
How to Price Shared Optimizations in the Cloud

Prasang Upadhyaya
Department of Computer
Science and Engineering
University of Washington

Seattle, WA, USA
prasang@cs.uw.edu

Magdalena Balazinska
Department of Computer
Science and Engineering
University of Washington

Seattle, WA, USA
magda@cs.uw.edu

Dan Suciu
Department of Computer
Science and Engineering
University of Washington

Seattle, WA, USA
suciu@cs.uw.edu

ABSTRACT
Data-management-as-a-service systems are increasingly be-
ing used in collaborative settings, where multiple users ac-
cess common datasets. Cloud providers have the choice to
implement various optimizations, such as indexing or ma-
terialized views, to accelerate queries over these datasets.
Each optimization carries a cost and may benefit multiple
users. This creates a major challenge: how to select which
optimizations to perform and how to share their cost among
users. The problem is especially challenging when users are
selfish and will only report their true values for different
optimizations if doing so maximizes their utility.

In this paper, we present a new approach for selecting
and pricing shared optimizations by using Mechanism De-
sign. We first show how to apply the Shapley Value Mech-
anism to the simple case of selecting and pricing additive
optimizations, assuming an offline game where all users ac-
cess the service for the same time-period. Second, we extend
the approach to online scenarios where users come and go.
Finally, we consider the case of substitutive optimizations.

We show analytically that our mechanisms induce truth-
fulness and recover the optimization costs. We also show ex-
perimentally that our mechanisms yield higher utility than
the state-of-the-art approach based on regret accumulation.

1. INTRODUCTION
Over the past several years, cloud computing has emerged

as an important new paradigm for building and using soft-
ware systems. Multiple vendors offer cloud computing in-
frastructures, platforms, and software systems including
Amazon [3], Microsoft [10], Google [20], Salesforce [35], and
others. As part of their services, cloud providers now offer
data-management-in-the-cloud options ranging from highly-
scalable systems with simplified query interfaces (e.g., Win-
dows Azure Storage [11], Amazon SimpleDB [9], Google App
Engine Datastore [21]), to smaller-scale but fully relational
systems (SQL Azure [26], Amazon RDS [6]), to data inten-
sive scalable computing systems (Amazon Elastic MapRe-

duce [4]), to highly-scalable unstructured data stores (Ama-
zon S3 [8]), and to systems that focus on small-scale data
integration (Google Fusion Tables [19]).

Existing data-management-as-a-service systems offer mul-
tiple options for users to trade-off price and performance,
which we call generically optimizations. They include views
and indexes (e.g., users can create them in SQL Azure and
Amazon RDS), but also the choice of physical location of
data –which affects latency and price (e.g., Amazon S3)–
how data is partitioned (e.g., Amazon SimpleDB data “do-
mains”), and the degree of data replication (e.g., Amazon
S3 standard and reduced-redundancy storage). Cloud sys-
tems have an incentive to enable all the right optimizations,
because this increases their customer’s satisfaction and can
also optimize the cloud’s overall performance.

Today, data owners most commonly pay all costs asso-
ciated with hosting and querying their data, whether by
themselves or by others. Data owners also choose, when pos-
sible, the optimizations that should be applied to their data.
However, there is a growing trend toward letting users col-
laborate with each other by sharing data and splitting data
access costs. For example, in the Amazon S3 storage service,
users can currently share their data with select other users,
with each user paying his or her own data access charges [7].

The combination of data sharing and optimizations cre-
ates a major challenge: how to select the optimizations to
implement and how to price them when one optimization
can benefit multiple users. Implementing these optimiza-
tions imposes a cost on the cloud that needs to be recovered:
resources spent on implementing and maintaining optimiza-
tions are resources that cannot be sold for query processing.

A recently-proposed approach by Kantere, Dash, et
al., [16, 22] addresses this problem by asking users to in-
dicate their willingness to pay for different query perfor-
mance values, observing the query workload, and deciding
on the optimizations to implement based on optimizations
that would have been helpful in the past (i.e., based on
regret). The cost of the implemented optimizations is amor-
tized over the future queries that make use of them. This
approach, however, has two key limitations as we show in
Section 8. First, it assumes that users in the cloud will
truthfully reveal their valuations. In practice, users will
try to game the system if doing so improves their own util-
ity. Other collaborative systems like peer-to-peer networks
experience widespread gaming [2] that can degrade system
performance [17], and incentives to reduce gaming are core
components of modern peer-to-peer clients [15]. Second, this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 6
Copyright 2012 VLDB Endowment 2150-8097/12/02... $ 10.00.

562

approach does not guarantee that the cost of an optimiza-
tion will be recovered.

Given these two observations, we develop a new approach
to select and price optimizations in the cloud based on Mech-
anism Design [31, 33]. Mechanism Design is an area of game
theory whose goal is to choose a game structure and pay-
ment scheme such as to obtain the best possible outcome
to an optimization problem in spite of selfish players having
to provide some input to the optimization. Our goal is to
enable the cloud to find the best configuration of optimiza-
tions. For this, it needs users (i.e., selfish players) to reveal
their valuations for these optimizations.

The most closely related approaches from the Mechanism
Design literature are cost-sharing mechanisms [27]. Given a
service with some cost, these mechanisms decide what users
to service and how much the users should pay for the service.
We show how to easily adapt this technique from the game
theory community to the simplest problem of pricing a single
optimization when all users access the system for a single
time-period (i.e., offline games).

The problem of pricing optimizations in the cloud, how-
ever, raises two additional challenges. First, in the cloud,
users change their workloads as well as join and leave the
system at any time. Such dynamism complicates the prob-
lem because the choice and price of optimizations must vary
over time (i.e., we need an online mechanism), and users now
have new ways of gaming the system: they can lie about the
time when they need an optimization and they can emulate
multiple users. Second, multiple optimizations are available
in the cloud and the value that a user derives from these
optimizations can be given by a complex function. In par-
ticular, in this paper, we consider additive, or independent,
optimizations and substitutive, or equivalent, optimizations.

We seek the following standard properties for our mech-
anisms. First, we want the mechanisms to be truthful, also
known as strategy-proof [31], which means that every player
should have an incentive to reveal her true value obtained
from each optimization. The approach by Dash, Kantere et
al. [16, 22] mentioned above is not truthful as we discuss
in Section 8: users can benefit from lying about their value
for an optimization. We also want online mechanisms to
be resilient to multiple identities and to misrepresentation
of the time when a user needs an optimization. Second,
we want the mechanisms to be cost-recovering, which means
that the cloud should not lose money from performing the
optimizations. In the approach by Dash, Kantere, et al. [16,
22], the cloud first decides to implement an optimization
and then the cost is amortized over the future queries that
use it. Cost-recovery is thus not guaranteed. Finally, we
want the mechanisms to be efficient, also known as value-
maximizing [31], which means that we want it to maximize
the total social utility of the system i.e., the sum of user val-
ues minus the cost of the implemented optimizations. For
example, if several users could benefit from an expensive
optimization that none of them can afford to pay for in-
dividually, then the cloud should perform the optimization
and divide the cost among the users.

In summary, we make the following four contributions:
We first show how the problem of pricing optimizations

maps onto a cost-recovery mechanism design problem (Sec-
tion 3). We also show how the Shapley Value Mecha-
nism [27], which is known to be both cost-recovering and
truthful, solves the problem of pricing a single optimization.

We propose a direct extension of the mechanism to the case
of additive optimizations in an offline scenario, where all
users access the system for the same time-period. We call
this basic mechanism AddOff Mechanism (Section 4).

Second, we present a novel mechanism for the online sce-
nario where users come and go, called the AddOn Mecha-
nism. It turns out to be much more difficult to design mech-
anisms for the online setting: algorithms that are truthful
or cost-recovering in the static setting cease to be so in the
dynamic setting (see [31, p. 412]). We prove our new mecha-
nism to be both cost-recovering and truthful in the dynamic
setting (Section 5).

Third, we extend both the AddOff Mechanism and the
AddOn Mechanism to the case where optimizations are
inter-dependent, or substitutive. We call these mechanisms
SubstOff Mechanism and SubstOn Mechanism and prove
them truthful (assuming users do not know other users’ val-
uations) and cost-recovering (Section 6).

It has been proven before that achieving both truthfulness
and cost-recovery, in the face of selfish agents, comes at the
expense of total utility [27]. We experimentally compare
our mechanisms against the state-of-the art approach based
on regret accumulation [16] and show that our mechanisms
produce up to a 3× higher utility and provide the same
utility for ranges of optimization costs up to 12.5× higher
than the state-of-the-art approach in addition to handling
selfish users and ensuring that the cloud recovers all costs.

2. MOTIVATING USE-CASE
An important component of the astronomy research con-

ducted by our colleagues in the astronomy department at
the University of Washington involves large universe simu-
lations [23], where the universe is modeled as a set of parti-
cles, which include dark matter, gas, and stars. All particles
are points in a 3D space with properties that include posi-
tion, mass, and velocity. Every few simulation time steps,
the simulator outputs a snapshot of the state of the uni-
verse capturing all properties of all particles at the time of
the snapshot. State of the art simulations (e.g., Springel et
al. [37]) use over 10 billion particles producing a dataset of
over 200 GB per snapshot.

