
Bayesian Locality Sensitive Hashing for Fast Similarity
Search

Venu Satuluri and Srinivasan Parthasarathy
Dept. of Computer Science and Engineering

The Ohio State University

{satuluri,srini}@cse.ohiostate.edu

ABSTRACT

Given a collection of objects and an associated similarity
measure, the all-pairs similarity search problem asks us to
find all pairs of objects with similarity greater than a certain
user-specified threshold. Locality-sensitive hashing (LSH)
based methods have become a very popular approach for
this problem. However, most such methods only use LSH
for the first phase of similarity search - i.e. efficient in-
dexing for candidate generation. In this paper, we present
BayesLSH, a principled Bayesian algorithm for the sub-
sequent phase of similarity search - performing candidate
pruning and similarity estimation using LSH. A simpler vari-
ant, BayesLSH-Lite, which calculates similarities exactly, is
also presented. Our algorithms are able to quickly prune
away a large majority of the false positive candidate pairs,
leading to significant speedups over baseline approaches. For
BayesLSH, we also provide probabilistic guarantees on the
quality of the output, both in terms of accuracy and re-
call. Finally, the quality of BayesLSH’s output can be easily
tuned and does not require any manual setting of the number
of hashes to use for similarity estimation, unlike standard
approaches. For two state-of-the-art candidate generation
algorithms, AllPairs and LSH, BayesLSH enables significant
speedups, typically in the range 2x-20x for a wide variety of
datasets.

1. INTRODUCTION
Similarity search is a problem of fundamental importance

for a broad array of fields, including databases, data mining
and machine learning. The general problem is as follows:
given a collection of objects D with some similarity mea-
sure s defined between them and a query object q, retrieve
all objects from D that are similar to q according to the
similarity measure s. The user may be either interested in
the top-k most similar objects to q, or the user may want
all objects x such that s(x, q) > t, where t is the similar-
ity threshold. A more specific version of similarity search is
the All Pairs similarity search problem, where there is no

explicit query object, but instead the user is interested in
all pairs of objects with similarity greater than some thresh-
old. The number of applications even for the more specific
all pairs similarity search problem is impressive: cluster-
ing [21], semi-supervised learning [29], information retrieval
(including text, audio and video), query refinement [3], near-
duplicate detection [26], collaborative filtering, link predic-
tion for graphs [17], and 3-D scene reconstruction [1] among
others. In many of these applications, approximate solu-
tions with small errors in similarity assessments are accept-
able if they can buy significant reductions in running time
e.g. in web-scale clustering [5, 21], information retrieval [9],
near-duplicate detection for web crawling [19, 11] and graph
clustering [24].

Roughly speaking, similarity search algorithms can be di-
vided into two main phases - candidate generation and can-

didate verification. During the candidate generation phase,
pairs of objects that are good candidates for having simi-
larity above the user-specified threshold are generated using
one or another indexing mechanism, while during candidate
verification, the similarity of each candidate pair is verified
against the threshold, in many cases by exact computation
of the similarity. The traditional indexing structures used
for candidate generation were space-partitioning approaches
such as kd-trees and R-trees, but these approaches work
well only in low dimensions (less than 20 or so [7]). An im-
portant breakthrough was the invention of locality-sensitive
hashing [12, 10], where the idea is to find a family of hash
functions such that for a random hash function from this
family, two objects with high similarity are very likely to be
hashed to the same bucket. One can then generate candidate
pairs by hashing each object several times using randomly
chosen hash functions, and generating all pairs of objects
which have been hashed to the same bucket by at least one
hash function. Although LSH is a randomized, approximate
solution to candidate generation, similarity search based on
LSH has nonetheless become immensely popular because it
provides a practical solution for high dimensional applica-
tions along with theoretical guarantees for the quality of the
approximation [2].

In this article, we show how LSH can be exploited for
the phase of similarity search subsequent to candidate gen-
eration i.e. candidate verification and similarity computa-
tion. We adopt a principled Bayesian approach that allows
us to reason about the probability that a particular pair
of objects will meet the user-specified threshold by inspect-
ing only a few hashes of each object, which in turn allows
us to quickly prune away unpromising pairs. Our Bayesian

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 5
Copyright 2012 VLDB Endowment 2150-8097/12/01... $ 10.00.

430

approach also allows us to estimate similarities to a user-
specified level of accuracy without requiring any tuning of
the number of hashes, overcoming a significant drawback of
standard similarity estimation using LSH. We develop two
algorithms, called BayesLSH and BayesLSH-Lite, where
the former performs both candidate pruning and similarity
estimation, while the latter only performs candidate pruning
and computes the similarities of unpruned candidates ex-
actly. Essentially, our algorithms provide a way to trade-off
accuracy for speed in a controlled manner. Both BayesLSH
and BayesLSH-Lite can be combined with any existing can-
didate generation algorithm, such as AllPairs [3] or LSH.
Concretely, BayesLSH provides the following probabilistic
guarantees:

Given a collection of objects D, an associated similarity

function s(., .), and a similarity threshold t; recall parameter

ǫ and accuracy parameters δ, γ; return pairs of objects (x, y)
along with similarity estimates ŝx,y such that:

1. Pr[s(x, y) ≥ t] > ǫ i.e. each pair with a greater than

ǫ probability of being a true positive is included in the

output set.

2. Pr[|ŝx,y−s(x, y)| ≥ δ] < γ i.e. each associated similar-

ity estimate is accurate up to δ-error with probability

> 1 − γ.

With BayesLSH-Lite, the similarity calculations are exact,
so there is no need for guarantee 2, but guarantee 1 from
above stays. We note that the parametrization of BayesLSH
is intuitive - the desired recall can be controlled using ǫ,
while δ, γ together specify the desired level of accuracy of
similarity estimation.

The advantages of BayesLSH are as follows:

1. The general form of the algorithm can be easily adapted
to work for any similarity measure with an associated
LSH family (see Section 2 for a formal definition of
LSH). We demonstrate BayesLSH for Cosine and Jac-
card similarity measures, and believe that it can be
adapted to other measures with LSH families, such as
kernel similarities.

