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ABSTRACT

Clustering uncertain data has emerged as a challenging task
in uncertain data management and mining. Thanks to a
computational complexity advantage over other clustering
paradigms, partitional clustering has been particularly stud-
ied and a number of algorithms have been developed. While
existing proposals differ mainly in the notions of cluster cen-
troid and clustering objective function, little attention has
been given to an analysis of their characteristics and lim-
its. In this work, we theoretically investigate major existing
methods of partitional clustering, and alternatively propose
a well-founded approach to clustering uncertain data based
on a novel notion of cluster centroid. A cluster centroid is
seen as an uncertain object defined in terms of a random
variable whose realizations are derived based on all deter-
ministic representations of the objects to be clustered. As
demonstrated theoretically and experimentally, this allows
for better representing a cluster of uncertain objects, thus
supporting a consistently improved clustering performance
while maintaining comparable efficiency with existing parti-
tional clustering algorithms.

1. INTRODUCTION
Uncertainty in data naturally arises from a variety of real-

world phenomena, such as implicit randomness in a process
of data generation/acquisition, imprecision in physical mea-
surements, and data staling [1]. For instance, sensor mea-
surements may be imprecise at a certain degree due to the
presence of various noisy factors (e.g., signal noise, instru-
mental errors, wireless transmission) [6]. Another example
is given by moving objects [19], which continuously change
their location so that the exact positional information at a
given time can only be estimated when there is a certain la-
tency in communicating the position (i.e., data is inherently
obsolete). The biomedical research domain abounds of data
inherently affected by uncertainty. As an example, in the
context of gene expression microarray data, handling the so-
called probe-level uncertainty represents a key aspect that

allows for a more expressive data representation and a more
accurate processing [15]. Further examples of uncertain data
come from distributed applications, privacy preserving data
mining, and forecasting or other statistical techniques used
to generate data attributes [1].

In general, uncertainty can be considered at table, tuple
or attribute level, and is formally specified by fuzzy models,
evidence-oriented models, or probabilistic models [18]. This
work focuses on data containing attribute-level uncertainty,
which is probabilistically modeled. In particular, we are in-
terested in probabilistic representations that use probability
distributions to describe the likelihood that any object ap-
pears at each position in a multidimensional space [4,12–14].
We hereinafter refer to data objects described in terms of
probability distributions as uncertain objects.

Given a set of data objects, the problem of clustering is to
discover a number of homogeneous subsets of objects, called
clusters, which are well-separated from each other [10]. In
the context of uncertain data, clustering uncertain objects
has recently emerged as a very challenging problem aimed
at extending the traditional clustering methods (originally
conceived to work on deterministic objects) to deal with
objects represented in terms of probability distributions.

Partitional approaches to clustering of uncertain objects
include the fastest algorithms so far defined, namely UK-
means [4,14], which is an adaptation of the popular K-means
clustering algorithm to the context of uncertain objects, and
MMvar [8], which exploits a criterion based on the mini-
mization of the variance of cluster mixture models. Both
algorithms involve formulations based on two main notions:
cluster centroid, which is an object/point that summarizes
the information of a given cluster, and cluster compactness
which is based on the assessment of proximity between the
uncertain objects assigned to the cluster and the correspond-
ing centroid. These notions represent a key aspect for the
efficiency of partitional methods; in fact, different formula-
tions based on pairwise comparisons between the objects in
a cluster (e.g., [7]) are inevitably less efficient.

Though quite efficient, both UK-means and MMVar for-
mulations however suffer from some critical weaknesses that
limit the effectiveness of such algorithms. In UK-means the
centroid of a cluster of uncertain objects is reduced to be a
deterministic (i.e., non-uncertain) point that is simply de-
fined as the average of the expected values of the objects
belonging to that cluster. As a consequence, the notion
of within-cluster uncertainty in UK-means discards any in-
formation about the variance of the cluster members, and
hence of the cluster itself. It is quite intuitive that equipped
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Figure 1: Uncertain objects with same central ten-
dency: (a) lower-variance, more compact cluster,
and (b) higher-variance, less compact cluster

  

(a) (b)

Figure 2: Uncertain objects with different central
tendency: (a) lower-variance, less compact cluster,
and (b) higher-variance, more compact cluster

with such a simplistic definition of cluster centroid, the al-
gorithm can easily fail in distinguishing clusters with the
same central tendency but different variance. For instance,
consider the situation in Figure 1: since the group of ob-
jects in Figure 1-(a) has the same (sum of) expected val-
ues as the group in Figure 1-(b), taking into account the
variance of these groups is essential to recognize the one
with lower variance (Figure 1-(a)) as more compact than the
other with higher variance (Figure 1-(b)). As we formally
show in Section 4, an analogous issue affects MMVar too.
On the other hand, however, considering only the variance
to determine cluster compactness may lead to wrong results
as well. As an example, consider the objects in Figure 2-(a),
which have individual variances smaller than the objects in
Figure 2-(b): the latter set of objects clearly represents a
cluster more compact than the set in Figure 2-(a); however,
a criterion based only on the minimization of the variance of
the uncertain objects would mistakenly recognize the group
in Figure 2-(a) as better than the group in Figure 2-(b).

In light of the above remarks, a major goal of this work is
to address the problem of partitional clustering of uncertain
objects in order to improve the accuracy of existing parti-
tional clustering methods, while maintaining high efficiency.
Our contributions can be summarized as follows. We pro-
vide a deep insight into the UK-means and MMVar formula-
tions, and formally describe the aforementioned issues. We
prove that the UK-means and MMVar objective functions
differ only by a constant factor, and that no improvement
is obtained by employing an objective function that would
mix the UK-means cluster compactness criterion and the
MMVar cluster centroid definition. Therefore, we propose a
formulation to the problem of clustering uncertain objects
based on a novel notion of cluster centroid. The proposed
centroid, called U-centroid, is an uncertain object defined in
terms of a random variable whose realizations correspond
to all possible deterministic representations deriving from
the (deterministic) representations of the uncertain objects

to be clustered. We derive the analytical expressions of do-
main region and probability distribution of the proposed
U-centroid. However, as these expressions are in general
not analytically computable, we define a cluster compact-
ness criterion that can be efficiently computed according to
some closed-form. In particular, after proving that apply-
ing the MMVar criterion to the proposed U-centroid is not
suited for measuring cluster compactness—it reduces to only
consider the variances of the individual uncertain objects,
which is not sound as illustrated in Figure 2—we show that
minimizing the sum of the distances between each object
in a cluster and the corresponding U-centroid fulfils all de-
sired requirements. We propose a local search-based heuris-
tic algorithm, called U-Centroid-based Partitional Cluster-
ing (UCPC), which searches for a local minimum of the
objective function of the proposed formulation by suitably
exploiting the aforementioned cluster compactness closed-
form expression, thus guaranteeing both effectiveness and
efficiency requirements.

We have conducted an extensive experimental evaluation
on several data, including datasets with uncertainty gener-
ated synthetically as well as real-world collections in which
uncertainty is inherently present. The proposed UCPC algo-
rithm outperforms state-of-the-art partitional, density-based
and hierarchical algorithms in terms of clustering accuracy
(according to external and internal cluster validity criteria).
Moreover, from an efficiency viewpoint, UCPC is compa-
rable to the fastest existing partitional methods, i.e., UK-
means and MMVar, and can also perform better than prun-
ing-based variants of the basic UK-means algorithm.

The rest of the paper is organized as follows. Section 2
provides background notions and definitions that will be
used in this work. Section 3 theoretically shows the weak-
nesses of UK-means and MMvar. Section 4 discusses our
proposal in detail. Section 5 presents experimental settings
and results. Section 6 concludes the paper. In Appendix,
proof sketches of the main results are finally provided.

2. BACKGROUND
Existing research on clustering uncertain objects has fo-

cused mainly on adapting traditional clustering algorithms
to handle uncertainty. Adaptations have been made for each
of the major categories of clustering methods, namely parti-
tional (UK-means [4,14], UK-medoids [7], and MMVar [8]),
hierarchical (U-AHC [9]), and density-based (FDBSCAN
[12], FOPTICS [13]). Note that, due to the well-known
computational complexity advantages w.r.t. the other clus-
tering paradigms, the partitional clustering methods have
attracted more attention, and a number of works have also
been devoted to improve the runtime performance of K-
means like clustering methods [5,11,14,16,17].