For each snapshot, astronomers first run a clustering al-
gorithm to detect clusters, called halos. Some halos cor-
respond to galaxies. Studying the evolution of these halos
over time is a major component of their research. Different
astronomers research different types of halos. In particular,
our colleague indicated that: “There are in general three or
four different halo mass ranges that different people focus
on: high mass which corresponds to a cluster, Milky Way
mass, slightly less than Milky Way mass and low mass/dwarf
galaxies. [...] For example, I’ve been looking for Milky Way
Mass galaxies, but another person in our group might be
interested in the same sort of galaxies, but at a lower mass
range. [The simulation] also helps us identify what environ-
ment a given halo forms in – one person might be interested
in a Milky Way mass galaxy that forms in relative isola-
tion, another person might be interested in finding a Milky
Way mass galaxy that forms near many other galaxies (a
rich, cluster-like environment).” [25]. Additionally, different
scientists focus on different particle types and on the simula-
tion time steps that correspond to interesting time-periods
in the evolution of the halos that they study [25]. Thus, dif-
ferent users may need different optimizations (indexes and

563

materialized views for this use-case), and the challenge is to
decide which ones to implement, and who pays for them.

In Section 7.2, we evaluate our mechanisms on real data
and queries (optimized using materialized views) from this
use-case. Since different scientists query different parts of
the data, they benefit from different materialized views.

3. A MECHANISM DESIGN PROBLEM
In this section, we show how to model the problem of

selecting and pricing optimizations in the cloud as a mecha-
nism design [31] problem. We further show that our problem
requires a type of mechanism called cost-sharing mechanism.
In this paper, we assume that every optimization is binary,
i.e., the cloud either implements it or not. We do not con-
sider continuous optimizations (e.g., degree of replication).

We consider a set of users, I = {1, . . . ,m}, who are using a
cloud service provider (a.k.a., cloud) to access and query sev-
eral datasets. Any user can potentially access any dataset.
Let J = {1, . . . , n} be the set of all potential optimizations
that the cloud offers for these datasets. For example, j may
represent an index; or the fact that a dataset is replicated
in another data center; or may be an expensive fuzzy join
between two popular public datasets, which is precomputed
and stored as a materialized view. Upon deciding to do an
optimization j, the cloud may restrict access to j to only
certain users; a grant pair (i, j) indicates that user i has
been granted permission to use the optimization j. While
grant permissions artificially prevent a user from accessing
an optimization, this restriction is required to ensure that
users reveal their true value for an optimization and pay ac-
cordingly. A configuration, also called alternative, is a set of
optimizations j and a set of grant pairs1 (i, j). We denote
an alternative with a and the set of all possible alternatives
with A. We also denote Sj = {i | (i, j) ∈ a} to be the users
who get access to the optimization j in alternative a.

The goal of the mechanism will be to select a configuration
a ∈ A. The decision will be based on the optimization costs
and their values to users, which will determine the users’
willingness to pay for various optimizations.

Values to Users. Each user i obtains a certain value
vij ≥ 0 from each optimization j: e.g., monetary savings
obtained from faster execution or the ability to do a more
complex data analysis. When multiple optimizations are
performed, the total value to a user is given by Vi(a) ≥ 0,
and is obtained by aggregating the values vij for all grant
pairs (i, j) ∈ a. In this and the following two sections, we
consider additive optimizations, where the value is given by:

Vi(a) =
X

(i,j)∈a

vij ≥ 0 (1)

We consider substitutive optimizations in Section 6.
An important assumption in mechanism design is that

users try to lie about their true values: when asked for their
value vij , user i replies with a bid bij , where bij may be
different from vij . In the case of an additive value function,
we denote Bi(a) =

P
(i,j)∈a bij , where Bi(a) is user i’s bid

about her value Vi(a).
Cost to the Cloud. For each implemented optimiza-

tion j ∈ J , the cloud incurs an optimization cost Cj > 0,

1We assume that, if an alternative contains a grant pair
(i, j), then it also contains the optimization j.

which includes the initial cost of implementing the optimiza-
tion (e.g., building an index) and any possible maintenance
costs (e.g., updating the index) for the duration of the ser-
vice. This cost is an opportunity cost: the resources used
to perform the optimization cannot be sold to other users.
The cost of an alternative a is then given by:

C(a) =
X
j∈a

Cj (2)

Even if each cost Cj is small, the combined cost C(a) may
be large since the number of potential optimizations is large.

Payments. Once an outcome a is determined, each user
i who is granted access to an optimization j must pay some
amount pij . This payment is called the user’s cost-share,
and is determined based on all users’ bids2, (bij)i=1,m;j=1,n.
If Pi =

P
j pij is the total payment for user i, her utility

is defined as Ui(a) = Vi(a) − Pi. A standard assumption
in Mechanism Design is that users are “utility maximizers”,
i.e., they bid to maximize their utility [31, 33].

Cost-Sharing Mechanism Design Problem. After
collecting all bids, the mechanism chooses an outcome a0 ∈
A that optimizes some global value function. In the case of
cloud-based optimizations, we will aim to optimize the total
social utility (“total utility” for short): the outcome’s total
value (Eq. 1) minus the outcome’s cost (Eq. 2). Formally,
the mechanism chooses the following outcome a0:

a0 = arg max
a∈A

 X
i∈I

Bi(a)− C(a)

!
(3)

Such a mechanism is called efficient [27]. Note that the
mechanism does not know the true values Vi(a), but uses
the bids Bi(a) instead. The goal of mechanism design is to
define the payment functions pij so that all users have an
incentive to bid their true values Bi = Vi. A mechanism
is called strategy-proof [31, 33], or truthful, if no user can
improve her utility Ui(a) by bidding untruthfully, i.e., with
Bi 6= Vi. Truthful mechanisms are highly desirable, because
when users reveal their true values, the mechanism is in a
better position to select the optimal alternative.

Another desired property for cost-sharing mechanisms is
to be cost-recovering, i.e., to only pick outcomes a0 so that:

C(a0) ≤
X
i

Pi (4)

Example 1. Consider a näıve mechanism: The cloud
collects all bids bij; if cj ≤

P
i bij, it performs the opti-

mization j and asks each user to pay bij (pij = bij). Clearly
it is cost-recovering. However, it is not truthful: a user i can
lie and declare a much lower value bij � vij, hoping that the
optimization would be performed anyway and she would end
up paying much less than her true value. The challenge in
designing any mechanism is to ensure its truthfulness.

Formally, a mechanism is defined as follows:

Definition 1. A mechanism (f, P1, · · · , Pm) consists of
a function f :

`
RA
´m → A (called social choice function)

and a vector of payment functions P1, · · · , Pm, where Pi :`
RA
´m → R is the amount that user i pays.

2This is a very important point: the payment depends not
only on the outcome a, but on all bids. For e.g., in the
second bidders’ auction, the winner’s payment is the second
highest bid [33].

564

Symbol Description
i, j, t, a Index for users, optimizations, time-slots and outcomes.

I, J, T, A Sets of users, optimizations, time-slots and outcomes.
Sj(t) Users serviced by optimization j at time t.

CSj(t) All users serviced by optimization j up until time t.
vij(t) User i’s true (private) value for optimization j at time t.
bij(t) User i’s stated value for optimization j at time t.

Bi Bi = (bij)i=1,m;j=1,n.
Vi(a) User i’s total, true (private) value for outcome a.
Bi(a) User i’s total, stated (public) value for outcome a.

pij User i’s payment for optimization j.
Pi User i’s total payment.

Ui(a) User i’s utility for outcome a.
C(a), Cj Outcome a’s cost, and optimization j’s cost, respectively.

si Slot when user i enters the system.
ei Slot when user i pays and leaves the system.

Table 1: Symbol Table. For symbols with the argument

time t, we drop t for offline mechanisms.

The mechanism works as follows. After collecting bids
B1, . . . , Bm from all users3, it chooses the alternative a =
f(B1, . . . , Bm) where each user i must pay Pi(B1, . . . , Bm).

While we would like to design mechanisms that maximize
the total utility (Eq.(3)), it is a proven result that one cannot
achieve cost-recovery (a.k.a. budget-balance), truthfulness
and efficiency [27] simultaneously. In our setting, we ensure
only truthfulness and cost-recovery (Eq.(4)) at the expense
of some efficiency loss. Indeed, if the cloud cannot recover
its cost, it will not implement the loss-making optimization.

4. A MECHANISM FOR STATIC COLLAB-
ORATIONS

We now show how to use the Shapley Value Mecha-
nism [27], which has many desirable properties, to solve the
problem of selecting and pricing additive optimizations for
one time-slot (i.e., offline games). We extend it to online
settings, where users come and go across multiple time-slots
in Section 5 and to substitutive optimizations in Section 6.
For ease of reference, we summarize the notations used in
this paper in Table 1.

4.1 Background: Shapley Value Mechanism
We start by reviewing the Shapley Value Mechanism [27],

shown in Mechanism 1. Fix a single optimization j, let
Cj be its cost and b1j , . . . , bmj the users’ bids for this op-
timization. Mechanism 1 determines whether to perform
the optimization or not, and, computes the set of serviced
users Sj ⊆ {1, . . . ,m}, and how much they have to pay, pij .
Intuitively, it finds the minimum price p to charge to each
user who bid more than p such that the total payment is
at least Cj . It starts by setting Sj to the set of all users,
and divides the cost Cj evenly among them: p = Cj/|Sj |.
If p is larger than a user’s bid bij , she is removed from Sj
and a new price is recomputed by dividing the cost evenly
among the remaining users. As a result, the cost per user,
Cj/|Sj |, may increase and additional users may need to be
removed from the set Sj . The process continues until ei-
ther no users remain or no further users need to be removed
from Sj . Each serviced user i ∈ Sj pays the same amount
pij = Cj/|Sj |; each non-serviced user i 6∈ Sj pays nothing,
i.e., pij = 0. If Sj = ∅, no subset of users has bid enough to
pay for the optimization, and it is not implemented at all.
It is obvious that this mechanism is cost-recovering, sinceP
i∈Sj

pij = Cj . The mechanism has also been proven to

be truthful [27]: if the user i bids the true value bij = vij ,

3Each bid Bi is a function A→ R.