2. There are no restricting assumptions about the specific
form of the candidate generation algorithm; BayesLSH
complements progress in candidate generation algo-
rithms.

3. For applications which already use LSH for candidate
generation, it is a natural fit since it exploits the hashes
of the objects for candidate pruning, further amortiz-
ing the costs of hashing.

4. It works for both binary and general real-valued vec-
tors. This is a significant advantage because recent
progress in similarity search has been limited to bi-
nary vectors [26, 28].

5. Parameter tuning is easy and intuitive. In particular,
there is no need for manually tuning the number of
hashes, as one needs to with standard similarity esti-
mation using LSH.

We perform an extensive evaluation of our algorithms and
comparison with state-of-the-art methods, on a diverse array
of 6 real datasets. We combine BayesLSH and BayesLSH-
Lite with two different candidate generation algorithms All-
Pairs [3] and LSH, and find significant speedups, typically
in the range 2x-20x over baseline approaches (see Table 2).

BayesLSH is able to achieve the speedups primarily by being
extremely effective at pruning away false positive candidate
pairs. To take a typical example, BayesLSH is able to prune
away 80% of the input candidate pairs after examining only
8 bytes worth of hashes per candidate pair, and 99.98% of
the candidate pairs after examining only 32 bytes per pair.
Notably, BayesLSH is able to do such effective pruning with-
out adversely affecting the recall, which is still quite high,
generally at 97% or above. Furthermore, the accuracy of
BayesLSH’s similarity estimates is much more consistent as
compared to the standard similarity approximation using
LSH, which tends to produce very error-ridden estimates
for low similarities. Finally, we find that parameter tun-
ing for BayesLSH is intuitive and works as expected, with
higher accuracies and recalls being achieved without leading
to undue slow-downs.

2. BACKGROUND
Following Charikar [6], we define a locality-sensitive hash-

ing scheme as a distribution on a family of hash functions F
operating on a collection of objects, such that for any two
objects x,y,

Prh∈F [h(x) = h(y)] = sim(x,y) (1)

It is important to note that the probability in Eqn 1 is for
a random selection of the hash function from the family F .
Specifically, it is not for a random pair x,y - i.e. the equation
is valid for any pair of objects x and y. The output of the
hash functions may be either bits (0 or 1), or integers. Note
that this definition of LSH, taken from [6], is geared towards
similarity measures and is more useful in our context, as
compared to the slightly different definition of LSH used
by many other sources [7, 2], including the original LSH
paper [12], which is geared towards distance measures.

Locality-sensitive hashing schemes have been proposed for
a variety of similarity functions thus far, including Jaccard
similarity [4, 16], Cosine similarity [6] and kernelized simi-
larity functions (representing e.g. a learned similarity met-
ric) [13].

Candidate generation via LSH:
One of the main reasons for the popularity of LSH is that it
can be used to construct an index that enables efficient can-
didate generation for the similarity search problem. Such
LSH-based indices have been found to significantly outper-
form more traditional indexing methods based on space par-
titioning approaches, especially with increasing dimensions
[12, 7]. The general method works as follows [12, 7, 5, 21,
11]. For each object in the dataset, we will form l signa-
tures, where each signature is a concatenation of k hashes.
All pairs of objects that share at least one of the l signa-
tures will be generated as a candidate pair. Retrieving each
pair of objects that share a signature can be done efficiently
using hashtables. For a given k and similarity threshold t,
the number of length-k signatures required for an expected
false negative rate ǫ can be shown to be l = ⌈ log ǫ

log(1−tk)
⌉ [27].

Candidate verification and similarity estimation:
The similarity between the generated candidates can be com-
puted in one of two ways: (a) by exact calculation of the
similarity between each pair, or (b) using an estimate of
the similarity, as the fraction of hashes that the two objects
agree upon. The pairs of objects with estimated similarity
greater than the threshold are finally output. In terms of

431

running time, approach (b) is often faster, especially when
the number of candidates is large and/or exact similarity
calculations are expensive, such as with more complex sim-
ilarity measures or with larger vector lengths. The main
overhead with approach (b) is in hashing each point suf-
ficient number of times in the first place, but this cost is
amortized over many similarity computations (especially in
the case of all-pairs similarity search), and furthermore we
need the hashes for candidate generation in any case. How-
ever, what is less clear is how good this simple estimation
procedure is in terms of accuracy, and whether it can be
made any faster. We will address these questions next.

3. CLASSICAL SIMILARITY ESTIMATION

FOR LSH
Similarity estimation for a candidate pair using LSH can

be considered as a statistical parameter inference problem.
The parameter we wish to infer is the similarity, and the
data we observe is the outcome of the comparison of each
successive hash between the candidate pair. The probability
model relating the parameter to the data is given by the
main LSH equation, Equation 1. There are two main schools
of statistical inference - classical (frequentist) and Bayesian.

Under classical (frequentist) statistical inference, the pa-
rameters of a probability model are treated as fixed, and it
is considered meaningless to make probabilistic statements
about the parameters - hence the output of classical infer-
ence is simply a point estimate, one for each parameter.
The best known example of frequentist inference is maxi-
mum likelihood estimation, where the value of the param-
eter that maximizes the probability of the observed data is
output as the point estimate. In the case of similarity esti-
mation via LSH, let us say we have compared n hashes and
have observed m agreements in hash values. The maximum
likelihood estimator for the similarity ŝ is:1

ŝ =
m

n

While previous researchers have not explicitly labeled their
approaches as using the maximum likelihood estimators,
they have implicitly used the above estimator, tuning the
number of hashes n [21, 6]. However, this approach has
some important drawbacks, which we turn to next.

3.1 Difficulty of tuning the number of hashes
While the above estimator is unbiased, the variance is

s∗(1−s)
n

, meaning that the variance of the estimator depends
on the similarity s being estimated. This indicates that in
order to get the same level of accuracy for different similar-
ities, we will need to use different number of hashes.

We can be more precise and, for a given similarity, calcu-
late exactly the the probability of a smaller-than-δ error in
ŝn, the similarity estimated using n hashes.