In the following, we provide formal details on how un-
certain objects are represented, and key notions in the two
methods mainly under consideration in this work, namely
UK-means and MMVar.

2.1 Modeling Uncertainty
Uncertain objects are typically represented according to

multivariate uncertainty models [8], which involve multidi-
mensional domain regions and multivariate pdfs.

Definition 1. A multivariate uncertain object o is a pair
(R, f), where R ⊆ ℜm is the m-dimensional domain region
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of o and f : ℜm → ℜ+
0 is the probability density function of

o at each point ~x ∈ ℜm, such that:

f(~x) > 0, ∀~x ∈ R and f(~x) = 0, ∀~x ∈ ℜm \ R (1)

For arbitrary pdfs of uncertain objects, we assume statis-
tical independence between the actual deterministic repre-
sentations ~x, ~x′ ∈ ℜm of any two given uncertain objects
o = (R, f), o′ = (R′, f ′). Formally, ∀~x, ~x′ ∈ ℜm, it can be
assumed that:

Pr(o ≡ ~x, o′ ≡ ~x′) = Pr(o ≡ ~x) Pr(o′ ≡ ~x′) = f(~x) f ′(~x′)

where “o ≡ ~x ” denotes the event “the actual representation
of the uncertain object o correspond to the point ~x ∈ ℜm”.

The expected value (~µ), second order moment (~µ2), and
variance (~σ2) vectors of an uncertain object o = (R, f) are
defined as follows:

~µ(o) =

∫

~x∈R

~x f(~x) d~x ~µ2(o) =

∫

~x∈R

~x 2f(~x) d~x (2)

~σ 2(o) =

∫

~x∈R

(~x− ~µ(o))2f(~x) d~x = ~µ2(o)− ~µ 2(o) (3)

The j-th component (j ∈ [1..m]) of the ~µ, ~µ2 and ~σ2 vectors
is as follows:

µj(o) =

∫

~x∈R

xj f(~x) d~x (µ2)j(o) =

∫

~x∈R

xj
2f(~x) d~x (4)

(σ 2)j(o)=

∫

~x∈R

(xj − µj(o))
2f(~x) d~x = (µ2)j(o)−µ2

j (o) (5)

Moreover, given a vector ~σ 2 of variances, the “global” vari-
ance expressed in terms of a single numerical value is defined
as the sum of variances along each dimension:

σ2(o)=‖~σ 2(o)‖1=
m∑

j=1

(σ2)j=

∫

~x∈R

‖~x− ~µ(o)‖2f(~x) d~x (6)

2.2 UKmeans
Given a cluster C of uncertain objects, the centroid of C

according to the basic UK-means algorithm [4] is a deter-
ministic (i.e., non-uncertain) point CUK defined by averaging
over the expected values of the objects within C:

CUK =
1

|C|

∑

o∈C

~µ(o) (7)

Given a candidate clustering C, the basic UK-means mini-
mizes the objective function

∑
C∈C JbUK(C), with JbUK(C) =∑

o∈C EDd(o, CUK). EDd(·, ·) denotes the expected distance
between an uncertain object o = (R, f) and a point, and is
defined as EDd(o, ~y) =

∫
~x∈R

d(~x, ~y) f(~x) d~x, where d(·, ·) is
any metric measuring the distance between twom-dimension-
al points. Note that the computation of the integral in EDd

represents a major bottleneck in the execution of the basic
UK-means, since in the general case it cannot be computed
in a closed-form but it requires an approximation based on a
(typically large) set of statistical samples to be drawn from
the pdf of the objects. The cost of this integral approxima-
tion is not negligible, and hence the overall complexity of
the basic UK-means is O(I S k n m), where n is the size of
the input set of uncertain objects, m is the dimensionality
of the uncertain objects, k is the desired number of clusters,

S is the cardinality of the sample set, and I is the number
of iterations for the algorithm convergence.

To speed-up the execution of the basic UK-means, most
work has been done on developing pruning techniques, whose
general goal is to avoid the computation of redundant ex-
pected distances between uncertain objects and (candidate)
cluster centroids. Major contributions in this regard are
proposed in [16] (MinMax-BB algorithm), [11] (VDBiP al-
gorithm), and [17], where the cluster-shift technique is in-
troduced as a general method to further tighten bounds ob-
tained by existing pruning strategies. However, the worst-
case complexity of the basic UK-means is not reduced by
the pruning techniques. For this purpose, [14] proposes a
different approach based on a modification of the formula
of the expected distance: denoting simply by ED(·, ·) the
expected distance EDd when the metric d is the squared
Euclidean norm ‖ · ‖2, [14] shows that:

ED(o, CUK) =

∫

~x∈R

‖~x− CUK‖
2 f(~x) d~x =

= ED(o, ~µ(o)) + ‖CUK− ~µ(o)‖2 (8)

Thus, the expected distance between any uncertain object
o and centroid CUK is equal to the sum of two terms: the
first, which is the most expensive one, is given by the ex-
pected distance between o and its expected value ~µ(o), while
the second one, which is efficiently computable in O(m), is
equal to the (squared) Euclidean distance between the cen-
troid CUK and ~µ(o). Since the first term does not change
during the execution of the algorithm (and hence it can be
precomputed for each input object), the algorithm in [14]
has an “online” complexity of O(I k n m). Unless other-
wise specified, throughout the rest of this paper we refer to
the algorithm in [14] as UK-means and to its cluster com-
pactness criterion as

JUK(C) =
∑

o∈C

ED(o, CUK) (9)

2.3 MMVar
In the MMVar algorithm, the centroid of a cluster C is

defined as an uncertain object CMM that represents amixture
model of C:

CMM = (RMM, fMM) (10)

where RMM =
⋃

o∈C R, and the pdf fMM(~x) is defined as the

average |C|−1
∑

o∈C f(~x) of the pdfs of the objects within C.
The cluster compactness criterion JMM employed by MM-

Var is simply based on the minimization of the variance of
the cluster centroid:

JMM(C) = σ2(CMM) (11)

Analogously to UK-means, the overall objective function to
be minimized for a candidate clustering C is

∑
C∈C JMM(C),

and the complexity of the algorithm is O(I k n m) [8].

3. COMPARING UKMEANS AND MMVAR

UKmeans shortcomings. As previously discussed, UK-
means is characterized by a deterministic definition of clus-
ter centroid, which is simply the average of expected values
of the cluster members (7). This implies that UK-means
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does not explicitly take into account the individual vari-
ances of the objects that belong to a cluster. As shown in
the following proposition, a major consequence is that two
clusters can have the same value of objective function JUK

regardless of their respective cluster variance (i.e., sum of
variances of the objects that belong to a cluster).

Proposition 1. Given any two clusters C and C′ of un-
certain objects, it holds that:

JUK(C) = JUK(C
′) ;

∑

o∈C

σ2(o) =
∑

o′∈C′

σ2(o′)

The above proposition states that the compactness crite-
rion at the basis of UK-means might not discriminate among
groups of uncertain objects having different cluster vari-
ances. Moreover, it can be straightforwardly derived from
the proposition that

∑

o∈C

σ2(o) 6=
∑

o′∈C′

σ2(o′) ; JUK(C) 6= JUK(C
′)

i.e., different values of cluster variance for C and C′ do not
necessarily force the values JUK(C) and JUK(C

′) to be differ-
ent. These aspects may lead to situations like that already
illustrated in Figure 1, where the cluster algorithm is unable
to recognize a cluster with smaller variance as less uncertain,
hence more compact, than a cluster with higher variance.

Comparing UKmeans and MMVar objective functions.
The UK-means weaknesses could in principle be overcome
by the MMVar criterion JMM, since MMVar centroids in-
volve uncertainty in their representation. Unfortunately,
this is not true, as JUK and JMM can be demonstrated to
be very close to each other. In particular, as formally shown
in the following proposition, the UK-means and MMVar ob-
jective functions differ from each other only by a constant
factor. This clearly implies that the aforementioned UK-
means accuracy issues affect MMVar as well, though the
MMVar centroid definition involves uncertainty.

Proposition 2. Let C be a cluster of m-dimensional un-
certain objects, where o = (R, f), ∀o ∈ C. In reference to
the functions JUK and JMM defined in (9) and (11), respec-
tively, it holds that JMM(C) = |C|−1JUK(C).

