holds if particular access methods must be exact or
idempotent.

Proof. The PSPACE-hardness of our problem comes
from the PSPACE-hardness of the satisfiability problem of
a LTL formula over finite words [13]. The upper bound is
proven by bounding the size of the underlying data, and
then applying results about propositional LTL.

We now prove the upper bound, focusing on the case of
general access paths. Let Sch be a schema, and ϕ be a for-
mula of AccLTL(FO∃+

0−Acc). First, we demonstrate that if
there exists an access path that satisfies ϕ then there exists
one where the size of each instance is bounded by a polyno-
mial function in the sizes of ϕ and Sch.

The key is the following “Boundedness Lemma”:

Lemma 4.13. An AccLTL(FO∃+
0−Acc) formula ϕ is satis-

fiable iff there exists a path ρ which satisfies the following
properties: 1. The instances in ρ have sizes bounded by a
polynomial function in the sizes of ϕ, and Sch. 2. The set of
bindings used in ρ has size bounded by a polynomial function
in the sizes of ϕ

Proof. Let some ϕ be given. Suppose that ϕ is sat-
isfiable. Then there exists a path ρ that satisfies ϕ. We
define the positive sentences of ϕ to be the maximal sub-
sentences of ϕ that belong to FO∃+

0−Acc. Consider the fol-
lowing rewrite rules: for each AcM ∈ Sch we replace the
formula IsBindAcM ∧ψ, where IsBindAcM is a predicate, by
the formula ψ. We also replace the formula IsBindAcM ∨ψ
where IsBindAcM is a predicate by the formula ψ. We de-
note by Qf(ϕ) the set of FO∃+

0−Acc sentences that have been
obtained from a positive sentence of ϕ by inductively apply-
ing the above rules until there are no more occurrences of
predicates IsBindAcM in the result.

Let {q1, . . . , qm} be the set of sentences appearing inQf(ϕ)
that are satisfied by the last instance In. Let ρi1 , . . . , ρim
be the set of transitions in the path ρ such that ρij is the
minimal transition in ρ that satisfies qj . Let hj be a ho-
momorphism from qj to ρij . We let (If−1,ACf , If) be the
last transition in ρ. Let I′f be the minimal subinstance of If
such that for all i hi(qi) ⊆ (I′f)pre ∪ (I′f)post), where for any
instance I of the original schema, Ipre is obtained from I by
interpreting relations Rpre by the interpretation of R in I,
while Ipost is obtained from I by interpreting relations Rpost

by the interpretation of R in I.
Since we only need to consider witnesses to positive queries,

it is easy to check that I′f can be constructed and has size
polynomial in the sizes of ϕ and Sch. We can thus construct
a path ρ′ that contains the intersection of the instances of
ρ with the instance I′. ρ′ satisfies ϕ, and the size of the
instances of ρ′ are bounded by a polynomial function in the
size of ϕ and Sch.

We now restrict the bindings used in ρ′. Let p be a path.
An access (AcMi, b̄i) is necessary for p if new tuples are
returned by it (i.e. tuples not in the previous instance within
p), and unnecessary otherwise. Note that if we have a path
and we change the binding on some unnecessary access to
anything of the appropriate arity, while returning emptyset,
then it is still a valid access path.

So without loss of generality, we can arrange that the set
of bindings used in ρ′ consists of the necessary accesses in ρ′

plus a single binding for each access method, used in place
of every unnecessary access on that method. Therefore the
set of bindings is a set of tuples having size bounded by a
polynomial function in the sizes of ϕ and the schema.

Given the lemma, we can now apply the following algo-
rithm which is easily seen to be in NPSPACE:

1. First, we guess a finite sequence of instances I1 . . . In
and a sequence of accesses A, each of polynomial size
(with the polynomial given by Lemma 4.13). In the
remaining steps, we will check whether there is a wit-
ness path using the bindings of these accesses and only
these instances.

2. We translate the AccLTL(FO∃+
0−Acc) formula ϕ into

an ordinary LTL formula ϕ in a propositional alpha-
bet that encodes information about which of the in-
stances and bindings are used. This formula will be
constructed so that it is satisfiable over words iff ϕ is
satisfiable.