Mechanism 1 Shapley Value Mechanism: Computes the
users serviced by an optimization j, and their cost-share pij .

Input: Optimization cost Cj ; bids b1j , . . . , bmj .
Output: Serviced users Sj ; cost shares p1j , . . . , pmj
Sj ← {1, . . . ,m} /* The set of serviced users */
repeat

p← Cj

|Sj |
/* Divide cost evenly */

Sj ← {i | i ∈ Sj , p ≤ bij} /* Users still willing to pay */
until Sj remains unchanged, or Sj = ∅
pij ← p if i ∈ Sj /* Serviced users pay the same amount */
pij ← 0 if i 6∈ Sj . /* Non-serviced users do not pay */
return (Sj , (pij)i=1,m)

her utility (which is vij − pij if i ∈ Sj , and 0 otherwise)
is no smaller than her utility under any other bid. Indeed,
if she underbids, i.e., bij < vij ; two cases are possible. If
bij < Cj/|Sj |, Mechanism 1 removes her from Sj and finds a
smaller set of serviced users Sj that excludes her: thus, her
utility drops to 0. Else she continues to belong to Sj , so her
payment pij and her utility remain unchanged. Hence, she
cannot increase her utility by underbidding. The reader may
check that overbidding can not improve her utility either.

4.2 AddOff Mechanism
We now propose our first mechanism for cloud optimiza-

tion, under the simplest setting, when the optimizations are
done offline and are additive; we remove these restrictions
in the next sections. Our mechanism, called AddOff, iter-
ates over J and runs the Shapley Value Mechanism for each
optimization. It adds to a, the grant pairs for all serviced
users, and it implements the optimization j when the set Sj
is not empty. Each user pays the sum of all per-optimization
payments. Since AddOff runs the Shapley Value Mechanism,
independently, for each optimization, it follows directly that
it remains truthful and cost-recovering, as the latter.

Even though no mechanism can be truthful, cost-
recovering and efficient simultaneously, the Shapley Value
mechanism has the important property of minimizing util-
ity lost due to the cost-recovery constraint [27]. We show,
in Section 7, how this leads to high utilities even in the face
of selfish users compared to existing pricing techniques.

5. A MECHANISM FOR DYNAMIC COL-
LABORATIONS

The simple offline mechanism in the previous section is in-
sufficient for optimizations in the cloud, because cloud users
change over time. In this section, we develop a new on-
line mechanism for pricing cloud optimizations, where users
may join and leave the system at any time. In general, a
truthful offline mechanism may no longer be truthful in an
online setting [31, p. 412]; similarly, applying an offline cost-
recovering mechanism to an online setting may render it non
cost-recovering. Our new mechanism is specifically designed
for an online setting, and we prove that it is both truthful
and cost-recovering. We continue to restrict our discussion
to additive optimizations (we drop this assumption in the
next section), and therefore, without loss of generality, we
discuss the mechanism assuming a single optimization j.

An optimization’s cost has two components: an initial
implementation cost (e.g., building an index) and a main-
tenance cost (i.e., cost of index storage and index main-
tenance). To avoid oscillations where users can afford the

565

initial implementation cost but not its maintenance cost,
we propose an approach where the cloud computes a single,
fixed cost Cj , for each optimization j. This cost captures
both the initial implementation cost and the maintenance
cost for some extended period of time T (e.g., a month).
Users may join and leave at anytime during T . However,
at the end of this time-period, the optimization’s cost is re-
computed and all interested users must purchase it again.

5.1 AddOn Mechanism
We first explain how we model the time T . We divide T

into time-slots numbered 1 . . . z where a slot is the smallest
time interval for which a user can buy the service. If T is
a month, slots could correspond to hours, days or weeks.
The value for user i is a tuple θij = (si, ei, vij). Here, si
is the slot when she enters the system (e.g., by opening an
account) and ei is the slot when she leaves the system. vij(t)
is the function over the slots 1 . . . z such that: at each slot
t ∈ [si, ei], if user i gets access to the optimization j, she
obtains the value vij(t); else she obtains a value of 0. We
assume that if t < si or t > ei, vij(t) = 0. vij(t) can be an
arbitrary non-negative function and may be such that user i
only uses the optimization for a subset of the slots in [si, ei].

Users bid for the optimization j, by declaring their values
as θij = (si, ei, bij), where bij(t) is a function of time over the
interval t ∈ [si, ei]. The cloud collects the bids at each slot
t ∈ [1, z]: a bid cannot be retroactive (si < t), but users are
allowed to revise their future bids (bij(t

′), t′ ≥ t) upwards4.
For example, at time t = 1, let user 1 bid (1, 3, [10, 10, 10]),
meaning b1j(1) = b1j(2) = b1j(3) = 10; at time t = 2 she
may revise her bids as b1j(2) = 20, b1j(3) = 10. For each
time-slot t, the cloud needs to determine the set of serviced
users Sj(t), based on the current bids. When a user i leaves
the system at time ei, she has to pay a certain amount pij .

Example 2. Consider an optimization j with cost Cj =
100, and two users with values: θ1j = (1, 1, [101]), θ2j =
(1, 2, [26, 26]). Thus, user 1 obtains a value of 101 at t = 1
if she can access the optimization; user 2 obtains a value 26
at each of the times t = 1, 2, if she can access the optimiza-
tion. Consider the following näıve adaptation of the Shapley
Value Mechanism to a dynamic setting. Run the mechanism
at each time-slot, until it decides to implement the optimiza-
tion: at that point the cloud has recovered the cost, and will
continue to offer the optimization for free to new users. In
our example, the optimization will be performed at t = 1,
each user will pay 50, and 52− 50 = 2 will be user 2’s util-
ity. The problem is that the mechanism is not truthful: user
2 may cheat by bidding (2, 2, [26]). That is, if user 2 hides
her value during the first slot, user 1 would pay the entire
cost of the optimization, at t = 1, and user 2 would get a
free ride at t = 2, obtaining a higher utility of 26− 0 = 26.

Our mechanism addresses the challenge outlined in the
above example. Mechanism 2 shows the detailed pseudo-
code. Intuitively, it works as follows: First, it runs the
Shapley-Value Mechanism at each slot t using the residual
bid

P
τ≥t bij(τ) for each user i (line 7). The residual bid

captures the remaining value that each user would achieve
if the optimization were implemented at the current slot
t. This process repeats until the mechanism reaches a slot
with a high enough value in the residual bids to implement

4As a consequence, ei can only increase.

Mechanism 2 AddOn Mechanism: Cost-sharing mecha-
nism for additive optimizations, for multiple slots.

Input: Optimization j; cost Cj ; bids (si, ei, bij)i=1,m.
Output: Serviced users (Sj(t))t=1,z ; payments (pij)i=1,m

1: CSj(0)← ∅ pij ← 0, ∀i = 1,m
2: for each time slot t = 1, z do
3: for each user i = 1,m do
4: if i ∈ CSj(t− 1) then
5: b′ij ←∞ /* Force user i to be serviced */

6: else if t ≥ si then
7: b′ij ←

P
τ≥t bij(τ) /* Residual value at time t */

8: else
9: b′ij ← 0 /* Prune users not yet seen */

10: end if
11: end for
12: /* Update the set of serviced users */
13: (CSj(t), (p

′
ij)i=1,m)← Shapley-Mech(Cj , (b

′
ij)i=1,m)

14: Sj(t)← {i | i ∈ CSj(t), t ≤ ei} /* Service active users */
15: for i = 1,m do
16: if ei = t then
17: pij ← p′ij /* User i pays when her bid expires */

18: end if
19: end for
20: end for
21: return ((Sj(t))t=1,z , (pij)i=1,m).

the optimization. At that time, the optimization is imple-
mented, the users who could afford it get access to it, and
an initial cost-share is computed. In subsequent time-slots,
all previously serviced users continue to be serviced. If a
new user arrives, the system has two options: allow her to
pay the previously computed cost-share and access the op-
timization or recompute a lower cost-share given the extra
contribution of the new user. We choose the latter approach
since it minimizes the cost-share and maximizes the num-
ber of users who get the service. As a result, the per-user
cost-share decreases as new users join the system and con-
tribute to the optimization cost. Users actually pay for the
optimization only when they leave the system at time ei. At
that time, they pay the lowest cost-share computed so far.
Notice that, when a user i pays and leaves, the cost-share
does not increase for the remaining users since i paid her
share of the optimization cost.

More formally, the AddOn Mechanism computes for each
time-slot t ∈ [1, z] the set of serviced users Sj(t) (line
14), and computes the payment pij (lines 15-19) for each
user i leaving at time t, using the Shapley-Value mech-
anism. Denote the cumulative set of serviced users as
CSj(t) =

S
τ≤t Sj(τ). The key modification to the Shapley-

Value mechanism is to have it operate on CSj(t) rather than
Sj(t) (line 13). This ensures that all users who have used or
will use the optimization contribute equally to pay for the
cost. Once a user is serviced at some time τ , i ∈ Sj(τ), all
her future bid are assumed to be ∞ (line 5): this ensures
that the Shapley-Value Mechanism will always include i in
CSj(t). The users actually serviced, Sj(t), are the active
users in CSj(t) (line 14).