Trying to overcome the limitations of UKmeans and
MMVar. In the attempt of deriving an alternative objective
function that overcomes the limitations shared by UK-means
and MMVar, a straightforward solution could be to combine
the definition of MMVar centroid with the UK-means clus-
ter compactness criterion, obtaining the following objective

function Ĵ(C) (by contrast, note that taking the notion of
centroid from UK-means while employing the MMVar clus-
ter compactness criterion would be meaningless, since the
variance of a deterministic centroid is zero):

Ĵ(C) =
∑

o∈C

ÊD(o, CMM) (12)

where ÊD denotes the (squared) expected distance between
any two uncertain objects [7], and is exploited here to com-
pute the distance between any object o = (R, f) ∈ C and

the centroid (mixture model) CMM = (RMM, fMM) of C:

ÊD(o, CMM)=

∫

~x∈R

∫

~y∈RMM

‖~x−~y‖2f(~x)fMM(~y) d~x d~y (13)

Unfortunately, adopting such an objective function Ĵ is not

appropriate yet, as Ĵ is in turn proportional to the functions
JUK and JMM, as shown in the following.

Proposition 3. Let C be a cluster of m-dimensional un-
certain objects,, where o = (R, f), ∀o ∈ C. In reference to

the functions JUK, JMM, and Ĵ defined in (9), (11), and (12)

respectively, it holds that Ĵ(C) = 2 |C| JMM(C) = 2 JUK(C).

4. UNCERTAIN CENTROID BASED

PARTITIONAL CLUSTERING

4.1 Ucentroid
We have demonstrated that the weaknesses of both UK-

means and MMVar objective functions cannot be overcome
even mixing their basic elements, i.e., the notions of cluster
centroid and cluster compactness criterion.

To define a sound objective function for partitional clus-
tering of uncertain objects, we propose here a solution based
on a novel notion of cluster centroid. Our key idea is to take
into account the random variable whose realizations describe
all possible deterministic representations of the centroid be-
ing defined, in such a way that each of these representations
corresponds to the point that minimizes a certain distance
function (e.g., the (squared) Euclidean distance) between
itself and a set of possible representations of the uncertain
objects in the given cluster. More precisely, to define the
proposed centroid C of a given cluster C of uncertain ob-
jects, we consider a real-valued random variable XC , whose
observation space is comprised of the events “~x is the actual
deterministic representation of C ”, ∀~x ∈ ℜm. The ratio-
nale underlying XC is as follows: since each object within
C has a multiple representation due to its own uncertainty,
the centroid of C should have in turn a multiple represen-
tation that takes into account the various representations
of the objects within C; in particular, it should be required
that each specific representation of the centroid of C derives
from the minimization of a certain distance measure (e.g.,
Euclidean distance) from a set of points, each correspond-
ing to a possible realization of an uncertain object to be
summarized.

Figure 3 illustrates the above concept. Three 2-dimensional
uncertain objects forming a cluster are represented along
with the cluster centroid—for the sake of simplicity, only
the domain regions of the uncertain objects are depicted, as
the reasoning being explained holds regardless of a partic-
ular pdf. The figure shows that the actual representation
of the centroid C should change according to the specific
points considered for R′, R′′, and R′′′ as actual represen-
tations of the uncertain objects o′, o′′ and o′′′, respectively.
For example, the set of points {~x′, ~x′′, ~x′′′} would lead to the
representation of C corresponding to the point ~x.

In this way, our notion of uncertain centroid, named U-
centroid, is conceived to gain two main conceptual advan-
tages over existing notions of centroid for uncertain object
clusters: 1) it addresses the shortcomings that are typical
of a deterministic centroid notion (and hence overcomes a
major drawback of the UK-means centroid definition), and
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Figure 3: Example of uncertain cluster centroid
computation based on multiple deterministic rep-
resentations of uncertain objects

2) it has a clear stochastic meaning. Particularly, the latter
is related to an improvement of the notion of centroid in
MMVar, as U-centroid is defined in terms of a random vari-
able that describes the outcomes of a clear set of probability
events whereas MMVar centroid is a mixture model defined
by averaging the pdfs of the objects in a cluster.

In the following, we formally define the proposed notion
of U-centroid, as an uncertain object C = (R, f) defined
in terms of the random variable XC . Note that f is a pdf
that expresses the probability of each realization of XC , i.e.,
f(~x) = Pr(C ≡ ~x) = Pr(XC = ~x), ∀~x ∈ R.

Theorem 1. Given a cluster C = {o1, . . . , o|C|} of m-
dimensional uncertain objects, where oi = (Ri, fi) and Ri =[
ℓ
(1)
i , u

(1)
i

]
×· · ·×

[
ℓ
(m)
i , u

(m)
i

]
, ∀i ∈ [1..|C|], let C = (R, f) be the

U-centroid of C defined by employing the squared Euclidean
norm as distance to be minimized. It holds that:

f(~x)=

∫

~x1∈R1

· · ·

∫

~x|C|∈R|C|

I

[
~x=

1

|C|

|C|∑

i=1

~xi

]
|C|∏

i=1

fi(~xi)d~x1 · · · d~x|C|

R=


 1

|C|

|C|∑

i=1

ℓ
(1)
i ,

1

|C|

|C|∑

i=1

u
(1)
i


×···×


 1

|C|

|C|∑

i=1

ℓ
(m)
i ,

1

|C|

|C|∑

i=1

u
(m)
i




where I[A] is the indicator function, which is 1 when the
event A occurs, 0 otherwise.

It can be straightforwardly derived that f and R satisfy
the conditions reported in (1), which make any U-centroid
an uncertain object according to Definition 1.

4.2 Ucentroidbased Cluster Compactness
In general, the pdf f of any U-centroid reported in The-

orem 1 cannot be computed analytically. Hence, we define
a cluster compactness criterion based on the notion of U-
centroid that does not require to explicitly compute f .

4.2.1 Minimizing the Ucentroid Variance

As an U-centroid is an uncertain object, an intuitive defi-
nition of a U-centroid-based cluster compactness would be to
exploit the same approach as MMVar, i.e., the minimization
of the variance of U-centroids. Like in MMVar, a major ad-
vantage of this choice would lie in the capability of exploiting
an analytical formula to the variance computation. Given a

cluster C of uncertain objects, this formula would allow for
efficiently computing the variance of the U-centroid of any
new cluster C∪{o} (obtained by adding an uncertain object
to C) or C \ {o} (obtained by removing an uncertain object
from C) linearly with the number m of dimensions.

The following theorem shows that the variance of the U-
centroid of a cluster C is equal to the average of the variances
of the individual uncertain objects within C. Though the
resulting expression is easy and fast to compute, we prove
that however minimizing the variance of the U-centroid is
not appropriate to build compact clusters of uncertain ob-
jects. In fact, measuring cluster compactness according only
to the variances of the individual uncertain objects may lead
to wrong results as in general it does not take into account
the distances among data objects (cf. Figure 2).

Theorem 2. Given a cluster C = {o1, . . . , o|C|} of m-
dimensional uncertain objects, where oi = (Ri, fi), ∀i ∈
[1..|C|], let C = (R, f) be the U-centroid of C defined accord-

ing to Theorem 1. It holds that σ2(C) = |C|−2
∑|C|

i=1 σ
2(oi).

4.2.2 Minimizing the Expected Distance between Un
certain Objects and Ucentroids

After proving that the variance of U-centroid is not effec-
tive to measure the cluster compactness, we focus here on
a different U-centroid-based criterion, which consists in the
minimization of the sum of expected distances between the
objects in a cluster and the U-centroid of that cluster:

J(C) =
∑

o∈C

ÊD(o, C) (14)

Again, ÊD denotes the (squared) expected distance between
any two uncertain objects (cf. (13)).

In the following theorem, we show that the proposed ob-
jective function J overcomes the limitations of all cluster
compactness criteria previously discussed in the paper. Spe-
cifically, J directly exploits the sum of the variances of the
individual objects in a cluster, and hence it explicitly solves
the major UK-means/MMVar issue (cf. Section 4 and Fig-
ure 1); in addition, J takes into account the sum of expected
values of objects as well, which allows for overcoming the is-
sue arising from the criterion based on the minimization of
the variance of C only (cf. Section 4.2.1 and Figure 2).