Pr[|ŝn − s| < δ] = Pr[(s − δ) ∗ n ≤ m ≤ (s + δ) ∗ n]

=

(s+δ)∗n
X

m=(s−δ)∗n

n

m

!

s
m(1 − s)n−m

Using the above expression, we can calculate the minimum
number of hashes needed to ensure that the similarity es-
timate is sufficiently concentrated, i.e within δ of the true

1Proofs are elementary and are omitted.

value with probability 1−γ. A plot of the number of hashes
required for δ = γ = 0.05 for various similarity values is
given in Figure 1. As can be seen, there is a great differ-
ence in the number of hashes required when the true sim-
ilarities are different; similarities closer to 0.5 require far
more hashes to estimate accurately than similarities close
to 0 or 1. A similarity of 0.5 needs 350 hashes for suffi-
cient accuracy, but a similarity of 0.95 needs only 16 hashes!

Figure 1: Hashes vs.
similarity

Stricter accuracy require-
ments lead to even greater
differences in the required
number of hashes.

Since we don’t know the
true similarity of each pair a
priori, we cannot choose the
right number of hashes be-
forehand. If we err on the
side of accuracy and choose
a large n, then performance
suffers since we will be com-
paring many more hashes
than are necessary for some candidate pairs. If, on the other
hand, we err on the side of performance and choose a smaller
n, then accuracy suffers. With standard similarity estima-
tion, therefore, it is impossible to tune the number of hashes
for the entire dataset so as to achieve both optimal perfor-
mance and accuracy.

3.2 Absence of early pruning
In the context of similarity search with a user-specified

threshold, the standard similarity estimation procedure also
misses opportunities for early candidate pruning. The intu-
ition here is best illustrated using an example: Let us say the
similarity threshold is 0.8 i.e. the user is only interested in
pairs with similarity greater than 0.8. Let us say the similar-
ity estimation is going to use n = 1000 hashes. But if we are
examining a candidate pair for which, out of the first 100
hashes, only 10 hashes matched, then intuitively it seems
very likely that this pair does not meet the threshold of 0.8.
In general, it seems intuitively possible to be able to prune
away many false positive candidates by looking only at the
first few hashes, without needing to compare all the hashes.
As we will see, most candidate generation algorithms pro-
duce significant number of false positives, and the standard
similarity estimation procedure using LSH does not exploit
the potential for early pruning of candidate pairs.

4. CANDIDATE PRUNING AND SIMILAR

ITY ESTIMATION USING BAYESLSH
The key characteristic of Bayesian statistics is that it al-

lows one to make probabilistic statements about any as-
pect of the world, including things that would be consid-
ered “fixed” under frequentist statistics and hence mean-
ingless to make probabilistic statements about. In particu-
lar, Bayesian statistics allows us to make probabilistic state-
ments about the parameters of probability models - in other
words, parameters are also treated as random variables.
Bayesian inference generally consists of starting with a prior

distribution over the parameters, and then computing a pos-

terior distribution over the parameters, conditional on the
data that we have actually observed, using Bayes’ rule. A
commonly cited drawback of Bayesian inference is the need

432

for the prior probability distribution over the parameters,
but a reasonable amount of data generally “swamps out” the
influence of the prior (see Appendix in [22]). Furthermore,
a good prior can lead to improved estimates over maximum
likelihood estimation - this is a common strategy for avoiding
overfitting the data in machine learning and statistics. The
big advantage of Bayesian inference in the context of simi-
larity estimation is that instead of just outputting a point
estimate of the similarity, it gives us the complete posterior
distribution of the similarity. In the rest of this section, we
will avoid discussing specific choices for the prior distribu-
tion and similarity measure in order to keep the discussion
general.

Fix attention on a particular pair (x, y), and let us say
that m out of the first n hashes match for this pair. We will
denote this event as M(m, n). The conditional probability
of the event M(m, n) given the similarity S (here S is a
random variable), is given by the binomial distribution with
n trials, where the success of each trial is S itself, from the
Equation 1. Note that we have already observed the event
M(m, n) happening i.e. m and n are not random variables,
they are the data.

Pr[M(m,n) |S] =

n

m

!

S
m(1 − S)n−m (2)

What we are interested in knowing is the probability distri-
bution of the similarity S, given that we already know that
m out of n hashes have matched. Using Bayes’ rule, the
posterior distribution for S can be written as follows: 2

p(S |M(m, n)) =
p(M(m,n) |S)p(S)

p(M(m,n))

=
p(M(m,n) |S)p(S)
R 1

0
p(M(m,n), s)ds

=
p(M(m, n) |S)p(S)

R 1

0
p(M(m, n) | s)p(s)ds

By plugging in the expressions for p(M(m,n) |S) from Equa-
tion 2 and a suitable prior distribution p(S), we can get, for
every value of n and m, the posterior distribution of S con-
ditional on the event M(m, n). We calculate the following
quantities in terms of the posterior distribution:

1. If after comparing n hashes, m matches agree, what is
the probability that the similarity is greater than the
threshold t?

Pr[S ≥ t |M(m, n)] =

Z 1

t

p(s |M(m, n))ds (3)

2. If after comparing n hashes, m matches agree, what
is the maximum-a-posteriori estimate for the similar-
ity i.e. the similarity value with the highest posterior
probability? This will function as our estimate Ŝ

Ŝ = arg max
s

p(s|M(m, n)) (4)

3. Assume after comparing n hashes, m matches agree,
and we have estimated the similarity to be Ŝ (e.g. as

2In terms of notation, we will use lower-case p(.) for prob-
ability density functions of continuous random-variables.
Pr[.] is used for probabilities of discrete events or discrete
random variables.

indicated above). What is the concentration probabil-

ity of Ŝ i.e. probability that this estimate is within δ
of the true similarity?