3. Then, we apply any PSPACE algorithm for LTL sat-
isfiability of ϕ over finite words.

We now explain in more detail the translation to ordinary
LTL that is the key step in the high-level algorithm above.
Fix a sequence s = I1 . . . In of distinct instances as well as a
sequence of accesses A, both of polynomial size. We denote
by B, the union of the set of bindings used in A and the
set ∪AcM{bAcM} where bAcM is a binding of AcM using some
values appearing in B.

We associate propositions with transitions of any of the
following forms:

● Transitions of form (Ii, (AcM,~b), Ii) where ~b is in B
and compatible with AcM.

● Transitions of form (Ii,Ai, Ii+1)
The set of transitions of the above forms is denoted T (I,B).

For each i, we denote by T (i) the set of transitions of the

form (Ii, (AcM,~b), Ii). For each i, we denote by ti,→ the
transition (Ii,A(i), Ii+1). For each i, we denote by P (i)
the set of propositions associated with the transitions of

the form (Ii, (AcM,~b), Ii). For each i, we denote by pi,→
the proposition associated with the transition (Ii,Ai, Ii+1).
The set of all such propositions is denoted Σ. The words de-
scribed by ϕ are over alphabet 2Σ. Intuitively, each letter of
a word would be used to describe a transition (I, (AcM, b̄), I′).

We now describe the construction of ϕ.
First, we describe some “sanity axioms” stating that a run

associated with ϕ really corresponds to some access path.
This requires:

● Every position has exactly one proposition of Σ.
● The order of the instances in s is respected. This is

expressed by the formula:

⋀
i,p ∈P (i)

G(p⇒ (⋁
p′∈P (i)

p
′
U pi,→))∧

⋀
i

(pi,→ ⇒ X(⋁
p′′∈P (i+1)

p
′′ ∨ pi+1,→))∧

(⋁
p′′′∈P (0)

p
′′′ ∨ p0,→)

Next we rewrite ϕ to ϕ by replacing each positive sentence
q of ϕ by the union over of p ∈ Σ over all the previous
transitions that satisfy it.

641

We claim that the ϕ is satisfiable over ordinary words iff ϕ
is satisfiable over access paths that conform to the sequence
s and the bindings in B. The direction from right to left
requires taking an access path and performing the obvious
propositional abstraction. In the other direction, we take a
propositional word w1 . . . wn satisfying ϕ. The first sanity
axiom implies that exactly one transition proposition p is
associated with wi. The second sanity axiom implies that
the instance reached in the transition associated with w(i) is
the same as the initial instance of the transition associated
with w(i + 1). One can check that this gives the required
access path for ϕ.

Restricting LTL operators. Let LTLX be the subset of
LTL that only uses the temporal operator X. We denote
by AccLTL(X)(FO∃+

0−Acc) the corresponding sublanguage of
AccLTL(FO∃+

Acc).
AccLTL(X)(FO∃+

0−Acc) is extremely limited in expressive-
ness, since it can only talk about paths of some fixed length.
However, there are properties for which such small paths are
sufficient. Consider Example 2.3. It is easy to see that Q is
LTR over all accesses iff it is LTR over access paths of size ∣Q∣
– a counter example to long-term relevance has only polyno-
mially length. But LTR over small paths can be expressed in
AccLTL(X)(FO∃+

0−Acc). Thus AccLTL(X)(FO∃+
0−Acc) is suf-

ficient to tell whether an access might have an impact on
answering a query, but without taking into account of even
the most basic dataflow restriction on paths.

Theorem 4.14. Satisfiability of AccLTL(X)(FO∃+
0−Acc) is

ΣP
2 -complete, even when certain accesses are restricted to be

exact or idempotent.