Theorem 3. Let C = {o1, . . . , o|C|} be a cluster of m-
dimensional uncertain objects, where oi = (Ri, fi), ∀i ∈
[1..|C|], and C = (R, f) be the U-centroid of C defined ac-
cording to Theorem 1. In reference to the function J defined
in (14), it holds that:

J(C) =

m∑

j=1

(
Ψ

(j)
C

|C|
+Φ

(j)
C −

Υ
(j)
C

|C|

)
=

1

|C|

|C|∑

i=1

σ2(oi)+JUK(C)

where JUK is the UK-means objective function (cf. (9)) and

Ψ
(j)
C =

|C|∑

i=1

(σ2)j(oi) Φ
(j)
C =

|C|∑

i=1

(µ2)j(oi) Υ
(j)
C =




|C|∑

i=1

µj(oi)



2

Corollary 1. Let C be a cluster of uncertain objects,
and C+ = C ∪ {o+}, C− = C \ {o−} be two clusters defined
by adding an object o+ /∈ C to C and removing an object
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Algorithm 1 UCPC
Input: A set D of m-dimensional uncertain objects; the number k

of output clusters
Output: A partition (clustering) C of D
1: compute ~µ(o), ~µ2(o), ~σ

2(o), ∀o ∈ D
2: C ← initialPartition(D, k)

3: compute Ψ
(j)
C

, Φ
(j)
C

, Υ
(j)
C

, J(C), ∀j ∈ [1..m], ∀C ∈ C, according
to Theorem 3

4: repeat

5: V ←
∑

C∈C J(C)

6: for all o ∈ D do

7: let Co ∈ C be the cluster s.t. o ∈ Co

8: C∗←argminC∈CV−[J(C
o)+J(C)] + [J(Co\{o})+J(C∪{o})]

9: if C∗ 6= Co then

10: let C+ = C∗ ∪ {o}, C− = Co \ {o}

11: C ← C \ {C∗, Co} ∪ {C+, C−}

12: replace Ψ
(j)

C∗ , Φ
(j)

C∗ , Υ
(j)

C∗ , J(C
∗) with Ψ

(j)

C+ , Φ
(j)

C+ , Υ
(j)

C+ ,

J(C+), ∀j ∈ [1..m], according to (15)

13: replace Ψ
(j)

Co , Φ
(j)

Co , Υ
(j)

Co , J(C
o) with Ψ

(j)

C− , Φ
(j)

C− , Υ
(j)

C− ,

J(C−), ∀j ∈ [1..m], according to (16)
14: end if

15: end for

16: until no object in D is relocated

o− ∈ C from C, respectively. In reference to the expres-

sion J(C) =
∑m

j=1

(
|C|−1Ψ

(j)
C + Φ

(j)
C − |C|−1Υ

(j)
C

)
, derived

in Theorem 3, it holds that:

J(C+) =
m∑

j=1

(
Ψ

(j)

C+

|C|+1
+ Φ

(j)

C+ −
Υ

(j)

C+

|C|+1

)
(15)

J(C−) =

m∑

j=1

(
Ψ

(j)

C−

|C|−1
+ Φ

(j)

C− −
Υ

(j)

C−

|C|−1

)
(16)

where Ψ
(j)

C+ = Ψ
(j)
C + (σ2)j(o

+), Φ
(j)

C+ = Φ
(j)
C + (µ2)j(o

+),

Υ
(j)

C+ =

(√
Υ

(j)
C + µj(o

+)

)2

, Ψ
(j)

C− = Ψ
(j)
C − (σ2)j(o

−),

Φ
(j)

C− = Φ
(j)
C − (µ2)j(o

−), and Υ
(j)

C− =

(√
Υ

(j)
C − µj(o

−)

)2

.

It should also be emphasized that Theorem 3 provides a
closed-form expression for J that does not require to ex-
plicitly compute the pdf f of C. This expression, which
is efficiently computable in O(|C| m), is given by a linear

combination of the terms Ψ
(j)
C , Φ

(j)
C and Υ

(j)
C , ∀j ∈ [1..m].

This result puts the basis also for an efficient computation
of the objective functions J(C+) and J(C−) of any two clus-
ters C+ and C− defined by adding/removing an uncertain
object to/from the original cluster C. According to Corol-

lary 1, in fact, this can be done in O(m), as the terms Ψ
(j)

C+ ,

Φ
(j)

C+ and Υ
(j)

C+ (resp. Ψ
(j)

C− , Φ
(j)

C− and Υ
(j)

C− ) that compose

function J(C+) (resp. J(C−)) can be computed in constant

time given the earlier Ψ
(j)
C , Φ

(j)
C and Υ

(j)
C terms and the

expected value, second order moment and variance of the
object to be added/removed to/from C (cf. (15)-(16)).

4.3 The UCPC Algorithm
The problem of partitional clustering of uncertain ob-

jects can be formulated as C∗ =argminC

∑
C∈C J(C). As

it refers to an NP-hard problem, we define a local search-
based heuristic that exploits the results reported in The-
orem 3 and Corollary 1 to compute effective and efficient
approximations.

Table 1: Datasets used in the experiments
(a) Benchmark datasets

dataset obj. attr. classes

Iris 150 4 3
Wine 178 13 3
Glass 214 10 6
Ecoli 327 7 5
Yeast 1,484 8 10
Image 2,310 19 7

Abalone 4,124 7 17
Letter 7,648 16 10

KDDCup99 4,000,000 42 23

(b) Real datasets

dataset obj. attr.

Neuroblastoma 22,282 14
Leukaemia 22,690 21

Algorithm 1 shows our proposed heuristic algorithm, called
U-Centroid-based Partitional Clustering (UCPC). After a
preliminary phase in which the expected value, second order
moment and variance of each object within the input dataset
D are computed (Line 1), UCPC starts by taking an initial
partition of D (Line 2) (e.g., a random partition). Then it
follows an iterative procedure such that, at each step, a new
clustering is searched to be better than the one obtained at
the previous iteration (Lines 4–16). To profitably exploit
Theorem 3 and Corollary 1, the new clustering is formed by
looking at all possible relocations of an object from its early
cluster to a different cluster: for each object o ∈ D, the relo-
cation that gives the maximum decrement of the objective
function w.r.t. the previous clustering will be considered to
form the new clustering.

The proposed UCPC converges to a local optimum of the
objective function therein involved, and works linearly with
both the size of the input dataset and the dimensionality of
the input uncertain objects, as formally shown next.

Proposition 4. The UCPC algorithm outlined in Alg. 1
converges to a local minimum of function

∑
C∈C J(C) in a

finite number of steps.

Proposition 5. Given a set D of n m-dimensional un-
certain objects, the number k of output clusters, and de-
noting by I the number of iterations to convergence, the
computational complexity of the UCPC algorithm (Alg. 1)
is O(I k n m).

According to Proposition 5, the proposed UCPC has a
complexity equal to that of the fastest existing partitional
methods for clustering uncertain objects, i.e., UK-means
and MMVar (cf. Section 2); this result proves a major claim
of this work, which concerns the efficiency in solving the
problem of partitional clustering uncertain objects.

5. EXPERIMENTS
Our experimental evaluation was conducted to assess ef-

fectiveness, efficiency, and scalability of the proposed UCPC
algorithm. For the effectiveness and efficiency evaluations,
we used eight benchmark datasets (where the uncertainty
was synthetically generated) available from [2] and two real
datasets (which originally contained uncertainty) that de-
scribe gene expressions in biological tissues (microarray anal-
ysis) [3]—Table 1 reports on main characteristics of the
datasets. Moreover, specifically for the scalability study, we
used a very large dataset (4 million objects, last row of Ta-
ble 1-(a)), which was employed for the KDD Cup ’99 contest
and now available from the UCI repository [2].
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We comparatively evaluated UCPC with the other par-
titional algorithms, i.e., UK-means (UKM), UK-medoids
(UKmed), and MMVar (MMV), with the density-based al-
gorithms, i.e., FDBSCAN (FDB) and FOPTICS (FOPT),
and with the agglomerative hierarchical algorithm UAHC.
We also included the UK-means variants, namely the basic
UK-means (bUKM) and pruning-based methods MinMax-
BB and VDBiP (cf. Section 2.2); however, they were consid-
ered in the efficiency evaluation only since they share with
UK-means the underlying clustering scheme.