Pr[|S − Ŝ| < δ |M(m, n)] = Pr[Ŝ − δ < S < Ŝ + δ |M(m, n)]

=

Z Ŝ+δ

Ŝ−δ

p(s |M(m, n))ds (5)

Assuming we can perform the above three kinds of inference,
we design our algorithm, BayesLSH, so that it satisfies the
probabilistic guarantees outlined in Section 1. The algo-
rithm is outlined in Algorithm 1. For each candidate pair
(x, y) we incrementally compare their respective hashes (line
8, here the parameter k indicates the number of hashes we
will compare at a time), until either one of two events hap-
pens. The first possibility is that the candidate pair gets
pruned away because the probability of it being a true posi-
tive pair has become very small (lines 10, 11 and 12), where
we use Equation 3 to calculate this probability. The alterna-
tive possibility is that the candidate pair does not get pruned
away, and we continue comparing hashes until our similarity
estimate (line 14) becomes sufficiently concentrated that it
passes our accuracy requirements (lines 15 and 16). Here
we use Equation 5 to determine the probability that our es-
timate is sufficiently accurate. Each such pair is added to
the output set of candidate pairs, along with our similarity
estimate (lines 19 and 20).

Our second algorithm, BayesLSH-Lite (see Algorithm 2) is
a simpler version of BayesLSH, which calculates similarities
exactly. Since the similarity calculations are exact, there is
no need for parameters δ, γ; however, this comes at the cost
of some intuitiveness, as there is a new parameter h specify-
ing the maximum number of hashes that will be examined
for each pair of objects. BayesLSH-Lite can be faster than
BayesLSH for those datasets where exact similarity calcula-
tions are cheap, e.g. because the object representations are
simpler, such as binary, or if the average size of the objects
is small.

BayesLSH clearly overcomes the two drawbacks of stan-
dard similarity estimation explained in Sections 3.1 and 3.2.
Any candidate pairs that can be pruned away by examining
only the first few hashes will be pruned away by BayesLSH.
As we will show later, this method is very effective for prun-
ing away the vast majority of false positives. Secondly, the
number of hashes for which each candidate pair is compared
is determined automatically by the algorithm, depending on
the user-specified accuracy requirements, completely elim-
inating the need to manually set the number of hashes.
Thirdly, each point in the dataset is only hashed as many
times as is necessary. This will be particularly useful for
applications where hashing a point itself can be costly e.g.
for kernel LSH [13]. Also, outlying points which don’t have
any points with whom their similarity exceeds the threshold
need only be hashed a few times before BayesLSH prunes
all candidate pairs involving such points away.

In order to obtain a concrete instantiation of BayesLSH,
we will need to specify three aspects: (i) the LSH family
of hash functions, (ii) the choice of prior and (iii) how to
tractably perform inference. Next, we will look at specific
instantiations of BayesLSH for different similarity measures.

4.1 BayesLSH for Jaccard similarity
We will first discuss how BayesLSH can be used for ap-

proximate similarity search for Jaccard similarity.

433

Algorithm 1 BayesLSH

1: Input: Set of candidate pairs C; Similarity threshold t; recall
parameter ǫ; accuracy parameters δ, γ

2: Output: Set O of pairs (x, y) along with similarity estimates

Ŝx,y

3: O ← ∅

4: for all (x, y) ∈ C do

5: n, m← 0 {Initialization}
6: isP runed← False

7: while True do

8: m = m +
Pn+k

i=n I[hi(x) == hi(y)] {Compare
hashes n to n + k}

9: n = n + k
10: if Pr[S ≥ t |M(m, n)] < ǫ then

11: isP runed← True
12: break {Prune candidate pair}
13: end if

14: Ŝ ← arg maxs p(s|M(m, n))

15: if Pr[|S − Ŝ |M(m, n) < δ] < γ then
16: break {Similarity estimate is sufficiently con-

centrated}
17: end if

18: end while

19: if isP runed == False then

20: O ← O ∪ {((x, y), Ŝ)}
21: end if
22: end for

23: return O

Algorithm 2 BayesLSH-Lite

1: Input: Set of candidate pairs C; Similarity threshold t; recall
parameter ǫ; Number of hashes to use h

2: Output: Set O of pairs (x, y) along with exact similarities

Ŝx,y

3: O ← ∅

4: for all (x, y) ∈ C do

5: n, m← 0 {Initialization}
6: isP runed← False

7: while n < h do

8: m = m +
Pn+k

i=n I[hi(x) == hi(y)] {Compare
hashes n to n + k}

9: n = n + k
10: if Pr[S ≥ t |M(m, n)] < ǫ then

11: isP runed← True
12: break {Prune candidate pair}
13: end if

14: end while

15: if isP runed == False then
16: sx,y = similarity(x, y) {Exact similarity}
17: if sx,y > t then

18: O ← O ∪ {((x, y), sx,y)}
19: end if
20: end if

21: end for

22: return O

LSH family: The LSH family for Jaccard similarity is the
family of minwise independent permutations [4] on the uni-
verse from which our collection of sets is drawn. Each hash
function returns the minimum element of the input set when
the elements of the set are permuted as specified by the hash
function (which itself is chosen at random from the family
of minwise independent permutations). The output of this
family of hash functions, therefore, is an integer representing
the minimum element of the permuted set.

Choice of prior: It is common practice in Bayesian infer-
ence to choose priors from a family of distributions that is
conjugate to the likelihood distribution, so that the inference
is tractable and also that the posterior belongs to the same
distribution family as the prior (indeed, that is the definition
of a conjugate prior). The likelihood in this case is given by a
binomial distribution, as indicated in Equation 2. The con-
jugate for the binomial is the Beta distribution, which has
two parameters α > 0, β > 0 and is defined on the domain
(0, 1). The pdf for Beta(α,β) is defined as follows.

p(s) =
sα−1 ∗ (1 − s)β−1

B(α, β)

Here B(α, β) is the beta function, and it can also be thought
of as a normalization constant to ensure the entire distribu-
tion integrates to 1.