Hardness. Non-containment of positive relational queries,
where positions can be restricted to have finite (i.e. enum)
datatypes can be reduced to the unsatisfiability problem of
either language – this problem is known to be ΠP

2 -hard.
Upper-Bound. Let an AccLTL(X)(FO∃+

0−Acc) formula ϕ
be given. We first note that Lemma 4.13 also holds for the
logic AccLTL(X)(FO∃+

0−Acc). Using this we can reduce to
the language propositional LTLX , which has a satisfiabil-
ity problem in NP. In the reduction we will again guess a
small number of small instances and bindings, and we will
also guess which positive queries of ϕ will be true – this
guess will then be verified via a sequence of NP (for queries
guessed to be true) and co-NP (for queries guessed to be
false) subroutines. We can then rewrite the original formula
ϕ to an LTLX formula that is satisfiable iff ϕ is satisfiable
on a sequence based on the guessed instances and bindings.

5. EXTENSIONS AND LIMITS
We look at the impact of two natural extensions on our

decidability results: allowing inequalities and branching for-
mulas.

5.1 Extension To Inequalities
Our results on decidable fragments did not use inequali-

ties, and inequalities are useful for expressing data integrity
constraints. The most obvious example involves keys and
functional dependencies, as discussed in Example 2.4.

By making a straightforward modification of the proofs
without inequalities, we can see that inequalities add noth-
ing to the complexity of AccLTL(FO∃+

0−Acc) and its sublan-
guages.

Theorem 5.1. Letting FO
∃+,≠
0−Acc be the language of posi-

tive queries with inequalities over the restricted vocabulary
with only the 0-ary predicates IsBindAcM, we have that

● satisfiability of AccLTL(FO∃+,≠
0−Acc) is in pspace (and

hence pspace-complete by Theorem 4.12)
● satisfiability of AccLTL(X)(FO∃+,≠

0−Acc) is in ΣP
2 (hence

ΣP
2 -complete by 4.14)

Using the language above, one can express relevance or
containment in the presence of functional dependencies, ac-
cess order constraints, and disjointness constraints, but not
dataflow constraints.

For the language AccLTL+, shown decidable in Theorem
4.2, inequalities make a dramatic difference. The proof
of the theorem below shows that we cannot capture both
dataflow restrictions like groundedness along with rich in-
tegrity constraints such as functional dependencies, while
retaining decidability. The proof also shows that many ex-
tensions of AccLTL+ with aggregation – basically, any that
are expressive enough to capture FDs – will be undecidable.

Theorem 5.2. For binding-positive AccLTL(FO∃+,≠
Acc),

satisfiability is undecidable.

Proof. Again we reduce the problem of implication of
functional dependencies (fds) and inclusion dependencies
(ids) for relational databases to the problem of the unsatis-
fiability of a AccLTL+ extended with inequalities.

Let Γ be a set of inclusion and functional dependencies,
and σ be a functional dependency over Sch.

The approach to the reduction is similar to that in The-
orem 3.1. We will make iterative accesses to a successor
relation of a total order over the tuples. We will also access
relations Beg(R) and End(R), and verify that they contain
the first and the last tuples of relation R according to the
order. While iterating through the relations according to
the successor relation, the satisfaction of the different fd’s
and id’s and the failure of σ are verified. The satisfaction
and failure of fd’s can be reduced to the satisfaction of a
boolean combination of conjunctive queries with inequali-
ties – the successor relation is not needed. The satisfaction
of an inclusion dependency id whose source is a relation R is
where we use the successor relation, and the iteration tech-
nique of Theorem 3.1. Again, it is easy to check an inclusion
dependency for a source relation consisting of only a single
tuple, since this requires only existential quantification. We
verify an id on source relation R by checking for witnesses
for one tuple in the source of the dependency at a time,
iterating on the tuples according to the successor relation.
We will use a new predicate CheckIncDep(id) whose arity is
the arity of R. CheckIncDep(id)(~t) holding at some instance
indicates that ~t has been verified to satisfy the inclusion de-
pendency id. This will be done in a “loop” (an “until” in the
logic) in which we look for a tuple ~t whose predecessor in
the order satisfies CheckIncDep(id), and which satisfies the
inclusion dependency; when we find such a tuple, we per-
form an access to CheckIncDep(id) on it. At the end of this
“loop”, we check that the final tuple in the ordering satisfies
CheckIncDep(id).

The reader may want to look at Figure 2 for a view to
how the languages with inequalities relate to the languages
defined previously.