To avoid that clustering results were biased by random
chance (due to non-deterministic operations, such as com-
puting initial centroids/medoids/partitions), all accuracy and
efficiency measurements for each of the algorithms were av-
eraged over multiple (50) runs.

5.1 Assessment Methodology
The quality of clustering solutions was evaluated by means

of both external and internal criteria.
External criteria exploit the availability of reference clas-

sifications to evaluate how well a clustering fits a predefined
scheme of known classes. Reference classification is hence in-
tended as a predetermined organization of the data objects
into a set of classes; clearly, reference classifications were
used only for evaluation purposes, and not during the clus-
tering task. We employed the well-known F-measure (F ),
which ranges within [0, 1] such that higher values correspond

to better quality results. Denoting with C̃ = {C̃1, . . . , C̃k̃} a
reference classification and with C = {C1, . . . , Ck} a cluster-
ing solution, F-measure is defined as:

F (C, C̃) =
1

|D|

k̃∑

u=1

|C̃u| max
v∈[1..k]

Fuv

where Fuv = (2 Puv Ruv)/(Puv + Ruv) such that Puv =

|Cv ∩ C̃u|/|Cv | and Ruv = |Cv ∩ C̃u|/|C̃u|, for each v ∈ [1..k]

and u ∈ [1..k̃].
We also used internal criteria based on intra-cluster (intra

(C)) and inter-cluster (inter(C)) distances (for a given clus-
tering solution C) which express cluster cohesiveness and
cluster separation, respectively:

intra(C) =
1

|C|

∑

C∈C

1

|C|(|C| − 1)

∑

o,o′∈C,

o 6=o′

ÊD(o, o′)

inter(C)=
1

|C|(|C|−1)

∑

C,C′∈C,
C 6=C′

1

|C|×|C′|

∑

o∈C

∑

o′∈C′

ÊD(o, o′)

Such distance values are finally combined into a single value
Q(C) = inter(C)− intra(C), such that the lower intra(C) or
the higher inter(C), the better the clustering quality Q(C).
Since intra and inter values were normalized within [0, 1],
Q ranges within [−1, 1].

Uncertainty generation. We synthetically generated un-
certainty in benchmark datasets, as they originally contain
deterministic values; conversely, this was not necessary for
real microarray datasets since they inherently have probe-
level uncertainty, which can easily be modeled in the form

of Normal pdfs according to themulti-mgMOS method [15].1

According to an approach already employed by previous
works [4], we developed the following uncertainty genera-
tion strategy.

Given a (deterministic) benchmark dataset D, we firstly
generated a pdf f~w for each (deterministic) point ~w within
D. In particular, we considered the Uniform, Normal and
Exponential pdfs, as they are commonly encountered in real
uncertain data scenarios [1]. Every f~w was defined in such
a way that its expected value corresponded exactly to ~w
(i.e., ~µ(f~w) = ~w), whereas all other parameters (such as the
width of the intervals of the Uniform pdfs or the standard
deviation of the Normal pdfs) were randomly chosen. We
exploited the pdfs f~w to simulate what actually happens in
typical real contexts for uncertain data. Thus, we focused
on two evaluation cases:

1. the clustering task is performed by considering only
the observed (i.e., non-uncertain) representations of
the various data objects;

2. the clustering task is performed by involving an uncer-
tainty model.

The ultimate goal was to assess whether the results obtained
in Case 2 case are better than those obtained in Case 1.

In Case 1, we generated a perturbed dataset D′ from D by
adding to each point ~w ∈ D random noise sampled from its
assigned pdf f~w according to the classic Monte Carlo and
Markov Chain Monte Carlo methods.2 As a result, D′ still
contains deterministic data. In our evaluation, each of the
selected clustering methods was carried out on D′ so that
it produced an output clustering solution denoted by C′. A

score F (C′, C̃) was hence obtained by comparing the output
clustering C′ to the reference classification of D (denoted by

C̃) by means of the F-measure cluster validity criterion.
In Case 2, when uncertainty is taken into account, we

further created an uncertain dataset D′′ from D which is the
one designed to contain uncertain objects. In particular, for
each ~w ∈ D, we derived an uncertain object o = (R, f) so
that f = f~w, while R was defined as the region containing
most of the area (e.g., 95%) of f~w. Again, we run each of
the selected clustering methods on D′′ as well, in order to

obtain a clustering solution C′′ and a score F (C′′, C̃).
Finally, we compared the scores obtained in Case 1 and

Case 2, respectively, by computing Θ(C′, C′′, C̃) = F (C′′, C̃)−

F (C′, C̃); the higher Θ, the better the quality of C′′ w.r.t. C′,
and, therefore, the better the performance of the clustering
method when the uncertainty is taken into account w.r.t.
the case where no uncertainty is employed. Note that Θ
ranges within [−1, 1].

5.2 Results

5.2.1 Effectiveness

Accuracy on Benchmark Datasets. Table 2 shows accu-
racy results on benchmark datasets for Uniform (U), Normal
(N), and Exponential (E) distributions, in terms of both ex-
ternal (Θ) and internal (Q) cluster validity criteria (cf. Sec-
tion 5.1). We also report, for each method, (i) the score for
1
We used the Bioconductor package PUMA (Propagat-

ing Uncertainty in Microarray Analysis) available at
http://www.bioinf.manchester.ac.uk/resources/puma/.
2
We used the SSJ library (www.iro.umontreal.ca/∼simardr/ssj/).
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Table 2: Accuracy results on benchmark datasets: external (F-measure) and internal (Quality) criteria

F-measure (Θ ∈ [−1, 1]) Quality (Q ∈ [−1, 1])
data pdf FDB FOPT UAHC UKmed UKM MMV UCPC FDB FOPT UAHC UKmed UKM MMV UCPC

U -.102 .005 .002 .023 -.062 .043 .061 .197 .093 .146 .148 .151 .147 .145
Iris N -.063 .044 .017 .010 -.010 .056 .090 .238 .135 .215 .194 .263 .187 .197

E -.383 .023 -.174 -.045 -.249 .153 .161 -.004 .202 -.001 .081 .118 .692 .656
U -.179 .174 .092 .175 -.179 -.011 -.023 -.002 .128 -.001 .012 -.001 -.001 -.006

Wine N -.185 .030 .197 -.085 -.184 .160 .156 .022 .009 .050 .042 -.020 .124 .123
E -.208 .006 -.012 -.104 -.208 -.209 -.191 0 0 0 .001 0 .011 .013
U -.298 .012 .222 .084 .066 .107 .423 -.013 .001 .001 .060 .001 .226 .301

Glass N -.040 -.136 .132 -.070 -.025 -.009 .128 .042 .006 .119 .041 .057 .008 .156
E -.334 -.182 .131 .009 -.231 .462 .552 -.002 0 0 .006 .004 .140 .064
U -.136 .023 -.014 .223 .199 .222 .702 0 .449 .008 .187 .101 .592 .648

Ecoli N .061 .015 .269 .045 .131 .508 .533 .086 .284 .088 .029 .141 .151 .156
E -.383 -.239 -.129 -.034 -.160 .033 .003 0 0 0 .003 .001 .187 .210
U -.085 .252 .255 .315 .220 .413 .642 0 .029 .001 .193 .041 .566 .580

Yeast N .079 -.001 .306 -.035 .159 .537 .620 .040 .222 .150 .005 .053 .253 .272
E -.311 -.195 .016 -.055 -.098 .336 .363 0 0 0 0 0 .184 .160
U -.283 -.113 .046 .241 .278 .071 .421 0 0 0 0 0 .725 .802

Image N -.251 -.081 .127 -.061 .122 .028 .278 -.001 .004 .130 .010 .065 .004 .253
E -.307 -.137 -.020 .087 -.024 .144 .202 0 0 0 0 0 .008 .119
U -.092 .291 .084 .379 .120 .539 .623 -.018 .010 .060 .071 .040 .226 .232

Abal. N .095 -.039 .109 .009 .034 .188 .111 .086 .054 -.030 .031 .103 .057 .053
E -.182 .315 .063 .025 .080 .546 .542 0 0 0 0 0 .226 .283
U -.338 -.201 .026 .237 .008 .165 .582 0 0 .001 0 0 .279 .297

Letter N -.340 -.203 .037 -.039 -.076 .127 .376 -.022 .207 .004 .357 .352 .331 .305
E -.431 -.294 .059 .033 -.202 .133 .153 0 0 0 0 0 .147 .094