Example 3. Let the cost of the optimiza-
tion be Cj = 100 with four users bidding
(1, 1, [101]), (1, 3, [16, 16, 16]), (2, 2, [26]), (2, 2, [26]). Then
CSj(1) = {1}, CSj(2) = {1, 2, 3, 4}, CSj(3) = {1, 2, 3, 4}.
Note that user 2 is not included in CSj(1) because her bid
48 is below Cj/2. At time t = 2 her remaining total value

566

is only 32: however, since now there are four users, each
users’ share is Cj/4 and therefore all users are included in
CSj(2), and in CSj(3). Users 1,2,3,4 leave at times t = 1,
t = 3, t = 2, t = 2 respectively, so they pay 100, 25, 25, 25.

5.2 Properties
We prove that AddOn has three important properties: (1)

it is resilient to bids with both untruthful values and un-
truthful times, (2) it is cost-recovering, and (3) although
users can increase their own utilities by using multiple iden-
tities, they can not decrease the utility of other users.

Truthful. The definition of a truthful mechanism in the dy-
namic setting is more subtle than in the static setting. In a
static scenario, the mechanism is called truthful if for any set
of bids, user i cannot obtain more utility by bidding bij 6= vij
than by bidding her true value bij = vij . In the dynamic
case, user utilities depend not only on the other bids received
until now, but also on what will happen in the future. We
assume the model-free [31] framework to define truthfulness
in the dynamic case: it assumes that bidders have no knowl-
edge of the future agents and their preferences. At each time
t, every agent assumes their worst utility over all future bids,
and they bid to maximize this worst utility [31].

Example 4. Consider Example 3. User 2 bids
(1, 3, [16, 16, 16]), thus she could obtain a value 16 at each
of the three time-slots t = 1, 2, 3; but she is serviced only at
time-slots t = 2, 3, hence her value is 16 + 16 = 32. She
pays 25, thus her utility is 32 − 25 = 7. Suppose that she
cheats, by overbidding (1, 3, [17, 17, 17]). Now she is serviced
at all three time-slots, but still pays only 25 (because when
she leaves there are four users in CSj). Thus, for the par-
ticular bids in Example 3, user 2 could improve her utility
by cheating. In a model-free framework, however, users do
not know the future, and they must assume the worst case
scenario. In our example, the worst case utility for user 2 at
t = 1 (when she places her bid) corresponds to the case when
no new bids arrive in the future: in this case, if she overbids
≥ 50, she ends up paying 50, and her utility is 48−50 = −2.
If she underbids, her worst case utility is still 0. By cheating
at t = 1, user 3 cannot increase her worst-case utility.

With the model-free notion of truthfulness, a dynamic
mechanism is called truthful if, for each user, revealing her
true preferences maximizes the minimum utility that she can
receive, over all possible bids by future users. This definition
of truthfulness reduces to the classic definition of truthful-
ness for the static case (i.e., with a single time slot).

Proposition 1. AddOn Mechanism is truthful.

Proof. (Sketch) Consider a user i bidding at time t, i.e.,
her bid is (si, ei, bij) and t ≤ si (bids cannot be placed
for the past). We claim that her minimum utility over all
future users’ preferences (at times t + 1, t + 2, . . .) is when
no new bids arrive in the future. Indeed, any new bids
in the future can only decrease the payment due by user i
(by increasing the set Sj(ei), hence decreasing her payment
pij = Cj/|Sj(ei)|), and can only increase her value at every
future time slot t′ ≤ si, by including i in a set Sj(t

′) where it
was previously not included. Thus, the minimum utility for
user i is when no new bids arrive after time t. But in that
case, AddOn degenerates to one round of the Shapley-Value
Mechanism, run at time t, which is proven to be truthful.

Cost-recovering. Intuitively, AddOn recovers all costs be-
cause it always applies the Shapley-Value Mechanism to the
game given by all bids known at the present time. Due to the
lack of space, we defer the proof to our technical report [41].

Multiple Identities. A user could create multiple identi-
ties and place a separate bid for each identity. If at least
one identity gets access to the optimization, she obtains her
full value (by running her queries under that identity). How-
ever, she has to pay on behalf of all identities. It turns out
that a user can increase her utility this way: by creating
more identities, she could help more users to be serviced
and thus decrease her total payment. For example, consider
an optimization that costs Cj = 101 and a user Alice whose
value is (1, 1, [101]). Suppose there are 99 other users whose
values are (1, 1, [1]). Of the 100 users, only Alice is serviced,
because even if all the other 99 users were serviced, each
would be paying 101/100 = 1.01, which would exceed their
value of 1. However, if Alice creates two identities, each
bidding (say) (1, 1, [101]), AddOn would see 101 users and
would serve all of them with each of the 99 users paying
101/101 = 1, while Alice would pay 2, once for each iden-
tity. Thus, her utility would increase from 101− 101 = 0 to
101− 2 = 99. AddOn does not prevent such ways of gaming
the system, because they are indistinguishable from collab-
orations. For example, instead of cheating, Alice could ask
Bob (whose value is at least 1) to participate in the game,
then reimburse Bob for his payment: this is indistinguish-
able from creating a fake identity. On the other hand, this is
not undesirable: through her action, she caused more users
to be serviced, while agreeing to pay a bit more than the
other users’ shares. We can prove that this holds in general.

Proposition 2. Suppose a user i can increase her util-
ity under AddOff or AddOn by creating multiple identities
i1, i2, . . . Then no other users’ utility decreases.

Proof. (Sketch) Consider two games, one with user i
with a single account and one with user i creating k identi-
ties i1, . . . , ik and associated bids. Her utility can increase by
creating dummy identities only if the total payment by the
dummies is less than the total payment without the dum-
mies. Let user i’s payment with no dummies be pi and
the total payment of her dummies be p′i. Since creating
dummies increases i’s utility p′i < pi, and the payment per
dummy (which would be the payment per user as well with
the dummy accounts) is p′i/k < p′i < pi. Thus, for all users
served in the game with no dummies are surely served with
dummies too since the payment per user is lower than with-
out the dummies. Hence the utility of no user decreases.

6. MECHANISMS FOR SUBSTITUTABLE
OPTIMIZATIONS

In this section, we relax the requirement that optimiza-
tions be independent. Indeed, when multiple optimizations
(e.g., indexes or materialized views) exist, the value to the
user from a set of optimizations can be a complex combina-
tion of the individual optimization values. In this section, we
consider the case of substitutable optimizations. Formally,
each user defines a set of substitutable optimizations Ji ⊆ J
such that ∀j, k ∈ Ji : vij = vik = vi > 0. Additionally,
given an outcome a, Vi(a) = vi if ∃j ∈ Ji : (i, j) ∈ a and
Vi(a) = 0 otherwise. In comparison to the substitutable val-
uation, the valuation function that we previously used was

567

Mechanism 3 SubstOff Mechanism: Cost-sharing mech-
anism for substitutable optimizations for a single slot.

Input: Opts. J ; costs (Cj)j=1,n; bids (bij)i=1,m;j=1,n

Output: Alternative a ∈ A; cost shares (pij)i=1,m;j=1,n

a← ∅ pij ← 0, ∀i = 1,m ∀j = 1, n
loop

for each optimization j in J do
/* Compute serviced users, discard payments */
(Sj , (p

′
ij)i=1,m)← Shapley-Mech(Cj , (bij)i=1,m)

end for
/* Find the smallest cost-share optimization */
Jf ← {j ∈ J |Sj 6= ∅} /* Set of feasible opts */

if Jf 6= ∅ then
jmin ← arg minj∈Jf

`
Cj/|Sj |

´
a← a ∪ {jmin} /* Perform optimization jmin */
for each user i ∈ Sjmin do
a← a ∪ {(i, jmin)}
pijmin ← Cjmin/|Sjmin |
bij ← 0 ∀j ∈ J /* Remove i from future loops */

end for
Cjmin ←∞ /* Remove jmin from future loops */

else
return (a, (pij)i=1,m;j=1,n)

end if
end loop

the sum: Vi(a) =
P

(i,j)∈a vij . With substitutable valua-

tions, a user bid takes the form θi = (Ji, vi), where Ji is the
set of substitutable optimizations and vi is the user value if
she is granted access to at least one optimization in Ji.

Substitutable optimizations capture the case where imple-
menting any optimization from a set (e.g., indexes, materi-
alized views, or replication) can speed-up a workload by a
similar amount and the user does not have any preference as
to which optimization is responsible for the speed-up. How-
ever, she gets no added value from multiple optimizations
being implemented at the same time either because they
may be redundant (e.g., a materialized view may remove
the need for a specific index) or because she is indifferent to
further performance gains.

6.1 SubstOff Mechanism
We first consider the SubstOff Mechanism for static games

where all users use the system for the same time period.

Example 5. Consider three optimizations with costs
C1 = 60, C2 = 180, and C3 = 100. The bid ({1, 2}, 100)
indicates that the user values the access to either optimiza-
tion 1 or 2 at 100. Other example bids include ({3}, 101),
({1, 2, 3}, 60), and ({2}, 70), for users {2, 3, 4}, respectively.

The challenge with substitutable optimizations is that
users may bid for partially overlapping sets of optimizations
as in Example 5. They also have a new way of cheating. In
addition to lying about their value vi and emulating multi-
ple users, they may lie about the optimizations they want by
either bidding for ones they do not want or by not bidding
for the ones they do want. Our mechanisms are truthful un-
der the model-free notion and are also resistant to cheating
with dummy users under the practical assumption that no
user knows other users’ bids.

SubstOff Mechanism (Mechanism 3) works in a sequence
of phases. In the first phase, it runs the Shapley Value
mechanism for each optimization j (along with the users
who bid for j) independently and selects the optimization

Mechanism 4 SubstOn Mechanism: Cost-sharing mech-
anism for substitutable optimizations, for multiple slots.