642

5.2 Branching Time Formulas
Thus far we have discussed only linear time properties

of the LTS of a schema with access relations. What about
branching time logics, which can consider the relationship of
multiple paths? For example, a branching time logic could
express that we have reached a point where no further in-
formation about boolean query Q can be obtained without
guessing values to enter into forms – e.g. there are possible
worlds consistent with the known facts where Q is true and
also consistent worlds where Q is false, but the truth of Q
can not be revealed by any further sequence of grounded ac-
cesses. Unfortunately, we will show that even very limited
branching time expressiveness leads to undecidability.

Let L be a fragment of first-order logic over the smallest
vocabulary we have considered thus far: two copies Spre, Spost

of each relation symbol S and the proposition IsBindAcM.
We will consider a small fragment of branching time logic

built up from L-formulas, analogously to the way we built up
AccLTL formulas over sentences of L in the linear time logic.
Traditional branching time logic allows the combination of
path quantification with modal operators. In our setting we
will consider a very simple kind of branching, which looks
ahead only one step – we will refer to it as CTLEX(L), but
instead of CTL we might as easily have said “basic modal
logic” or Hennessy-Milner Logic [13], since we only need the
power of the most basic existential modality to get unde-
cidability. CTLEX(L) has the rules: every L sentence is
a formula, boolean combinations of formulas are formulas,
and if ϕ is a formula then EXϕ (in modal logic notation, ◇ϕ)
is a formula.

The semantics is defined as a relation (S, t) ⊧ ϕ, where t
is a transition (I,AC, I′) in the labelled transition system S
associated with a schema Sch. When ϕ is an L formula, this
holds iff the relational structure associated to t, M ′(t), sat-
isfies ϕ in the usual sense of first-order logic. The semantics
of boolean operators is the usual one. Finally, (S, t) ⊧ EXϕ
iff there is a successor t′ of t such that (S, t′) ⊧ ϕ. Note that
instead of referring to CTL here, we could have used basic
modal logic or Hennessy-Milner Logic. Note that Deutsch
et. al. [12] have shown undecidability for some branch-
ing time logics over LTS’s associated with a similar model
of relational transducers – but in their case the logics (e.g.
Theorem 4.14 of [12]) allow one to describe properties of the
input (analogous to our larger signature SchAcc), while here
we can only describe the access propositionally.

We show that even this restricted logic is undecidable,
even when the base formulas are existential.

Theorem 5.3. Satisfiability of CTLEX(FO∃+
0−Acc) is un-

decidable

Proof. We reduce from the problem of implication of
a functional dependency (FD) from a set of functional de-
pendencies and inclusion dependencies (IDs) for relational
databases. This is known to be undecidable [6].

Let Γ be a set of inclusion and functional dependencies
over a relational schema Sch and σ an FD. For simplicity, we
will assume all positions in the schema have the same type
(say, integer type). We will first extend Sch with additional
relations, along with access patterns.

For each relation R of Sch, we have an access method FillR
on R with no inputs. Thus each access (FillR,∅) returns an
essentially random configuration of R. We also have ad-
ditional relations ChkFD(R), having twice the arity of R

and CheckIncDep(R) having the same arity as R. We have
boolean access methods on all of these additional relations
– that is, methods where all positions are in the input.

Our reduction will create a formula ψ(Γ, σ) of the form:

EX(FillR1
∧EX(⋯∧ EX(FillRn ⋀

fd∈Γ

ϕfd ∧ ⋀
id∈Γ

ϕid ∧ϕ¬σ)))

where ϕfd, ϕid, and ϕ¬σ will be defined below, but we explain
their mission now. For each functional dependency fd ∈ Γ,
the formula ϕfd will hold on a transition t = (I,AC, I′) ex-
actly when fd holds on the restriction of I′ to the schema
predicates from Sch, and similarly for ϕid. The formula ϕ¬σ
checks that I′ does not satisfy the functional dependency
σ. Thus this formula will imply that the configuration is a
witness showing that Γ does not imply σ.