U -.189 .055 .089 .210 .081 .193 .429 .021 .089 .027 .084 .042 .345 .375
avg score N -.081 -.046 .149 -.028 .019 .199 .287 .061 .115 .091 .089 .127 .139 .189

E -.317 -.088 -.008 -.011 -.137 .200 .223 -.001 .025 0 .011 .015 .199 .200

overall avg. score -.196 -.026 .077 .057 -.012 .198 .313 .027 .076 .039 .061 .061 .228 .255
overall avg. gain +.509 +.339 +.236 +.256 +.324 +.115 — +.228 +.179 +.216 +.194 +.194 +.027 —

Table 3: Accuracy results (Quality) on real datasets
Quality (Q ∈ [−1, 1])

data #clust. FDB FOPT UAHC UKmed UKM MMV UCPC

2 -.004 .010 .917 .044 .057 .592 .598
3 -.004 .017 .670 .047 .061 .600 .620
5 -.004 .009 .847 .043 .060 .678 .718

Neuro. 10 -.004 .008 .607 .048 .068 .098 .137
15 -.004 .010 .578 .044 .060 .675 .717
20 -.004 .009 .487 .047 .061 .582 .621
25 -.004 .009 .465 .041 .065 .596 .631
30 -.004 .008 .466 .043 .047 .532 .564
2 -.018 .068 .445 .221 .207 .212 .224
3 -.018 .080 .258 .256 .392 .305 .352
5 -.018 .061 .160 .245 .451 .481 .537

Leuk. 10 -.018 .213 .150 .238 .455 .405 .451
15 -.018 .192 .145 .246 .451 .501 .544
20 -.018 .186 .126 .213 .479 .492 .528
25 -.018 .353 .127 .215 .558 .588 .620
30 -.018 .369 .122 .213 .448 .483 .512

Neuro.avg score -.004 .010 .630 .045 .060 .544 .576
Leuk.avg score -.018 .190 .192 .231 .430 .433 .471

over.avg score -.011 .100 .411 .138 .245 .489 .523
over.avg gain +.534 +.423 +.112 +.385 +.278 +.034 —

each type of pdf averaged over all datasets (for short, aver-
age score), (ii) the score averaged over all datasets and pdfs
(for short, overall average score), and (iii) the overall aver-
age gain of the proposed UCPC computed as the difference
between the overall average score of UCPC and the overall
average score of any specific competing method.

Looking at the overall average scores and gains, the pro-
posed UCPC was more accurate than any other compet-
ing method, in terms of both Θ and Q, with gains up to
0.509 (Θ) and 0.228 (Q). This finding was confirmed by the
results obtained in terms of single dataset-by-pdf configu-
ration. Indeed, according to Θ, UCPC achieved the best
results on 17 out of 24 dataset-by-pdf configurations, while,
for additional 5 configurations (i.e., all remaining ones ex-
cept Wine-Uniform and Wine-Exponential), its gap from the

best competing method was negligible (smaller than 0.080).
Similarly, considering Q, UCPC was the best method on
the majority (13) of the dataset-by-pdf configurations and
achieved results comparable to the best ones in further 9
configurations: only on two configurations (Wine-Uniform
and Ecoli-Normal) its gap from the best method was greater
than 0.080.

Finally, we remark that the proposed UCPC generally
outperformed its most direct competitors UK-means and
MMVar, thus confirming a major claim of this work. Com-
pared to UK-means, UCPC achieved better Θ results on all
24 dataset-by-pdf configurations (gain up to 0.783), whereas
in terms of Q, UCPC outperformed UK-means on 19 out of
24 configurations (gain up to 0.802), while achieving negligi-
ble gaps (smaller than 0.070) in the remaining 5 configura-
tions. UCPC outperformed MMVar as well, though MMVar
results were in general better than those achieved by UK-
means. Particularly, in terms of Θ, UCPC was better than
MMVar on 19 out of 24 dataset-by-pdf configurations (gain
up to 0.480), while being comparable on the remaining 5
configurations (gaps smaller than 0.080).

Accuracy on Real Datasets. Table 3 shows accuracy re-
sults obtained on Neuroblastoma and Leukaemia, and also
summarizes (i) the scores on each dataset by averaging over
the cluster numbers, and (ii) the scores and gains by averag-
ing over all cluster numbers and datasets (for short, overall
average score). Due to the unavailability of reference clas-
sifications for such datasets, we performed multiple tests by
varying the number of clusters and assessed the results based
on the internal criterion Q only.

UCPC achieved the best overall average performance, with
maximum, average and minimum gains (over all the com-
peting algorithms) of 0.534 (w.r.t. FDBSCAN), 0.294, and
0.034 (w.r.t. MMVar), respectively. Moreover, in terms of
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(a) Abalone

(b) Letter

(c) Real datasets

Figure 4: Efficiency results

average scores, UCPC was the best method on Leukaemia,
while outperforming all methods but UAHC on Neuroblas-

toma; however, the gap from UAHC remained small (0.054).
Again, our UCPC generally outperformed UK-means and
MMVar. Indeed, UCPC was on average more accurate than
UK-means on both datasets, while achieving better results
on 14 out of 16 dataset-by-number of clusters configurations,
whereas, compared to MMVar, UCPC achieved better re-
sults on all 16 dataset-by-number of clusters configurations.

5.2.2 Efficiency

We also evaluated time performance of our UCPC on
both benchmark and real datasets.3 As previously men-
tioned, in this evaluation we also included the basic UK-
means, MinMax-BB and VDBiP. Actually, in order to pos-
sibly strengthen the pruning power of MinMax-BB and VD-
BiP, they were both coupled with the cluster-shift technique,
since it has been demonstrated to have beneficial pruning
effects [11, 17]. It is worth emphasizing that the pruning
times (i.e., times spent to build and maintain data struc-
tures needed for pruning) were discarded from our evalua-
tion, since we chose to focus primarily on the clustering time
performance; this also allowed us not to take into consider-
ation R-tree index variants of the Voronoi-diagrams-based
pruning (e.g., the RBi algorithm [11]), since R-tree mainly
boosts to reduce the pruning time. For an analogous rea-
son, we did not consider the time spent for the off-line stages
(i.e., distance pre-computation) required by UK-means and

3
Experiments were conducted on a quad-core platform Intel Pentium

IV 3GHz with 4GB memory and running Microsoft WinXP Pro.

Figure 5: Scalability on the KDD Cup ’99 dataset

UK-medoids as well. In this respect, we remark that our
UCPC does not require any off-line phase.

Figure 4 reports the clustering runtimes (in milliseconds)
obtained by the various methods on benchmark and real
datasets. Note that, due to space limits of this paper, we
present results only for the two largest among the bench-
mark datasets (excluding KDDCup99); nevertheless, the per-
formance trends we observed on the remaining datasets were
roughly similar to those of the datasets here reported. In the
figures, results on each dataset are organized in two plots:
the left-hand plot contains results obtained by the “slower”
algorithms, i.e., UK-medoids, basic UK-means, UAHC, and
the density-based algorithms, whereas the right-hand plot
contains results obtained by the “faster” MMVar, UK-means
and the pruning methods; moreover, to facilitate the com-
parison with the competing algorithms, each plot also re-
ports the performance of our UCPC.

Looking at the left-hand plots in Figure 4, we observe
that UCPC consistently outperformed all the competing al-
gorithms, more specifically: basic UK-means (1 order of
magnitude on benchmark datasets, and 2 orders on real
datasets), UAHC (3–5 orders), UK-medoids (3–4 orders),
FOPTICS (2–3 orders), and FDBSCAN (1–3 orders of mag-
nitude). Concerning the comparison of the “faster” algo-
rithms, UCPC performed very closely to UK-means and
MMVar, thus confirming a major claim of this work. Indeed,
UCPC achieved times always of the same order of magnitude
as UK-means and MMVar. The difference among these three
algorithms was very small and negligible in practice. It was
also interesting to observe that in most cases, the pruning-
based UK-means algorithms (i.e., MinMax-BB and VDBiP)
behaved very similarly to each other, and they were always
slower than UK-means and MMVar. Note that the worse
performance of MinMax-BB and VDBiP w.r.t. UK-means
is justified since UK-means does not perform any expected
distance computation in the on-line phase. Conversely, the
pruning methods significantly improved over the basic UK-
means (1 order of magnitude). Moreover, UCPC performed
generally better than MinMax-BB and VDBiP and, in some
cases, the gap was quite evident (e.g., 1 order of magnitude
on the real datasets).