Input: Opts J ; costs (Cj)j=1,n; bids (si, ei, (bij)j=1,n)i=1,m.
Output: Serviced users (Sj(t))t=1,z ; payments (pij)i=1,m

a← ∅ pij ← 0, ∀i = 1,m
for each time slot t = 1, z do

for each user i = 1,m do
if ∃j ∈ J. (i, j) ∈ a then
b′ij ←∞ /* Force user i to be serviced */

b′
ij′ ← 0 ∀j′ ∈ J, j′ 6= j /* Force i to only use j */

else if t ≥ si then
b′ij ←

P
τ≥t bij(τ) /* Remaining value know at t */

else
b′ij ← 0 /* Prune users not yet seen */

end if
end for
/* Update the set of serviced users */

(a, p′ij)← SubstOff(J, (Cj)j=1,n, (b
′
ij)i=1,m;j=1,n)

Sj(t)← {i | ∃j.(i, j) ∈ a, t ≤ ei}
for i = 1,m do

if ei = t then
pij ← p′ij /* User i pays when her bid expires */

end if
end for

end for
return ((Sj(t))j=1,n;t=1,z , (pij)i=1:m,j=1:n)

jmin with the lowest cost-share. Users who want jmin and
can pay its cost-share get access to it. The mechanism then
recursively applies the algorithm to the remaining users and
optimizations in subsequent phases.

Example 6. Consider example 5. SubstOff first iden-
tifies optimization 1 as having the lowest cost-share with
S1 = {1, 3} and cost-share 60

2
= 30, and thus implements

optimization 1 and services users 1 and 3. Next, SubstOff

considers the remaining users {2, 4} and the remaining op-
timizations {2, 3}. For these optimizations, S2 = ∅ while
S3 = {2}. Optimization 3 is thus implemented and user 2 is
given access to it. User 4 gets access to no optimization.

Due to space constraints we defer the proof that SubstOff

is cost-recovering and truthful to our technical report [41].
Example 7 provides an intuition for its truthfulness.

Example 7. Consider example 6. If, to cheat, user 3
bids any value in the range [30,∞), the outcome and her
utility would not change. If she bids below 30, however, she
would not be serviced by optimization 1 as her bid would be
below the cost-share. She would not get serviced by any other
optimization either, because their cost-shares are higher than
that of optimization 1, which has the lowest cost-share. Her
utility would be (0 < 30). Finally, if she, being untruthful,
does not bid for optimization 1, even though it benefits her,
and bids ({2, 3}, 60), then both optimization 1 and 2 would
tie for the lowest cost-share at 60. Assuming that SubstOff

makes a random choice and implements optimization 2, then
she would get access to optimization 2 and would pay the
cost-share of 60, achieving a strictly lower utility of 0.

6.2 SubstOn Mechanism
We now consider substitutable optimizations, but in a dy-

namic setting where users can join and leave the system in
any time-slot. Given substitutable optimizations Ji, user i

568

bids ωi = (si, ei, bi, Ji), with [si, ei] as the requested interval
of service and bi(t) is the value she gets at time t.

SubstOn Mechanism, shown in Mechanism 4, works by
running SubstOff at each time-slot t with the residual value
of all the users seen. The first time a user i is granted access
to optimization j her bid for j is updated to ∞ (so that
she is always in the feasible set of j), while her bids for the
other optimizations are updated to 0 (so that she remains
serviced only by optimization j).

Example 8. Consider three optimizations {1, 2, 3} with
costs C1 = 60, C2 = 100, C3 = 50. User 1 bids
(1, 2, 100, {1, 2}), which is interpreted as follows: she val-
ues any optimization in {1, 2} at 100 for the time-slots
[1, 2]. User 2 bids (2, 3, 100, {1, 2, 3}) and user 3 bids
(3, 3, 100, {3}). At t = 1, SubstOn runs SubstOff with user
1 (the only user at that time) and ends up implementing op-
timization 1, with a payment of 60. Then, SubstOn updates
user 1’s bid to optimization {1} valued at ∞. At time t = 2,
SubstOn runs SubstOff with users {1, 2} and ends up granting
user 2 access to optimization 1 with the new payments for
both users being 60/2 = 30. User 1 leaves after paying 30,
while user 2’s bids are updated to optimization {1} valued at
∞. At time t = 3, SubstOn again executes SubstOff with all
three users (although user 1 left, she is included while invok-
ing SubstOff, to compute the proper cost-share for user 2),
and ends up implementing optimization 3, but only for user
3, at a payment of 50. User 2 is not serviced optimization 3
since she is already using optimization 1 and SubstOn does
not allow her to switch to a new optimization. The system
ends with user 2 paying 30 and user 3 paying 50. The in-
ability to switch is crucial for truthfulness: otherwise, a new
user, say user 4, who prefers optimization {1, 3}, arriving
at time t = 3, might only bid for optimization 3 hoping that
user 2 would switch to optimization 3. If user 2 could switch,
each would pay 50/3 = 16.7, while without the switch, user 2
pays 60/2 = 30 (as before) and users {3, 4} pay 50/2 = 25.

Due to space constraints we defer the proof that SubstOn

is truthful and cost-recovering to our technical report [41].

Multiple Identities. The dummy users can, in theory, in-
crease their utility at the expense of other users, for substi-
tutable optimizations, though this is hard to do in practice.
We illustrate this for SubstOff, but the conclusions also ap-
ply to SubstOn. Consider users {1, 2, 3} with single-slot bids
({1}, 5), ({1, 2}, 2.51), and ({2}, 7) for optimizations {1, 2}
with costs C1 = 6 and C2 = 5. With no dummy users,
optimization 2 is implemented with a payment of 2.5 and
utilities of 0.01 for user 2 and 4.5 for user 3. If user 1 cre-
ates two identities 1′ and 1′′ that make a bid of 2.5 each for
optimization 1, then both optimizations are implemented
with optimization 1 serving {1′, 1′′, 2} with utilities of 1,
0.51, and 2 for users 1, 2, and 3 respectively. Note that user
3’s utility has reduced. However, to cheat, user 1 needed to
know the number of other users and their bids, which is not
publicly known in practice. She may try guessing, but in
the worst case, her guess can lead to a reduction in her util-
ity [41]. Thus, being truthful is the optimal strategy when
the user does not know the other bids.

7. EVALUATION
Our mechanisms guarantee truthfulness and cost-

recovery, but they do not optimize for total utility. In

this section, we empirically evaluate the total utility that
our solutions provide. We focus on the two online mech-
anisms (i.e., AddOn Mechanism and SubstOn Mechanism)
and compare them to the state-of-the-art regret-based ap-
proach (Section 7.1) [16, 22]. The experiments consist of
both the motivating use-case (Section 2) and simulated sce-
narios (Sections 7.3 through 7.6).

7.1 Regret-based Amortization
Kantere, Dash, et al. [16, 22] proposed a regret-based ap-

proach (called Regret, henceforth) to select optimizations.
They developed a detailed economy of the cloud and con-
sidered detailed query plans for computing regret. In this
paper, we abstract away and evaluate the performance of the
core regret-based approach without the surrounding econ-
omy or plan details. We briefly describe the algorithm.

The regret for an optimization j at time t, termed Rj(t),
is defined as the total value that would have been realized,
over all users, until time t (and excluding time t), had j been
implemented at t = 0. Formally, Rj(t) =

P
τ<t

P
i∈I vij(τ),

where I is the set of all users and vij is user i’s valuation
for optimization j. The policy we adopt is the greedy ap-
proach [31] where the optimization is implemented at that
time-slot t when cj ≤ Rj(t). For substitutable optimiza-
tions, once an optimization j is implemented for a user i,
she stops benefiting from the other optimizations J \ {j}
and does not contribute to their regret.

We now explain how Regret sets prices. For ease of
explanation we assume a single optimization j that Re-
gret implements at time tr. Users in subsequent time-slots
can get access to it only after paying a price pj . Regret
chooses pj to be the minimum payment such that the to-
tal payment from future users equals cj . If no price pj
can recover the cost, it picks a price that minimizes the
cloud’s loss. Note that Regret uses the residual value in the
game assuming perfect knowledge of future users’ values. If
Ij(p, tr) = |{i |

P
t>tr

vij(t) ≥ p}| is the number of future
users who would pay p for optimization j, then the cloud-
loss would be Lj(p, tr) = (cj − pIj(p, tr)). The payment
pj minimizes this loss, i.e., pj = arg minp max{Lj(p, tr), 0}.
(Choose the smallest pj , in case of ties, so that user utilities
are maximized.) Thus, our price point is the optimal choice
to minimize the cloud-loss: it gives an upper bound on how
well Regret would work in practice. The total social utility
(a.k.a. total utility) for Regret is defined the same way as
for the mechanisms (Section 3): the total value realized by
the users for the slots they are serviced minus the imple-
mented optimizations’ costs. The cloud balance is the costs
of the optimizations minus the total payments by the users.
A negative balance means that the cloud incurs a loss.

Our approach thus computes regret the same way as Kan-
tere, Dash, et al. [22, 16] except that, in their approach,
users assign values to individual queries. Our approach ag-
gregates this information and assigns values to workloads
spanning larger periods of time.

7.2 Evaluation on the Motivating Use-Case
The workload from the motivating use-case in Section 2

traces the evolution of halos over 27 snapshots of a universe
simulation. Each astronomer starts with a subset of halos, γ,
in the final snapshot at t27 and, for each halo g ∈ γ, she (a)
computes the halos in each previous snapshot contributing
the most particles to g, and (b) recursively computes a chain

569

of halos (hg1, . . . , h
g
26, g) such that hgt contributes the most

mass to the halo hgt+1 in the next snapshot. Our optimiza-
tions materialize the following relation for each snapshot:
(particleID, haloID) to speed-up the queries.