Even assuming we want to model the prior using a Beta
distribution, how do we choose the parameters α, β? A sim-
ple choice is to set α = 1, β = 1, which results in a uniform
distribution on (0, 1). However, we can actually learn α, β so
as to best fit a random sample of similarities from candidate
pairs output by the candidate generation algorithm. Let
us assume we have r samples chosen uniformly at random
from the total population of candidate pairs generated by
the particular candidate generation algorithm being used,
and their similarities are s1, s2, . . . , sr. Then we can esti-
mate α, β so as to best model the distribution of similarities
among candidate pairs. For Beta distribution, a simple and
effective method of learning the parameters is via method-
of-moments estimation. In this method, we calculate the
sample moments (sample mean and sample variance), as-
sume that they are the true moments of the distribution
and solve for the parameter values that will result in the
obtained moments. In our case, we have the following esti-
mates for α, β:

α̂ = s̄

„

s̄(1 − s̄)

s̄v

− 1

«

; β̂ = (1 − s̄)

„

s̄(1 − s̄)

s̄v

− 1

«

where s̄ and s̄v are the sample mean and variance, given as
follows:

s̄ =

Pr

i=1 si

r
; s̄v =

Pr

i=1 (si − s̄)2

r

Assuming a prior Beta(α,β) distribution on the similar-
ity, and we observe the event M(m, n) i.e. m out of the
first n hashes match, then the posterior distribution of the
similarity looks as follows:

p(s|M(m,n)) =

`

n

m

´

sm(1 − s)n−m
sα−1(1 − s)β−1

R 1

0

`

n

m

´

sm(1 − s)n−m
sα−1(1 − s)β−1

=
sm+α−1(1 − s)n−m+β−1

B(m + α, n − m + β)

434

Hence, the posterior distribution of the similarity also fol-
lows a Beta distribution with parameters m+α and n−m+β.

Inference: We next show concrete ways to perform infer-
ence, i.e. computing Equations 3, 4 and 5.

The probability that similarity is greater than the thresh-
old after observing that m out of the first n hashes match
is:

Pr[S ≥ t|M(m, n)] =

Z 1

t

p(s|M(m,n))

= 1 − It(m + α, n − m + β)

Above It(., .) refers to the regularized incomplete beta func-
tion, which gives the cdf for the beta distribution. This func-
tion is available in standard scientific computing libraries,
where it is typically approximated using continued fractions [8].

Our similarity estimate, after observing m matches in
n hashes, will be the mode of the posterior distribution
p(s|M(m, n)). The mode of Beta(α,β) is given by α−1

α+β−2
.

Therefore, our similarity estimate after observing that m

out of the first n hashes agree is Ŝ = m+α−1
n+α+β−1

.

The concentration probability of the similarity estimate
Ŝ can be derived as follows (the expression for Ŝ indicated
above can be substituted in the below equations):

Pr[|Ŝ − S| < δ|M(m, n)] =

Z Ŝ+δ

Ŝ−δ

p(s|M(m, n))ds

= I
Ŝ+δ

(m + α, n−m + β)

− I
Ŝ−δ

(m + α, n−m + β)

Thus by substituting the above computations in the cor-
responding places in Algorithm 1, we obtain a version of
BayesLSH specifically adapted to Jaccard similarity.

4.2 BayesLSH for Cosine similarity
We will next discuss instantiating BayesLSH for Cosine

similarity.

LSH family: For Cosine similarity, each hash function hi

is associated with a random vector ri, each of whose compo-
nents is a sample from the standard Gaussian (µ = 0, σ = 1).
For a vector x, hi(x) = 1 if dot(ri, x) ≥ 0 and hi(x) = 0 oth-
erwise [6]. Note that each hash function outputs a bit, and
hence these hashes can be stored with less space.

However, there is one challenge here that needs to be
overcome that was absent for BayesLSH with Jaccard sim-
ilarity: this LSH family is for a slightly different similar-

ity measure than cosine - it is instead for 1 − θ(x,y)
π

, where

θ(x, y) = arccos (dot(x,y)
||x||.||y||

). For notational ease, we will refer

to this similarity function as r(x, y) i.e. r(x, y) = 1− θ(x,y)
π

.
Explicitly,

Pr[hi(x) == hi(y)] = r(x, y)

Pr[M(m,n)|r] =

n

m

!

r
m(1 − r)n−m

Since the similarity function we are interested in is cos(x, y)
and not r(x, y) - in particular, we wish for probabilistic guar-
antees on the quality of the output in terms of cos(x, y) and
not r(x, y) - we will need to somehow express the posterior
probability in terms of s = cos(x, y). One can choose to
re-express the likelihood in terms of s = cos(x, y) instead

of in terms of r but this introduces cos() terms into the
likelihood, and makes it very hard to find a suitable prior
that keeps the inference tractable. Instead we compute the
posterior distribution of r which we transform appropriately
into a posterior distribution of s.

Choice of prior: We will need to choose a prior distri-
bution for r. Previously, we used a Beta prior for Jaccard
BayesLSH; unfortunately r has range [0.5, 1], while the stan-
dard Beta distribution has support on the domain (0, 1).
We can still map the standard Beta distribution onto the
domain (0.5, 1), but this distribution will no longer be con-
jugate to the binomial likelihood.3 Our solution is to use
a simple uniform distribution on [0.5, 1] as the prior for t.
Even when the true similarity distribution is very far from
being uniform (as is the case in real datasets, including the
ones used in our experiments), this prior still works well
because the posterior is strongly influenced by the actual
outcomes observed (see Appendix in [22]).

The prior pdf therefore is:

p(r) =
1

1 − 0.5
= 2

The posterior pdf, after observing that m out of the first
n hashes agree, is:

p(r|M(m, n)) =
2

`

n
m

´

rm(1− r)n−m

R 1
0.5 2

`

n
m

´

rm(1 − r)n−mdr

=
rm(1− r)n−m

R 1
0.5

rm(1− r)n−mdr

=
rm(1− r)n−m

B1(m + 1, n−m + 1)− B0.5(m + 1, n−m + 1)

Here Bx(a, b) is the incomplete Beta function, defined as

Bx(a, b) =
R x

0
ya−1(1 − y)b−1

dy.

Inference: In order to calculate Equations 3, 5 and 4, we
will first need a way to convert from r to s and vice-versa.
Let r2c : [0.5, 1] → [0, 1] be the 1-to-1 function that maps
from r(x, y) to cos(x, y); r2c() is given by r2c(r) = cos(π ∗
(1 − r)). Similarly, let c2r be the 1-to-1 function that does
the same map in reverse; c2r() is given by c2r(c) = 1 −
arccos(c)

π
.