Scalability. We carried out a scalability study using the
KDD Cup ’99 dataset.4 Figure 5 summarizes the results

4
For this study, we used the CRESCO HPC system

(www.cresco.enea.it), which is integrated into the ENEA-GRID
infrastructure. CRESCO is a general purpose system composed by
382 nodes with more than 3300 cores. We executed our experiments
on a CentOS 5.5 platform, with Linux 2.6.18 kernel, 64GB memory,
4 Intel(R) Xeon(R) CPU E7330, 2.40GHz quadcore.
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of this study, for which we varied the dataset size from 5%
to 100% and focused on UCPC and the fastest competing
algorithms. For each selected subset of the collection, we
ensured that all 23 classes were covered by the objects within
the subset. Thus, the number of clusters was conveniently
fixed to 23 for all the algorithms under consideration.

As expected, all algorithms (including our UCPC) exhib-
ited linear trends. Particularly, MMVar scaled better than
the other algorithms, and UCPC behaved very similarly
to UK-means. It was also interesting to observe that the
pruning-based UK-means algorithms were subject to some
fluctuations, which should be ascribed to a different effect
of the pruning on the various dataset portions.

6. CONCLUSION
In this paper we defined a novel, well-founded notion of

uncertain centroid for clusters of uncertain objects. The
proposed notion differs from existing ones in that it repre-
sents an uncertain object with a clear stochastic meaning,
which conceptually refers to possible deterministic represen-
tations of the objects being clustered. Based on this notion,
we developed a formulation that overcomes the limitations
of existing cluster compactness criteria by taking into ac-
count the sum of expected values as well as the sum of the
variances of the individual objects in the cluster. Experi-
ments on synthetic and real data have supported our claims
of efficiency and, more importantly, improved accuracy in
clustering uncertain objects.
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APPENDIX

Lemma 1. Given a cluster C of m-dimensional uncertain
objects, where o = (R, f), ∀o ∈ C, the function JUK defined
in (9) is equal to:

JUK(C) =

m∑

j=1

( ∑

o∈C

(µ2)j(o)−
1

|C|

(∑

o∈C

µj(o)

)2 )

�

Proposition 1. Given any two clusters C and C′ of un-
certain objects, it holds that:

JUK(C) = JUK(C
′) ;

∑

o∈C

σ2(o) =
∑

o′∈C′

σ2(o′)

Proof Sketch. It is sufficient to find a case where
JUK(C) = JUK(C

′) holds and
∑

o∈C σ2(o) =
∑

o′∈C′ σ
2(o′)

does not. To this end, let us assume that: 1) |C| =
|C′|, 2)

∑m

j=1

∑
o∈C(µ2)j(o) =

∑m

j=1

∑
o′∈C′(µ2)j(o

′), 3)∑
o∈C µj(o) =

∑
o′∈C′ µj(o

′), ∀j ∈ [1..m], and 4)
∑m

j=1∑
o∈C µ2

j(o) 6=
∑m

j=1

∑
o′∈C′ µ

2
j (o

′). Considering assump-

tions 1)–3) and according to Lemma 1, it follows that:
∑

o∈C

µj(o) =
∑

o′∈C′

µj(o
′), ∀j ∈ [1..m]

⇒

(∑

o∈C

µj(o)

)2

=

( ∑

o′∈C′

µj(o
′)

)2

, ∀j ∈ [1..m]

⇒
m∑

j=1

(∑

o∈C

µj(o)

)2

=
m∑

j=1

( ∑

o′∈C′

µj(o
′)

)2
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⇒

m∑

j=1

∑

o∈C

(µ2)j(o)−
1

|C|

m∑

j=1

(∑

o∈C

µj(o)

)2

=

=

m∑

j=1

∑

o′∈C′

(µ2)j(o
′)−

1

|C′|

m∑

j=1

( ∑

o′∈C′

µj(o
′)

)2

⇒ JUK(C) = JUK(C
′)

Similarly, considering also assumption 4), it can be further
derived that:

m∑

j=1

∑

o∈C

µ2
j (o) 6=

m∑

j=1

∑

o′∈C′

µ2
j (o

′) ⇒
∑

o∈C

σ2(o) 6=
∑

o′∈C′

σ2(o′)

�

Lemma 2. Let C be a cluster of uncertain objects, where
o = (R, f), ∀o ∈ C, and CMM be the centroid of C employed
by MMVar. It holds that:

~µ(CMM) =
1

|C|

∑

o∈C

~µ(o) ~µ2(CMM) =
1

|C|

∑

o∈C

~µ2(o)

�

Proposition 2. Let C be a cluster of m-dimensional un-
certain objects, where o = (R, f), ∀o ∈ C. In reference to
the functions JUK and JMM defined in (9) and (11), respec-
tively, it holds that JMM(C) = |C|−1JUK(C).

Proof Sketch. According to (4) and (6), JMM(C) =
σ2(C) can be rewritten as JMM(C) =

∑m

j=1

(
(µ2)j(CMM)−

µ2
j (CMM)

)
, which, resorting to Lemmas 2 and 1, becomes:

JMM(C) =
m∑

j=1

(
(µ2)j(CMM)− µ2

j (CMM)
)
=

=
1

|C|

m∑

j=1

(∑

o∈C

(µ2)j(o)−
1

|C|

(∑

o∈C

µj(o)

)2)
=

1

|C|
JUK(C)

�

Lemma 3. The squared expected distance ÊD(o, o′) be-
tween any two m-dimensional uncertain objects o = (R, f)

and o′ = (R′, f ′) is equal to
∑m

j=1

(
(µ2)j(o)−2µj(o)µj(o

′)+

(µ2)j(o
′)
)
. �

Proposition 3. Let C be a cluster of m-dimensional un-
certain objects, where o = (R, f), ∀o ∈ C. In reference to

the functions JUK, JMM, and Ĵ defined in (9), (11), and

(12) respectively, it holds that Ĵ(C) = 2 |C| JMM(C) =
2 JUK(C)

Proof Sketch. According to Lemma 3, function Ĵ
reported in (12) can be rewritten as:

Ĵ(C)=
∑

o∈C

m∑

j=1

(
(µ2)j(o)−2µj(o)µj(CMM)+(µ2)j(CMM)

)
=

=
m∑

j=1

(∑

o∈C

(µ2)j(o)−2µj(CMM)
∑

o∈C

µj(o)+|C|(µ2)j(CMM)

)

Since
∑

o∈C µj(o) = |C|µj(CMM) and
∑

o∈C(µ2)j(o) = |C|×

×(µ2)j(CMM) according to Lemma 2, and (σ2)j(o) = (µ2)j(o)
−µ2

j (o) according to (5), the latter expression becomes:

Ĵ(C)=2|C|
m∑

j=1

(
(µ2)j(CMM)−µ2

j (CMM)
)
=2|C|

m∑

j=1

(σ2)j(CMM)

By resorting to (6), (11), and Proposition 2, we have finally
that:

Ĵ(C) = 2|C|σ2(CMM) = 2|C|JMM(C) = 2JUK(C).

�

Theorem 1. Given a cluster C = {o1, . . . , o|C|} of m-
dimensional uncertain objects, where oi = (Ri, fi) and Ri =[
ℓ
(1)
i , u

(1)
i

]
×· · ·×

[
ℓ
(m)
i , u

(m)
i

]
, ∀i ∈ [1..|C|], let C = (R, f) be the

U-centroid of C defined by employing the squared Euclidean
norm as distance to be minimized. It holds that:

f(~x)=

∫

~x1∈R1

· · ·

∫

~x|C|∈R|C|

I

[
~x=

1

|C|

|C|∑

i=1

~xi

]
|C|∏

i=1

fi(~xi)d~x1 · · · d~x|C|

R =


 1

|C|

|C|∑

i=1

ℓ
(1)
i ,

1

|C|

|C|∑

i=1

u
(1)
i


×···×


 1

|C|

|C|∑

i=1

ℓ
(m)
i ,

1

|C|

|C|∑

i=1

u
(m)
i




where I[A] is the indicator function, which is 1 when the
event A occurs, 0 otherwise.