We experiment with six users with differing workloads:
two workloads (in use by the astronomers) trace the evolu-
tion of halos γ1 and γ2, respectively, using all 27 snapshots.
Based on the astronomers’ feedback, we define two new users
for each of γ1 and γ2: one user uses every 2nd snapshot while
the other uses every 4th snapshot. This simulates faster, ex-
ploratory studies of the data. In our experiments, we mea-
sure the total utility (Sec. 3) for both AddOn and Regret.

We take each optimization’s cost to be the dollar amount
of storing the materialized view on a yearly subscription of
the Amazon EC2 High-Memory Extra Large Instance [5].
This yields an average cost of $2.31 per optimization.5

We take the money saved, by completing queries earlier,
to be the value of an optimization (Amazon also charges for
each hour of use in addition to the subscription fee). For
the six users, the run-time of their workload without any
optimizations is 81, 36, 16, 83, 44 and 17 mins. Materializing
the view on the snapshot 27 saves 44, 18, 8, 39, 23, and 9 min
which corresponds to monetary savings of 18, 7, 3, 16, 9, and
4 cents for one execution of the workloads. The other opti-
mizations reduce run-time by 2.5 min each for a saving of 1
cent. Since the optimizations affect different queries in the
workload, we take them to be additive.

We consider a year-long time-period where each user uses
the service in multiples of a quarter (3 months). We explore
all the 106 ways that the group can bid for slots. For each
alternative, we then vary the total number of executions
of each user’s workload, and we compute the total utility
achieved by each approach. Figure 1 shows the average and
the standard deviation of the utilities across the 106 alter-
natives as we change usage intensity from low (1 workload
execution/quarter) to medium (1 workload execution/day).

Compared to the baseline cost, taken to be the total cost
of executing the workloads without optimizations, AddOn

and Regret yield total utilities of 28%-47% and 16%-40% of
the base line cost, respectively. Since AddOn ensures that
users will pay the entire cost, the total utility is exactly the
amount of money saved by the group; while for Regret, the
total money users save is the sum of the total utility and the
unpaid fraction of the cost, i.e. the cloud balance. We add
this balance to the utility since the total utility includes
the utility of both the users and the cloud.6 Thus, both
approaches significantly reduce the cost of using the cloud.

Comparing AddOn to Regret, we find that AddOn yields a
total utility that is 18%-118% higher than Regret, at 90 and
40 executions per user, respectively. Further, while the cloud
never makes a loss with AddOn, loss by Regret can be up to
a substantial 92% of Regret’s utility (at 40 executions). As
noted before, our outcomes for Regret are an upper bound
and with more realistic bids Regret is likely to do even worse.

5We could have used a different instance. We chose this one
as it was the most similar to our local machine, on which we
obtained the storage space and query run-time values.
6In the case of a scientific collaboration, we can also assume
that one of the researchers pays a public cloud to implement
the optimization. She then asks the other researchers to pay
her back. That researcher is then the one who incurs the
loss. In this case, the total social utility would be the amount
saved by the entire group of researchers.

-‐50	

0	

50	

100	

150	

1	 10	 20	 30	 40	 50	 60	 70	 80	 90	

Am
ou

nt
	 (i
n	
$)
	

Number	 of	 1mes	 workload	 is	 executed	 by	 each	 user	

Performance	 on	 the	 Astronomy	 Use-‐Case	

AddOn	 U2lity	
Regret	 U2lity	
Regret	 Balance	
Baseline	 Cost	

Figure 1: Operating expenses without optimization and

total utility (equal to total money saved) by AddOn and

Regret for the astronomy workload on an Amazon EC2

subscription, as workloads are executed more frequently.

In practice, users would execute their workloads multiple
times and datasets are likely to be larger. For example, the
upcoming NCSA/IBM Blue Waters system [28] can generate
10 TB to 200 TB per snapshot (as opposed to 4.8 GB per
snapshot for our experiments). With a 3 to 5 orders of
magnitude increase in data size, building optimizations and
executing workloads would be correspondingly costlier, and
sharing optimizations would lead to proportionately larger
savings in the order of tens of thousands of dollars.

7.3 Collaboration Size
In the remaining sections, we use a variety of simulated

configurations to explore how our mechanisms and the Re-
gret approach compare in different settings. In all cases, we
measure the total utility.

The first key parameter affecting utility is the cost of op-
timizations as a proportion of the user values. This ratio
affects the number of users that are necessary to cover the
optimizations’ cost. In all simulations, we change this pro-
portion by varying the per-optimization cost along the x-axis
while keeping the average user values constant. In this sec-
tion, we measure the utility of both approaches when the
total number of users available to cover the optimizations’
cost is either small (small collaborations) or large (large col-
laborations). For both approaches, users in larger collabo-
rations can buy costlier optimizations to get higher utilities.
We experiment with a small group of 6 users and a large
one with 24 users. We let users pick one service slot, uni-
formly at random, from 12 slots7. This gives us an expected
number of users/slot of 0.5 and 2, respectively.

7.3.1 Additive Optimizations
We first consider additive optimizations. We only consider

one optimization since optimizations are independent.
For small collaborations, Figure 2(a) shows that as we

move from cheap to costly optimizations, Regret provides
good total utility, but then quickly leads to cloud loss, fol-
lowed by negative total utility; while AddOn never leads to
cloud loss or negative utilities. Negative utilities by Regret
imply that the optimization was implemented but it failed to
provide enough value to justify its implementation. Restrict-
ing our attention to the costs where Regret yields a positive
utility, AddOn achieves an average total utility 1.43× higher
than Regret. Further, while Regret leads to cloud loss (curve
“Regret Balance” in the figure) at a cost of 0.18, even for
optimizations 7× costlier, AddOn yields substantial utility

7The number 12 was chosen since 2, 3, 4, and 6 divide it
perfectly and give us a larger space of parameter values to
experiment with as compared to some other number like
10 or 15. The other parameter values were chosen to be
multiples of 12 for ease of understanding.

570

-‐3	

-‐2	

-‐1	

0	

1	

2	

3	

4	

0.
03
	

0.
21
	

0.
39
	

0.
57
	

0.
75
	

0.
93
	

1.
11
	

1.
29
	

1.
47
	

1.
65
	

1.
83
	

2.
01
	

2.
19
	

2.
37
	

2.
55
	

2.
73
	

2.
91
	

Am
ou

nt
	 o
f	 M

on
ey
	

Op.miza.on	 cost	

Addi.ve	 Op.miza.on	
AddOn	 U3lity	
Regret	 U3lity	
Regret	 Balance	

(a) Small collaboration

-‐15	

-‐10	

-‐5	

0	

5	

10	

15	

0.
12
	

0.
84
	

1.
56
	

2.
28
	 3	

3.
72
	

4.
44
	

5.
16
	

5.
88
	

6.
6	

7.
32
	

8.
04
	

8.
76
	

9.
48
	

10
.2
	

10
.9
2	

11
.6
4	

Am
ou

nt
	 o
f	 m

on
ey
	

Op-miza-on	 cost	

Addi-ve	 Op-miza-on	
AddOn	 U3lity	
Regret	 U3lity	
Regret	 Balance	

(b) Large collaboration

-‐3	

-‐2	

-‐1	

0	

1	

2	

3	

4	

0.
03
	

0.
21
	

0.
39
	

0.
57
	

0.
75
	

0.
93
	

1.
11
	

1.
29
	

1.
47
	

1.
65
	

1.
83
	

2.
01
	

2.
19
	

2.
37
	

2.
55
	

2.
73
	

2.
91
	

Am
ou

nt
	 o
f	 M

on
ey
	

Op.miza.on	 cost	

Subs.tu.ve	 Op.miza.on	

SubstOn	 U6lity	
Regret	 U6lity	
Regret	 Balance	

(c) Small collaboration

-‐15	

-‐10	

-‐5	

0	

5	

10	

15	

0.
12

	
0.
84

	
1.
56

	
2.
28

	 3	
3.
72

	
4.
44

	
5.
16

	
5.
88

	
6.
6	

7.
32

	
8.
04

	
8.
76

	
9.
48

	
10

.2
	

10
.9
2	

11
.6
4	

Am
ou

nt
	 o
f	 M

on
ey
	

Op.miza.on	 cost	

Subs.tu.ve	 Op.miza.on	

SubstOn	 U6lity	
Regret	 U6lity	
Regret	 Balance	

(d) Large collaboration

Figure 2: Total utility as a function of optimization cost for different collaboration sizes. Also showing regret balance

(optimization costs minus user payments). AddOn and SubstOn outperform Regret for a large range of optimization

costs, for both additive and substitutive optimizations, and for both low and high degrees of collaboration amongst

users. Further, they never incur a loss, while Regret can incur significant loss. Detailed analysis in Section 7.3.

(taken to be 0.3, 10% of total user value). Regret under-
performs against AddOn for two reasons. First, for cheap
optimizations that should be implemented, Regret loses user
value while building up regret. Second, for costly optimiza-
tions, Regret suffers a loss and negative total utility since it
implements the optimization even when the available future
values is insufficient to recoup the cost.