Let R be the random variable such that R = c2r(S) and
let tr = c2r(t). After observing that the m out of the first n
hashes agree, the probability that cosine similarity is greater
than the threshold t is:

Pr[S ≥ t|M(m, n)] = Pr[c2r(S) ≥ c2r(t)|M(m, n)]

= Pr[R ≥ tr |M(m, n)]

=

Z 1

tr

p(r|M(m, n))dr

=

R 1
tr

rm(1 − r)n−mdr

B1(m + 1, n−m + 1)− B0.5(m + 1, n−m + 1)

=
B1(m + 1, n−m + 1) −Btr

(m + 1, n−m + 1)

B1(m + 1, n−m + 1)− B0.5(m + 1, n−m + 1)

3The pdf of a Beta distribution supported only on (0.5, 1)

with parameters α, β is p(x) ∝ (x − 0.5)α−1(1 − x)β−1.
With a binomial likelihood, the posterior pdf takes the form
p(x|M(m,n)) ∝ xm(x − 0.5)α−1(1 − x)n−m+β−1. Unfortu-
nately there is no simple and fast way to integrate this pdf.

435

The first step in the above derivation follows because c2r()
is a 1-to-1 mapping. Thus, we have a concrete expression
for calculating Eqn 3.

Next, we need an expression for the similarity estimate
Ŝ, given that m out of n hashes have matched so far. Let
R̂ = arg maxr p(r|M(m, n)). We can obtain a closed form

expression for R̂ by solving for ∂p(r|M(m,n)
∂r

= 0; when we

do this, we get r = m
n

. Hence, R̂ = m
n

. Now Ŝ = r2c(R̂),

therefore Ŝ = r2c(m
n

). This is our expression for calculating
Eqn 4.

Next, let us consider the concentration probability of Ŝ.

Pr[|Ŝ − S| < δ|M(m, n)] = Pr[Ŝ − δ < S < Ŝ + δ|M(m, n)]

= Pr[c2r(Ŝ − δ) < c2r(S) < c2r(Ŝ + δ)|M(m, n)]

= Pr[c2r(Ŝ − δ) < R < c2r(Ŝ + δ)|M(m, n)]

=

R c2r(Ŝ+δ)

c2r(Ŝ−δ)
rm(1 − r)n−mdr

B1(m + 1, n−m + 1)− B0.5(m + 1, n−m + 1)

=
B

c2r(Ŝ+δ)
(m + 1, n−m + 1)− B

c2r(Ŝ−δ)
(m + 1, n−m + 1)

B1(m + 1, n−m + 1) −B0.5(m + 1, n−m + 1)

Thus, we have concrete expressions for Equations 3, 4 and
5, giving us an instantiation of BayesLSH adapted to Cosine
similarity.

4.3 Optimizations
The basic BayesLSH can be optimized without affecting

the correctness of the algorithm in a few ways. The main
idea behind the optimizations here is to minimize the num-
ber of times inference has to be performed, in particular the
Equations 3 and 5.

Pre-computation of minimum matches: We pre-compute
the minimum number of matches a candidate pair needs to
have in order for Pr[S ≥ t|M(m, n)] > ǫ to be true, thus
completely eliminating the need for any online inference in
line 10 of Algorithm 1. For every value of n that we will con-
sider (upto some maximum), we pre-compute the function
minMatches(n) defined as follows:

minMatches(n) = arg min
m

Pr[S ≥ t|M(m, n)] ≥ ǫ

This can be done via binary search, since Pr[S ≥ t|M(m, n)]
increases monotonically with m for a fixed n. Now, for each
candidate pair, we simply check if the actual number of
matches for that pair at every n is at least minMatches(n).
Note that we will not encounter every possible value of n

upto the maximum - instead, since we compare k hashes at
a time, we need to compute minMatches() only once for all
multiples of k upto the maximum.

Cache results of inference: We maintain a cache indexed
by (m, n) that indicates whether or not the similarity es-
timate that is obtained after m hashes out of n agree is
sufficiently concentrated or not (Equation 5). Note that
for each possible n, we only need to cache the results for
m ≥ minMatches(n), since lower values of m are guaran-
teed to result in pruning. Thus, in the vast majority of
cases, we can simply fetch the result of the inference from
the cache instead of having to perform it afresh.

Cheaper storage of hash functions: For cosine similar-
ity, storing the random Gaussian vectors corresponding to
each hash function can take up a fair amount of space. To

reduce this storage requirement, we developed a scheme for
storing each float using only 2 bytes, by exploiting the fact
that random Gaussian samples from the standard 0-mean,
1-standard deviation Gaussian lie well within a small inter-
val around 0. Let us assume that all of our samples will lie
within the interval (-8,8) (it is astronomically unlikely that
a sample from the standard Gaussian lies outside this inter-
val). For any float x ∈ (−8, 8), it can be represented as a

2-byte integer x′ = ⌊(x + 8) ∗ 216

16
⌋. The maximum error of

this scheme is 0.0001 for any real number in (−8, 8).

5. EXPERIMENTS
We experimentally evaluated the performance of BayesLSH

and BayesLSH-Lite on 6 real datasets with widely varying
characteristics (see Table 1).

• RCV1 is a text corpus of Reuters articles and is a pop-
ular benchmarking corpus for text-categorization re-
search [15]. We use the standard pre-processed version
of the dataset with word stemming and tf-idf weight-
ing.

• Wiki datasets. We pre-processed the article dump of
the English Wikipedia4 - Sep 2010 version - to pro-
duce both a text corpus of Wiki articles as well as
the directed graph of hyperlinks between Wiki articles.
Our pre-processing includes the removal of stop-words,
removal of insignificant articles, and tf-idf weighting
(for both the the text and the graph). Words occur-
ring at least 20 times in the entire corpus are used
as features, resulting in a dimensionality of 344,352.
The WikiWords100K dataset consists of text vec-
tors with at least 500 non-zero features, of which there
are 100,528. The WikiWords500K dataset consists
of vectors with at least 200 non-zero features, of which
there are 494,244. The WikiLinks dataset consists of
the entire article-article graph among ˜1.8M articles,
with Tf-Idf weighting.

• Orkut consists of a subset of the (undirected) friend-
ship network among nearly 3M Orkut users, made
available by [20]. Each user is represented as a weighted
vector of their friends, with Tf-Idf weighting.