We now explain how the different formulas are built. Let
fd = R ∶ P → p where P are positions of relation R and p is
a position of R. The formula ϕfd will be:

AX (∃~x~y Chk
FD(R)post(~x, ~y) ∧

⋀
i∈P

xi = yi ∧Rpost(~x) ∧Rpost(~y)

⇒ ∃~x
′
~y Chk

FD(R)post(~x′, ~y′) ∧ x′p = y′p)

Here we use the derived “box” modality AXϕ = ¬EX¬ϕ. Note
that ϕfd occurs in formula ψ(Γ, σ) in a context where we
know that only accesses to Ri have been done – hence only
in contexts where ChkFD(R) must be empty. Since the only
access methods for the relations ChkFD(R) are boolean, this
means that after one transition we can have at most one
tuple in ChkFD(R)post(~x, ~y). Thus doing a modality AX

followed by a test that ChkFD(R)(~x, ~y)∧Rpost(~x)∧Rpost(~y)
holds amounts to testing an arbitrary pair ~x, ~y satisfying R
prior to the access. The formula thus asserts that for any
such pair of tuples in R, if they agree on all positions in the
source of the FD, they agree on the target of the FD.

We can use a similar trick with the formula ϕ¬σ:

EX(∃~x~y Chk
FD(R)post(~x, ~y) ∧ ⋀

i∈P

xi = yi ∧

Rpost(~x) ∧Rpost(~y)∧
¬∃~x

′
~y Chk

FD(R)post(~x′, ~y′) ∧ x′p = y′p)

Now fix an id R[A1,⋯,An] ⊆ S[B1,⋯,Bn], and we define
ϕid to be

AX(IsBindCheckIncDep(R) ∧Rpost(~x)∧
∃~x CheckIncDep(R)post(~x) ⇒

EX(IsBindCheckIncDep(S) ∧∃~x CheckIncDep(R)post(~x)∧
∃~yCheckIncDep(S)post(~y) ∧ ⋀

i≤n

xAi
= yBi

))

This states that whenever we do a “test access” that returns
an element of R, there is some access we can do immediately
afterwards in the LTS that reveals a matching tuple in S. As
in the case of ϕfd above, the accesses we perform are boolean,
and hence cannot be creating any new elements of S – thus
the revealed match must have been in the configuration prior
to the access.

643

Language Complexity DjC FD DF AccOr

AccLTL(FO∃+,≠
Acc) undecidable Yes Yes Yes Yes.

AccLTL(FO∃+
Acc) undecidable Yes No Yes Yes

AccLTL+ in 3EXPTIME Yes No Yes Yes

A-automata 2EXPTIME-compl. Yes No Yes Yes

AccLTL(FO∃+
0−Acc) PSPACE-compl. Yes No No Yes

AccLTL(FO∃+,≠
0−Acc) PSPACE-compl. Yes Yes No Yes

AccLTL(X)(FO∃+,≠
0−Acc) ΣP

2 -compl. Yes Yes No No

Table 1: Complexity and application examples for path specifications.

AccLTL(FO9+
0−Acc)

AccLTL(FO9+
Acc)

AccLTL+

A− automata

AccLTL(X)(FO9+ 6=
0−Acc

)

AccLTL(FO9+6=
0−Acc

)

Figure 2: Inclusions between language classes.

6. CONCLUSIONS AND RELATED WORK
In this work we introduced the notion of querying the

access paths that are allowed by a schema. We presented
decidable specification languages for doing this, and gave un-
decidability results showing several limits of such languages.
Figure 2 shows the inclusions of the languages considered
in the paper, excluding those for branching time. All of
the containments shown in the diagram are straightforward.
The containment of FO∃+

0−Acc in AccLTL+ does require one
to deal with the fact that FO∃+

0−Acc sentences are not re-
quired to be binding-positive. The inclusion follows by first
rewriting negated 0-ary IsBindAcM predicates using the rule
IsBindAcM = ⋁AcM′≠AcM IsBindAcM′ , then replacing the 0-
ary predicate by existentially-quantified n-ary predicates.

All the inclusions in the diagram also turn out to be strict.
We omit the proofs for this, which use standard techniques:
e.g. A-automata can express parity conditions on the length
of paths, which first-order languages like AccLTL+, or even
AccLTL(FO∃+

Acc), can not do.
Table 1 shows the complexity of satisfiability for each

specification formalism, along with application examples.
DjC indicates that the language can express relevance of
an access in the presence of disjointness constraints, while
FD,DF,AccOr refer to functional dependencies, dataflow re-
strictions, and access order restrictions, respectively.