Proof Sketch. Let us consider sets S = {{~x1, . . . , ~x|C|}
| ~x1 ∈ R1 ∧ · · · ∧ ~x|C| ∈ R|C|} and S~x = {S | S ∈ S ∧ ~x =
argmin~y∈ℜm

∑
~x′∈S d(~y, ~x′)}. As S represents a probability

space, it can be exploited for defining a random variable
XS , whose realizations XS = S describe the events that
the actual representations of the objects o1, . . . , o|C| ∈ C
correspond to the points ~x1, . . . , ~x|C| ∈ S, respectively. XS

can be exploited as a conditional variable to derive:

fXC
(~x) = f(~x) =

∫

S∈S

fXC |XS=S(~x|S) fXS (S) dS

where fXS (S) is the pdf of XS . As fXC |XS=S(~x|S) = 1 if
S ∈ S~x, 0 otherwise, as well as fXS (S) = Pr(o1 ≡ ~x1 ∧

· · · ∧ o|C| ≡ ~x|C|) =
∏|C|

i=1 Pr(oi ≡ ~xi) =
∏|C|

i=1 fi(~xi), ∀S =
{~x1, . . . , ~x|C|} ∈ S , it follows that:

f(~x)=

∫

S∈S

fXC |XS=S(~x|S) fXS (S) dS =

=

∫

~x1∈R1

· · ·

∫

~x|C|∈R|C|

I

[
~x=argmin

~y∈ℜm

|C|∑

i=1

d(~y, ~xi)

] |C|∏

i=1

fi(~xi)d~x1· · ·d~x|C|

By employing the squared Euclidean norm as distance d, the

optimization problem ~x = argmin~y∈ℜm

∑|C|
i=1 d(~y, ~xi) be-

comes ~x = argmin~y∈ℜm g(~y), where g(~y) =
∑|C|

i=1 ‖~y − ~xi‖
2.

The solution of such a problem is ~y = |C|−1∑|C|
i=1 ~xi. By

replacing this into the expression of f(~x), we obtain:

f(~x)=

∫

~x1∈R1

· · ·

∫

~x|C|∈R|C|

I

[
~x=argmin

~y∈ℜm

|C|∑

i=1

d(~y, ~xi)

] |C|∏

i=1

fi(~xi)d~x1· · ·d~x|C|

=

∫

~x1∈R1

· · ·

∫

~x|C|∈R|C|

I

[
~x=

1

|C|

|C|∑

i=1

~xi

]
|C|∏

i=1

fi(~xi)d~x1 · · · d~x|C|
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which demonstrates the first statement of the theorem.
The second statement can be proved by observing that

all possible representations of the U-centroid C can only
results by averaging over the possible representations of the
uncertain objects within the cluster C. �

Lemma 4. Let C = {o1, . . . , o|C|} be a cluster of uncer-

tain objects, where oi = (Ri, fi), ∀i ∈ [1..|C|], and C =
(R, f) be the U-centroid of C defined according to Theo-
rem 1. Given any function g :R→ℜ, it holds that:

∫

~x∈R

g(~x)f(~x) d~x=

∫

~x1∈R1

· · ·

∫

~x|C|∈R|C|

g

(
1

|C|

|C|∑

i=1

~xi

)|C|∏

i=1

fi(~xi) d~x1· · ·d~x|C|

�

Lemma 5. Let C = {o1, . . . , o|C|} be a cluster of uncer-

tain objects, where oi = (Ri, fi), ∀i ∈ [1..|C|], and C =
(R, f) be the U-centroid of C defined according to Theo-

rem 1. It holds that ~µ(C) = |C|−1
∑|C|

i=1 ~µ(oi), and

~µ2(C) =
1

|C|2




|C|∑

i=1

~µ2(oi) + 2

|C|−1∑

i=1

~µ(oi)

|C|∑

i′=i+1

~µ(oi′)




�

Theorem 2. Given a cluster C = {o1, . . . , o|C|} of m-
dimensional uncertain objects, where oi = (Ri, fi), ∀i ∈
[1..|C|], let C = (R, f) be the U-centroid of C defined accord-

ing to Theorem 1. It holds that σ2(C) = |C|−2∑|C|
i=1 σ

2(oi).

Proof Sketch. From (5) and (6), it follows that
σ2(C) =

∑m

j=1

(
(µ2)j(C)− µ2

j(C)
)
, which, exploiting ~µ(C)

and ~µ2(C) derived in Lemma 5, can be rewritten as:

σ2(C)=
m∑

j=1


 1

|C|2




|C|∑

i=1

(µ2)j(oi) +2

|C|−1∑

i=1

µj(oi)

|C|∑

i′=i+1

µj(oi′)


+

−


 1

|C|

|C|∑

i=1

µj(oi)




2 
 =

=
1

|C|2

m∑

j=1

|C|∑

i=1

(
(µ2)j(oi)− µ2

j (oi)
)
=

1

|C|2

|C|∑

i=1

σ2(oi)

�

Theorem 3. Let C = {o1, . . . , o|C|} be a cluster of m-
dimensional uncertain objects, where oi = (Ri, fi), ∀i ∈
[1..|C|], and C = (R, f) be the U-centroid of C defined ac-
cording to Theorem 1. In reference to the function J defined
in (14), it holds that:

J(C)=
m∑

j=1

(
Ψ

(j)
C

|C|
+ Φ

(j)
C −

Υ
(j)
C

|C|

)
=

1

|C|

|C|∑

i=1

σ2(oi) + JUK(C)

where JUK is the UK-means objective function (cf. (9)) and

Ψ
(j)
C =

|C|∑

i=1

(σ2)j(oi) Φ
(j)
C =

|C|∑

i=1

(µ2)j(oi) Υ
(j)
C =




|C|∑

i=1

µj(oi)



2

Proof Sketch. According to Lemma 3, it holds that:

J(C)=
m∑

j=1




|C|∑

i=1

(µ2)j(oi)−2 µj(C)

|C|∑

i=1

µj(oi)+|C|(µ2)j(C)




Also, according to Lemma 5, it results that µj(C) = |C|−1×∑|C|
i=1 µj(oi), and

(µ2)j(C)=
1

|C|2




|C|∑

i=1

(µ2)j(oi)+




|C|∑

i=1

µj(oi)




2

−

|C|∑

i=1

µ2
j (oi)




Thus, substituting such expressions of µj(C) and (µ2)j(C)
into function J , we obtain:

J(C) =

m∑

j=1




|C|∑

i=1

(µ2)j(oi)−
2

|C|




|C|∑

i=1

µj(oi)



2

+

+
1

|C|




|C|∑

i=1

(µ2)j(oi)+




|C|∑

i=1

µj(oi)



2

−

|C|∑

i=1

µ2
j (oi)




=

=
m∑

j=1

(
Ψ

(j)
C

|C|
+ Φ

(j)
C −

Υ
(j)
C

|C|

)

which proves the first part of the theorem. The second part
can be derived by applying the results from Lemma 2:

J(C)=
1

|C|

|C|∑

i=1

σ2(oi)+|C|

m∑

j=1


 1

|C|

|C|∑

i=1

(µ2)j(oi)−


 1

|C|

|C|∑

i=1

µj(oi)



2


=
1

|C|

|C|∑

i=1

σ2(oi)+|C|σ2(CMM) =
1

|C|

|C|∑

i=1

σ2(oi)+JUK(C)

�

Proposition 4. The UCPC algorithm outlined in Alg. 1
converges to a local minimum of function

∑
C∈C J(C) in a

finite number of steps.

Proof Sketch. Let us denote by V (h) the value
∑

C∈C(h)

J(C), where C(h) is the clustering computed at the h-th
iteration of UCPC. To prove the proposition, it is sufficient
to show that V (h) ≤ V (h−1) at each iteration h > 1, as the
function

∑
C∈C J(C) is bounded below. This is true as at

each step of the algorithm the optimal move of objects to
clusters is performed. �

Proposition 5. Given a set D of n m-dimensional un-
certain objects, the number k of output clusters, and de-
noting by I the number of iterations to convergence, the
computational complexity of the UCPC algorithm (Alg. 1)
is O(I k n m).

Proof Sketch. The initialization (offline) phase (Lines
1-3) takes O(k n m), as well as the main cycle (Lines 4-16),
thanks to the formulas derived in Corollary 1; this leads to
an overall complexity of O(I k n m). �
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