• Twitter consists of the directed graph of follower / fol-
loweee relationships among the subset of Twitter users
with at least 1,000 followers, first collected by Kwak
et. al. [14]. Each user is represented as a weighted
vector of the users they follow, with Tf-Idf weighting.

We note that all our datasets represent realistic applica-
tions for all pairs similarity search. Similarity search on text
corpuses can be useful for clustering, semi-supervised learn-
ing, near-duplicate detection etc., while similarity search on
the graph datasets can be useful for link prediction, friend-
ship recommendation and clustering. Also, in our exper-
iments we primarily focus on similarity search for general
real-valued vectors using Cosine similarity, as opposed to
similarity search for binary vectors (i.e. sets). Our reasons
are as follows:

1. Representations of objects as general real-valued vectors
are generally more powerful and lead to better similarity
assessments, Tf-Idf style representations being the classic
example here (see [23] for another example from graph min-
ing).

4http://download.wikimedia.org

436

Dataset Vectors Dimensions Len Nnz

RCV1 804,414 47,236 76 61e6
WikiWords100K 100,528 344,352 786 79e6
WikiWords500K 494,244 344,352 398 196e6

WikiLinks 1,815,914 1,815,914 24 44e6
Orkut 3,072,626 3,072,626 76 233e6

Twitter 146,170 146,170 1369 200e6

Table 1: Dataset details. Len stands for average
length of the vectors and Nnz stands for total num-
ber of non-zeros in the dataset.

2. Similarity search is generally harder on real-valued vec-
tors. With binary vectors (sets), most similarity measures
are directly proportional to the overlap between the two
sets, and it is easier to obtain bounds on the overlap be-
tween two sets by inspecting only a few elements of each set,
since each element in the set can only contribute the same,
fixed number (1) to the overlap. On the other hand, with
general real-valued vectors, different elements/features have
different weights (also, the same feature may have different
weights across different vectors), meaning that it is harder
to bound the similarity by inspecting only a few elements of
the vector.

5.1 Experimental setup
We compare the following methods for all-pairs similarity

search.
1. AllPairs [3] (AP) is one of the state-of-the-art ap-
proaches for all-pairs similarity search, especially for cosine
similarity on real-valued vectors. AllPairs is an exact algo-
rithm.
2,3. AP+BayesLSH, AP+BayesLSH-Lite: These are
variants of BayesLSH and BayesLSH-Lite where the input
is the candidate set generated by AllPairs.
4,5. LSH, LSH Approx: These are two variants of the
standard LSH approach for all pairs similarity search. For
both LSH and LSH Approx, candidate pairs are generated as
described in Section 2 ; for LSH, similarities are calculated
exactly, whereas for LSH Approx, similarities are instead
estimated using the standard maximum likelihood estima-
tor, as described in Section 3. For LSH Approx, we tuned
the number of hashes and set it to 2048 for cosine similar-
ity and 360 for Jaccard similarity. Note that the hashes for
Cosine similarity are only bits, while the hashes for Jaccard
are integers.
6,7. LSH+BayesLSH, LSH+BayesLSH-Lite: These
are variants of BayesLSH that take as input the candidate
set generated by LSH as described in Section 2.
8. PPJoin+ [26] is a state-of-the-art exact algorithm for
all-pairs similarity search, however it only works for binary
vectors and we only include it in the experiments with Jac-
card and binary cosine similarity.

For all BayesLSH variants, we report the full execution
time i.e. including the time for candidate generation. For
BayesLSH variants, ǫ = γ = 0.03 and δ = 0.05 (γ, δ don’t
apply to BayesLSH-Lite). For the number of hashes to be
compared at a time, k, it makes sense to set this to be a mul-
tiple of the word size, since for cosine similarity, each hash
is simply a bit. We set k = 32, although higher multiples
of the word size work well too. In the case of BayesLSH-
Lite, the number of hashes to be used for pruning was set
to h = 128 for Cosine and h = 64 for Jaccard. For LSH

and LSH Approx, the expected false negative rate is set to
0.03 . The randomized algorithms (LSH variants, BayesLSH
variants) were each run 3 times and the average results are
reported.

All of the methods work for both Cosine and Jaccard simi-
larities, for both real-valued as well as binary vectors, except
for PPJoin+, which only works for binary vectors. The code
for PPJoin+ was downloaded from the authors’ website, all
the other methods were implemented by us.5 All algorithms
are single-threaded and are implemented in C/C++. The
experiments were run by submitting jobs to a cluster, where
each node on the cluster runs on a dual-socket, dual-core
2.3 GHz Opteron with 8GB RAM. Each algorithm was al-
lowed 50 hrs (180K secs) before it was declared timed out
and killed.

We executed the different algorithms on both the weighted
and binary versions of the datasets, using Cosine similarity
for the weighted case and both Jaccard and Cosine for the
binary case. For Cosine similarity, we varied the similarity
threshold from 0.5 to 0.9, but for Jaccard we found that
very few pairs satisfied higher similarity thresholds (e.g. for
Orkut, a 3M record dataset, only 1648 pairs were returned
at threshold 0.9), and hence varied the threshold from 0.3 to
0.7. For Jaccard and Binary Cosine, we only report results
on WikiWords500K, Orkut and Twitter, which are our three
largest datasets in terms of total number of non-zeros.

5.2 Results comparing BayesLSH variants with
baselines

Figure 3 shows a comparison of timing results for all algo-
rithms across a variety of datasets and thresholds. Table 2
compares the fastest BayesLSH variant with all the base-
lines. The quality of the output of BayesLSH can be seen in
Table 3 where we show the recall rates for AP+BayesLSH
and AP+BayesLSH-Lite, and in Table 4 where we com-
pare the accuracies of LSH and LSH+BayesLSH. The recall
and accuracies of the other BayesLSH variants follow similar
trends and are omitted. The main trends from the results
are distilled and discussed below:

1. BayesLSH and BayesLSH-Lite improve the running time
of both AllPairs and LSH in almost all the cases, with
speedups usually in the range 2x-20x. It can be seen from
Table 2 that a BayesLSH variant is the fastest algorithm
(in terms of total time across all thresholds) for the major-
ity of datasets and similarities, with the exception of Orkut
for Jaccard and binary cosine. Furthermore, the quality of
BayesLSH output is high; the recall rates are usually above
97% (see Table 3), and similarity estimates are accurate,
with usually no more than 5% output pairs with error above
0.05 (see Table 4).