Our work leaves open a number of questions concerning
the logics we study – for example, we leave open the ex-
act complexity of AccLTL+, which lies between double- and
triple- exponential time. We also do not have tight bounds
for our more restricted fragments (e.g. with only the 0-ary
version of IsBindAcM) in the important case of grounded
access paths.

Although this is, to the best of our knowledge, the first
work on languages for describing access paths through a

schema with binding patterns, there is a strong formal con-
nection to work on verifying data-driven services, as well as
other work in the area of hidden Web querying. We review
the closest connections below.

Data-driven services. Our work is closely related to a line
of research on relational transducers and models for data-
driven services, beginning with Abiteboul et. al.’s [2], and
continuing through work of Spielmann [19], Deutsch, Su and
Vianu (e.g. [12]), Fritz et. al. [14], and Deutsch et. al. [10].
All of these works deal with specification languages for tran-
sition systems in which transitions may involve the consum-
ing of relational inputs from an external environment, the
production of output tuples, and the modification of internal
state (perhaps in the form of an additional relational store).
In our application, we talk of accesses rather than inputs
from an environment, with a response consisting of reveal-
ing a hidden database instance, rather than updating an
internal store. But in the results of this paper, one can just
as easily think of identifying the hidden Web database with
an internal store, with the accesses being non-deterministic
inserts into the store.

Nevertheless, the logics that arise naturally in our setting
appear orthogonal to those studied in prior work. The initial
Abiteboul et. al. paper [2] focused on “Spocus transducers”
(semi-positive output and cumulative state) which take full
relational inputs, with their internal relations only accumu-
lating them. A direct comparison with our model is difficult,
since we do not have a notion of “output” – but if we restrict
Spocus transducers to boolean output and singleton inputs,
they are not as powerful as our model, since in our case
the internal state can be modified in non-trivial ways. [2]
proves an undecidability result for an extension of Spocus
transducers in which the inserted data is allowed to be a
projection of the “input relations” (Prop. 3.1 of [2]). The
technique applied is similar to that in Theorem 5.2, but pro-
jection is orthogonal to the update given by access methods.
In our terms, this extension would amount to having the in-
formation added to the hidden database be a projection of
the accessed relations. On the other hand, the addition of
projection does not give the ability to model access meth-
ods, which restrict the input relations by requiring them to
satisfy a selection criterion.

Later works [19, 12, 10, 14] deal with transducers that
can delete as well as insert into their internal state. A key
restriction is input-guardedness, which insures decidability
[12] – input guardedness requires quantifications to be re-
stricted to tuples generated from the environmental inputs.
The analogous restriction in our setting would be to restrict

644

quantification to the bindings, which would be much weaker
than the logics we consider. Thus our decidability and com-
plexity results are not subsumed by these works. On the
other hand, guarded quantification over relational inputs is
not supported by our logics, and hence we do not claim to
subsume results in these works. In addition, [10] allows a
built-in linear order on the domain, which we do not con-
sider for our largest logics. Later work by Damaggio et. al.
considers even richer signatures, including arithmetic [9].

Hidden Web querying. Our work is directly inspired
by previous results on static analysis of schemas with lim-
ited access patterns, a line of work tracing back (at least)
to Ullman’s work [20] and Rajaraman et. al. [18], con-
tinuing with Chang/Li’s work in the early 2000s [16, 15]
Ludäscher/Nash’s and Deutsch et. al.’s work in the mid-
2000’s [17, 11] and Cali et. al. [5]. All of them deal in
one way or another with what sequences can occur within
a sequence with limited access patterns. For example, the
question of whether a query can always be answered us-
ing exact grounded access paths – the focus of most of these
works above – can be expressed as a property of the LTS. Ex-
act complexity bounds for query answering derived from the
works above. Containment under access patterns has also
been studied, particularly in [5], which establishes a coN-
EXPTIME upper bound for conjunctive queries. [3] proves
a matching coNEXPTIME lower bound for containment for
conjunctive queries, and a co-2NEXPTIME upper bound for
positive queries. [3] also defines the notion of long-term rele-
vance (LTR). They prove a Σ

p
2-completeness result for LTR

over general access paths (“independent accesses”, in their
terminology) while providing a NEXPTIME-completeness
result for conjunctive queries and a 2NEXPTIME bound
for LTR of positive queries over grounded accesses paths
(“dependent accesses”).