For larger collaborations, Figure 2(b) shows that as we
move to costlier optimizations, AddOn provides worse util-
ity than Regret. Intuitively, AddOn looses some opportuni-
ties to implement optimizations because it is more cautious
than Regret: to avoid losses, AddOn only implements an
optimization when it is certain to recoup the costs given
current information. The benefit of Regret, however, is lim-
ited: Regret soon starts losing money and leads to negative
total utility. In fact, only in less than 10% of the range
where Regret achieves a positive utility ([0, 4.92]), does it
also outperform AddOnand yield no loss. Over the entire
range of costs in [0, 3.0] the average total utility of AddOn

is 0.87 while that of Regret is −0.63.
For large collaborations, AddOn utilities sharply decrease

after a point because when costs increase, the payment per
user increases super-linearly, since AddOn prunes out users
for whom the payments are larger than the value. No users
are pruned by Regret and thus it sees a linear reduction in
utilities with increasing costs.

Interestingly, the range of costs for which Regret makes a
loss depends on the number of users who bid. It yields a loss
at a cost of 0.18 for the small group (Figure 2(a)) and 1.80
for the large one (Figure 2(b)). Thus, without knowing the
future users, the cloud can not know when to avoid Regret.

7.3.2 Substitutive Optimizations
To compare SubstOn and Regret in the case of substitutive

optimizations, we consider a scenario with 12 optimizations.
Each user selects 3 optimizations, uniformly at random, as
the set of substitutes (Section 7.6 experiments with other
ratios). Unlike the additive case, the costs of the 12 opti-
mizations are sampled uniformly from [0, 2c] so that c is the
average optimization cost: this is to simulate that not all
substitutes are equally expensive. Thus the x-axes of Fig-
ures 2(c) and 2(d) are the mean value of the optimizations.

Compared to the corresponding additive optimizations in
Figures 2(a) and 2(b), both SubstOn and Regret achieve
lower overall utility. Indeed, with substitutes, each opti-
mization has fewer users bidding for it and, once an opti-
mization is implemented, the serviced users no longer pay for
the other optimizations. Hence, fewer optimizations are im-
plemented and, in the case of Regret, there are fewer users
over whom the costs can be amortized. In the scenarios

0	

2	

4	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 Ad
dO

n	
u'

lit
y	
m
in
us
	

Re
gr
et
	 u
'l
ity

	

Number	 of	 'me	 slots	 available	

Single-‐slot	 collabora'on	

(a) More collaboration on the
left. x-axis is the total number
of slots. The users bid for 1
slot.

0	

0.5	

1	

1.5	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 Ad
dO

n	
u'

lit
y	
m
in
us
	

Re
gr
et
	 u
'l
ity

	

Dura'on	 of	 slots	 serviced	

Mul'-‐slot	 collabora'on	

(b) Less collaboration on the
left. X-axis is the # of contigu-
ous slots that each user bids
for.

Figure 3: AddOn vs Regret performance with varying

degree of collaboration. (Section 7.4)

shown, Regret yields a loss earlier than in the additive case.
When averaged over those costs for which Regret yields pos-
itive utility, SubstOn yields 1.63× and 3× more utility than
Regret for group sizes of 24 and 6, respectively.

7.4 Overlap in Usage
The second key parameter that affects utility is how the

user values are distributed across time. We study this pa-
rameter using a small group of 6 users collaborating on a
single, additive optimization. We vary the degree of user
overlap and its manner. First, we repeat the experiment
from Figure 2(a) while decreasing the total number of slots
from 12 to 1. Figure 3(a) shows that, with fewer slots
to sample from and hence with increased overlap amongst
users, AddOn generates 0.77 to 2.75 more utility, on average,
than Regret. Thus, AddOn gets 25%-91% of the total user
value (3.0) as additional utility over Regret. Decreasing the
number of slots, increases the probability that AddOn finds
enough value in some slot to justify implementing the opti-
mization. In contrast, regret accumulation stays unchanged.

Next, we study what happens when user values are spread
across an interval rather than being concentrated in a sin-
gle time-slot. The setup in Figure 3(b) is identical to the
additive case with the group size of 6 in Figure 2(a) ex-
cept that instead of bidding for only one slot, users bid as
(si, si + d − 1), where d is the duration of the service and
is varied on the x-axis. si is chosen uniformly at random
from 12 slots. Users divide their values, chosen uniformly at
random from [0, 1), equally among all d time slots in their
bids. The average extra value that AddOn generates over
Regret increases from 0.77 to 0.98. Indeed, as users spread
their value across multiple time-slots, AddOn becomes more
likely to find a single time-slot with sufficient value to justify
implementing the optimization.

7.5 Arrival Skew
We now consider the small collaboration of 6 users bidding

for a single optimization, where they arrive: (a) uniformly at
random in one of 12 slots, (b) early following an exponential

571

-‐1	

-‐0.5	

0	

0.5	

1	

1.5	

0.
03
	

0.
15
	

0.
27
	

0.
39
	

0.
51
	

0.
63
	

0.
75
	

0.
87
	

0.
99
	

1.
11
	

1.
23
	

1.
35
	

1.
47
	

1.
59
	

1.
71
	

Ra
#o

	 o
f	 u

#l
ity

	

Cost	 of	 op#miza#on	

Effect	 of	 Skew	 in	 Time	 on	 U#li#es	

Uniform-‐AddOn	
Uniform-‐Regret	
Early-‐AddOn	
Early-‐Regret	
Late-‐AddOn	
Late-‐Regret	

Figure 4: AddOn improves while Regret worsens with

temporal skew. Ratios taken with the utility of AddOn

with users clustered early. (Section 7.5)

distribution with mean 1.28, (c) late following a distribu-
tion that is 12− t with t sampled exponentially with mean
1.2. Case (b) simulates datasets that become stale, while (c)
simulates datasets that become popular over time. We look
at the ratio of the utility in different settings to that of the
utility of AddOn with early arrivals. Figure 4 shows that to-
tal utility by AddOn improves while that for Regret worsens
with irregular arrivals. AddOn outperforms Regret substan-
tially as user arrival becomes non-uniform (and Regret soon
starts generating negative utilities). With skew, AddOn im-
proves due to increased chances of finding a slot with enough
value to pay for all costs. For e.g., with AddOn, early arrivals
can be 6.7× and 1.8× more efficient that uniform and late,
respectively. On the other hand, Regret worsens since skew
increases the chance that more regret is accumulated than
required9. For e.g., with Regret, at the cost of 0.54, late
and uniform arrivals have 16% and 40% higher total utility
than early arrivals, respectively. This points to an interest-
ing property of the mechanism-design-based approach: the
approach performs much better as non-uniformity increases.

7.6 Selectivity of Substitutes
We now vary the selectivity of the substitutes, that is de-

fined as the ratio of the number of substitutable optimiza-
tions to the total number of optimizations. Figures 5(a)
and 5(b) show the total utility for selectivities of 0.75 and
0.25, where each user chooses 3 optimizations uniformly at
random from 4 and 12 optimizations, respectively. The fig-
ures show that, with more selective users, absolute utilities
derived by both algorithms decrease. For e.g., Regret goes
from a utility of 1.10 to -0.23 while SubstOn goes from 2.38 to
1.90 for the optimization cost of 0.36 as selectivity increases.
Indeed, with more selective users, the number of users per
optimization decreases and more optimizations have to be
be implemented to satisfy the users. For Figures 5(a) and
5(b), SubstOn yields an average total utility of 1.0 for op-
timizations that are 2.5× and 12.5× costlier than those at
which Regret generates utilities of 1.0, respectively.

Summary. In summary, our mechanism-based ap-
proaches not only guarantee truthfulness and cost-recovery
but also yield utility that frequently exceeds that of Re-
gret. Our approaches work especially well in scenarios where
many users derive significant value from an optimization
during the same time-slot. They under-perform compared
to Regret in scenarios where users value the same optimiza-
tion but during non-overlapping periods.

8With mean 1.2, the maximum starting time slot of 6 users
in 1000 runs was 12 as it is in case (a).
9Regret is computed after every time slot hence it increases
in discrete values. The difference in regret and the optimiza-
tion cost is wasted value and is smaller for uniform arrival.

-‐4	

-‐2	

0	

2	

4	

0.
03
	

0.
33
	

0.
63
	

0.
93
	

1.
23
	

1.
53
	

1.
83
	

2.
13
	

2.
43
	

2.
73
	 Am

ou
nt
	 o
f	 m

on
ey
	

Op-miza-on	 cost	

Low	 Selec-vity	
SubstOn	 U6lity	
Regret	 U6lity	

(a) Each user chooses 3 uni-
formly random optimizations
out of 4.

-‐4	

-‐2	

0	

2	

4	

0.
03
	

0.
33
	

0.
63
	

0.
93
	

1.
23
	

1.
53
	

1.
83
	

2.
13
	

2.
43
	

2.
73
	 Am

ou
nt
	 o
f	 m

on
ey
	

Op-miza-on	 cost	

High	 Selec-vity	
SubstOn	 U6lity	
Regret	 U6lity	

(b) Each user chooses 3 uni-
formly random optimizations
out of 12.

Figure 5: Effect of change in selectivities of substi-

tutable optimization on total utility. (Section 7.6)

8. RELATED WORK
Today, cloud providers use two strategies for pricing op-

timizations. In the first, the cost of the optimization is in-
cluded in the base service price. For e.g., Amazon Sim-
pleDB [9] automatically indexes user data and includes the
corresponding overhead in the base-price computation (45
bytes of extra storage are added to each item, attribute, and
attribute-value). Similarly, SimpleDB and SQL Azure [26]
automatically replicate data and include that cost in the
base service cost. The key limitation with this approach is
that the cloud must decide up-front what optimizations are
worth offering and it forces users to pay for these optimiza-
tions. In other cases, users choose desired optimizations and
pay their exact cost. For example, in Amazon RDS [6] a user
can choose to launch and pay-for a desired number of read-
replicas to speed-up her query workload. This approach,
however, works well only in the absence of collaborations.