Our work provides a general framework where we can
express properties of access paths, including containment,
LTR, their combinations, and their restrictions to constraints.
By providing these within a boolean closed logic, we give
a flexible means of combining properties that one wishes
to verify. Our 2EXPTIME result for non-emptiness of A-
automata gives a bound on containment under access pat-
terns and long-term relevance, as mentioned in the discus-
sion after Theorem 4.6. This is better than the prior bounds
from [5, 3].

Note that [3] also makes some erroneous claims: 1. A
co2NEXPTIME lower bound for containment of positive
queries under access patterns, which is at odds (relative to
complexity-theoretic hypothesis) with our 2EXPTIME up-
per bound 2. A coNEXPTIME upper bound for contain-
ment of UCQs under general access patterns. The proof
given there only works for schemas with a single-access per
relation, while in subsequent work, we have shown that the
problem is 2EXPTIME hard if the single-access restriction
is dropped.

7. ACKNOWLEDGMENTS
Benedikt and Bourhis are supported in part by EC FP7-

ICT-233599 (FoX) and in part by EP/G004021/1 and by
EP/H017690/1 of the Engineering and Physical Sciences Re-
search Council UK.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] S. Abiteboul, V. Vianu, B. S. Fordham, and Y. Yesha.
Relational transducers for electronic commerce. JCSS,
61(2):236–269, 2000.

[3] M. Benedikt, G. Gottlob, and P. Senellart.
Determining relevance of accesses at runtime. In
PODS, 2011.

[4] A. Calì, D. Calvanese, and D. Martinenghi. Dynamic
query optimization under access limitations and
dependencies. J. UCS, 15(1):33–62, 2009.

[5] A. Calì and D. Martinenghi. Conjunctive query
containment under access limitations. In ER, 2008.

[6] A. Chandra and M. Y. Vardi. The implication
problem for functional and inclusion dependencies is
undecidable. SIAM Journal on Computing,
14(3):671–677, 1985.

[7] S. Chaudhuri and M. Y. Vardi. On the equivalence of
recursive and nonrecursive Datalog programs. JCSS,
54(1):61–78, 1997.

[8] E. M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 2000.

[9] E. Damaggio, A. Deutsch, and V. Vianu. Artifact
systems with data dependencies and arithmetic. In
ICDT, 2011.

[10] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu.
Automatic verification of data-centric business
processes. In ICDT, 2009.

[11] A. Deutsch, B. Ludäscher, and A. Nash. Rewriting
queries using views with access patterns under
integrity constraints. Theor. Comput. Sci.,
371(3):200–226, 2007.

[12] A. Deutsch, L. Sui, and V. Vianu. Specification and
verification of data-driven web applications. JCSS,
73:442–474, May 2007.

[13] E. Emerson. Temporal and modal logic. In Handbook
of Th. Comp. Sci., volume B. MIT, 1990.

[14] C. Fritz, R. Hull, and J. Su. Automatic construction
of simple artifact-based business processes. In ICDT,
2009.

[15] C. Li. Computing complete answers to queries in the
presence of limited access patterns. VLDB J.,
12(3):211–227, 2003.

[16] C. Li and E. Y. Chang. Answering queries with useful
bindings. ACM TODS, 26(3):313–343, 2001.

[17] A. Nash and B. Ludäscher. Processing first-order
queries under limited access patterns. In PODS, 2004.

[18] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering
queries using templates with binding patterns. In
PODS, 1995.

[19] M. Spielmann. Verification of relational transducers
for electronic commerce. JCSS, 66(1):40–65, 2003.

[20] J. D. Ullman. Principles of Database and
Knowledge-Base Systems, V2. Comp. Sci. Press, 1989.

645