Significant recent work studies existing cloud pricing
schemes, economic models, and their implications [24, 39,
44]. In contrast we develop a new pricing mechanism.

Most closely related to our work, Dash et al., developed an
approach for pricing data structures (indexes, materialized
views, etc.) in a DBMS cloud cache [16]. In their approach,
the cloud selects the structures to build based on the notion
of regret and its cost is amortized over the first N queries
that use it. To compute regret, the cloud relies on user sup-
plied budget functions, that indicate their willingness to pay
for various quality of service. In follow-up work Kantere et
al. [22] tuned their approach and developed a regression-
based technique to predict the extent of cost amortization.
In contrast to our work, this previous approach relies on
users being truthful and does not guarantee that the cost
will be recovered. For example, consider a user who needs
to run one, very expensive query over a private dataset. No
structure will be implemented if she is truthful. Instead, she
thus submits a large number of inexpensive queries over the
same dataset while she expresses her willingness to pay zero
for processing the extra queries, yet indicates a preference
for low execution times over low costs. The regret-based
approach will let her manually pick slow and cheap service
for these queries. It will then compute the maximum pos-
sible regret for the missing data structure that would have
enabled faster plans for these queries. When the cloud accu-
mulates enough regret, she can run the expensive query and
pay a small fraction of the total cost of the optimization.

Significant research applies economic principles to re-
source allocation in distributed systems [1, 12, 13, 14, 18,
34, 36, 43], collaboration promotion in peer-to-peer sys-
tems [30, 29, 42], or more recently, VM allocation in the
cloud [40]. We study how to choose and price optimizations

572

rather than allocate processing resources. The Mariposa dis-
tributed database system [38] introduced a micro-economic
paradigm for optimizing distributed query evaluation and
data placement. This is a problem orthogonal to ours.

We build on the Shapley Value Mechanism, which is an
instance of Moulin Mechanisms [27] that have been designed
for various offline combinatorial cost-sharing problems [32].
We design Moulin mechanisms in an online setting.

Online mechanisms [31, Ch. 16] consider games where
valuations come one at a time. While there is work on char-
acterizing truthful mechanisms to maximize social utility in
dynamic games [31, Thm. 16.17], to the best of our knowl-
edge, no work applies to cost-sharing in dynamic games.

9. CONCLUSIONS
We studied how a cloud data service provider should ac-

tivate and price optimizations that benefit many users. We
have shown how the problem can be modeled as an instance
of cost-recovery mechanism design. We also showed how the
Shapley Value mechanism solves the problem of pricing a
single optimization in an offline setting. We then developed
a series of mechanisms that enable the pricing of either ad-
ditive or substitutive optimizations in either an offline or an
online game. We proved analytically that our mechanisms
are truthful and cost-recovering. Through simulations, we
demonstrated that our mechanisms also yield high utility
compared with a regret-based state-of-the-art approach.

10. ACKNOWLEDGMENT
The astronomy simulation dataset was graciously supplied

by T. Quinn, F. Governato, and S. Loebman of the UW
Dept. of Astronomy. We also thank S. Loebman for provid-
ing the astronomy use-case and working with us on it. We
also thank Nodira Khoussainova, Paraschos Koutris, Emad
Soroush, and the anonymous reviewers for their comments
on early drafts of this paper. This work is partially sup-
ported by NSF grant CCF-1047815 and Microsoft.

11. REFERENCES
[1] D. Abramson, R. Buyya, and J. Giddy. A computational

economy for grid computing and its implementation in the
Nimrod-G resource broker. Future Generation Computer
Systems, 18(8):1061–1074, 2002.

[2] E. Adar and B. A. Huberman. Free riding on gnutella, 2000.

[3] Amazon Web Services (AWS). aws.amazon.com.

[4] Amazon Elastic MapReduce. aws.amazon.com/elasticmapreduce.

[5] Amazon EC2 Instances. aws.amazon.com/ec2/instance-types/.

[6] Amazon Relational Database Service. aws.amazon.com/rds/.

[7] Amazon S3: Requester Pays Buckets.
http://docs.amazonwebservices.com/AmazonS3/latest/dev/
index.html?Reques%terPaysBuckets.html.

[8] Amazon Simple Storage Service (Amazon S3).
http://www.amazon.com/gp/browse.html?node=16427261.

[9] Amazon SimpleDB. http://www.amazon.com/simpledb/.

[10] Windows Azure Platform. microsoft.com/windowsazure/.

[11] Windows Azure Storage Services REST API Ref.
http://msdn.microsoft.com/en-us/library/dd179355.aspx.

[12] M. Balazinska, H. Balakrishnan, and M. Stonebraker.
Contract-based load management in federated distributed
systems. In Proc. of the Symposium on Networked Systems
Design and Implementation, pages 15–15, 2004.

[13] R. Buyya, H. Stockinger, J. Giddy, and D. Abramson.
Economic models for management of resources in peer-to-peer
and grid computing, 2001.

[14] B. N. Chun. Market-based cluster resource management. PhD
thesis, University of California at Berkeley, 2001.

[15] B. Cohen. Incentives build robustness in bittorrent, 2003.

[16] D. Dash, V. Kantere, and A. Ailamaki. An economic model for
self-tuned cloud caching. In Proc. of the IEEE Int’l Conf. on
Data Engineering, pages 1687–1693, 2009.

[17] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica.
Free-riding and whitewashing in peer-to-peer systems. In Proc.
of the ACM SIGCOMM Workshop on Practice and Theory of
Incentives in Networked Systems, pages 228–236, 2004.

[18] D. F. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini.
Economic models for allocating resources in computer
systems, pages 156–183. World Scientific Publishing Co., 1996.

[19] H. Gonzalez, A. Halevy, C. S. Jensen, A. Langen, J. Madhavan,
R. Shapley, and W. Shen. Google fusion tables: data
management, integration and collaboration in the cloud. In
ACM Symposium on Cloud Computing, pages 175–180, 2010.

[20] Google App Engine. http://code.google.com/appengine/.

[21] Google App Engine Datastore.
code.google.com/appengine/docs/datastore.

[22] V. Kantere, D. Dash, G. Gratsias, and A. Ailamaki. Predicting
cost amortization for query services. In Proc. of the ACM
SIGMOD, pages 325–336, 2011.

[23] Y. Kwon, D. Nunley, J. P. Gardner, M. Balazinska, B. Howe,
and S. Loebman. Scalable clustering algorithm for n-body
simulations in a shared-nothing cluster. In Proc. of the Int’l
Conf. on Scientific and Statistical Database Management,
pages 132–150, 2010.

[24] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp:
shopping for a cloud made easy. In HotCloud, pages 5–5, 2010.

[25] S. Loebman. Personal communication.

[26] Microsoft SQL Azure. microsoft.com/windowsazure/sqlazure/.

[27] H. Moulin and S. Shenker. Strategyproof sharing of submodular
costs: budget balance versus efficiency. Economic Theory,
18(3):511–533, 2001.

[28] About the Blue Waters project. ncsa.illinois.edu/BlueWaters/.

[29] C. Ng, D. C. Parkes, and M. Seltzer. Strategyproof computing:
systems infrastructures for self-interested parties. In 1st
Workshop on the Economics of P2P systems, 2003.

[30] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Enforcing fair
sharing of peer-to-peer resources. In IPTPS Workshop, 2003.

[31] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani.
Algorithmic Game Theory. Cambridge University Press, 2007.

[32] M. Pal and E. Tardos. Group strategyproof mechanisms via
primal-dual algorithms. In FOCS, pages 584–593, 2003.

[33] D. C. Parkes. Iterative Combinatorial Auctions: achieving
economic and computational efficiency. PhD thesis, University
of Pennsylvania, 2001.

[34] J.-A. Quiané-Ruiz, P. Lamarre, S. Cazalens, and P. Valduriez.
Managing virtual money for satisfaction and scale up in p2p
systems. In Proc. of DaMaP Workshop, pages 67–74, 2008.

[35] Salesforce. http://www.salesforce.com/.

[36] T. Sandholm. An implementation of the contract net protocol
based on marginal cost calculations. In Int’l Workshop on
Distributed Artificial Intelligence, pages 295–308, 1993.

[37] V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk,
N. Yoshida, L. Gao, J. Navarro, R. Thacker, D. Croton,
J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman,
A. Evrard, J. Colberg, and F. Pearce. Simulations of the
formation, evolution and clustering of galaxies and quasars.
NATURE, 435:629–636, 2005.

[38] Stonebraker et al. Mariposa: a wide-area distributed database
system. VLDB Journal, 5(1):048–063, 1996.

[39] P. B. Teregowda, B. Urgaonkar, and C. L. Giles. Implications
of moving to the cloud: a digital libraries perspective. In
HotCloud, 2010.

[40] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos,
D. Paparas, and A. Delis. Flexible use of cloud resources
through profit maximization and price discrimination. In Proc.
of the 27th ICDE Conf., pages 75–86, 2011.

[41] P. Upadhyaya, M. Balazinska, and D. Suciu. How to Price
Shared Optimizations in the Cloud. Technical Report
UW-CSE-11-05-04, University of Washington, 2011.

[42] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA:
A secure economic framework for peer-to-peer resource sharing.
In Workshop on the Economics of Peer-to-Peer Systems,
2003.

[43] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart,
and W. S. Stornetta. Spawn: a distributed computational
economy. Tran. on Software Engineering, 18(2):103–117, 1992.

[44] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, and L. Zhou.
Distributed systems meet economics: pricing in the cloud. In
HotCloud, pages 6–6, 2010.

573