2. BayesLSH is fast primarily by being able to prune away
the vast majority of false positives after comparing only
a few hashes. This is illustrated in Figure 4. For Wiki-
Words100K at a threshold of 0.7, (see Figure 4(a)) AllPairs
supplies BayesLSH with nearly 5e09 candidates, while the
result set only has 2.2e05. BayesLSH is able to prune away
4.0e+09 (80%) of the input candidate pairs after examining
only 32 hashes - in this case, each hash is a bit, so BayesLSH

5Our AllPairs implementation is slightly faster than the
original implementation of the authors due to a simple im-
plementational fix. This has since been incorporated into
the authors’ implementation.

437

compared only 4 bytes worth of hashes between each pair.
By the time BayesLSH has compared 128 hashes (16 bytes)
there are only 1.0e06 candidates remaining. Similarly LSH
supplies BayesLSH with 6.0e08 candidates - better than All-
Pairs, but nonetheless orders of magnitude larger than the
final result set - and after comparing 128 hashes (16 bytes),
BayesLSH is able to prune that down to only 7.4e05, only
about 3.5x larger than the result set. On the WikiLinks
dataset (see Figure 4(b)), we see a similar trend with the
roles of AllPairs and LSH reversed - this time it is AllPairs
instead which supplies BayesLSH with fewer candidates. Af-
ter examining only 128 hashes, BayesLSH is able to reduce
the number of candidates from 1.3e09 down to 1.2e07 for All-
Pairs, and from 1.8e11 down to 5.1e07 for LSH. Figure 4(c)
shows a similar trend, this time on the binary version of
WikiWords100K.

3. We note that BayesLSH and BayesLSH-Lite often (but
not always) have comparable speeds, since most of the speed
benefit is coming from the ability of BayesLSH to prune,
which is an aspect that is common to both algorithms. The
difference between the two is mainly in terms of the hashing
overhead. BayesLSH needs to obtain many more hashes of
each object in order for similarity estimation; this cost is
amortized at lower thresholds, where the number of similar-
ity calculations needed to perform is much greater. BayesLSH-
Lite is faster at higher thresholds or when exact similarity
calculations are cheaper, such as datasets with low average
vector length.

4. AllPairs and LSH have complementary strengths and
weaknesses. On the datasets RCV1, WikiWords100K, Wiki-
Words500K and Twitter (see Figures 3(a)-3(c),3(f)), LSH
is clearly the faster algorithm than AllPairs (in the case
of WikiWords500K, AllPairs did not finish execution even
for the highest threshold of 0.9). On the other hand, All-
Pairs is the much faster algorithm on WikiLinks and Orkut
(see Figures 3(d)-3(e)), with LSH timing out in most cases.
Looking at the characteristics of the datasets, one can dis-
cern a pattern: AllPairs is faster on datasets with smaller
average length and greater variance in the vector lengths, as
is the case with the graph datasets WikiLinks and Orkut.
The variance in the vector lengths allows AllPairs to upper-
bound the similarity better and thus prune away more false
positives, and in addition the exact similarity computations
that AllPairs does are faster when the average vector length
is smaller. However, BayesLSH and BayesLSH-Lite enable
speedups on both AllPairs and LSH, not only when each al-
gorithm is slow, but even when each algorithm is already

fast.

5. The accuracy of BayesLSH’s similarity estimates is much
more consistent as compared to the standard LSH approx-
imation, as can be seen from Table 4. LSH generally pro-
duces too many errors when the threshold is low and too few
errors when the threshold is high. This is mainly because
LSH uses the same number of hashes (set to 2048) for esti-
mating all similarities, low and high. This problem would
persist even if the number of hashes was set to some other
value, as explained in Section 3.1. BayesLSH, on the other
hand, maintains similar accuracies at both low and high
thresholds, without requiring any tuning at all on the num-

ber of hashes to be compared, and only based on the user’s
specification of the desired accuracy using δ, γ parameters.

6. LSH Approx is often much faster than LSH with exact

similarity calculations, especially for datasets with higher
average vector lengths, where the speedup is often 3x or
more - on Twitter, the speedup is as much as 10x (see Fig-
ure 3(f)).

7. BayesLSH does not enable speedups that are as signifi-
cant for AllPairs in the case of binary vectors. We found that
this was because AllPairs was already doing a very good job
at generating a small candidate set, thus not leaving much
room for improvement. In contrast, LSH was still generating
a large candidate set, leaving room for LSH+BayesLSH to
enable speedups. Interestingly, even though LSH generates
about 10 times more candidates than AllPairs, the LSH vari-
ants of BayesLSH are about 50-100% faster than AllPairs
and its BayesLSH versions, on WikiWords500K and Twit-
ter (see Figures 3(g),3(i)). This is because LSH is a faster
indexing and candidate generation strategy, especially when
the average vector length is large.

8. PPJoin+ is often the fastest algorithm at the highest
thresholds (see Figures 3(g)-3(l)), but its performance de-
grades very rapidly with lower thresholds. A possible expla-
nation is that the pruning heuristics used in PPJoin+ are
effective only at higher thresholds.

5.3 Effect of varying parameters of BayesLSH
We next examine the effect of varying the parameters of

BayesLSH - namely the accuracy parameters γ, δ and the re-
call parameter ǫ. We vary each parameter from 0.01 to 0.09
in increments of 0.02, while fixing the other two parame-
ters to 0.05, and fix the dataset to WikiWords100K and
threshold to 0.7 (cosine similarity). The effect of varying
each of these parameters on the execution time is plotted in
Figure 2. Varying the recall parameter ǫ and the accuracy
parameter γ have barely any effect on the running time -
however setting δ to lower values does increase the running
time significantly. Why does lowering δ penalize the running
time much more than lowering γ? This is because lowering
δ increases the number of hashes that have to be compared
for all result pairs, while lowering γ increases the number
of hashes that have to be compared only for those result
pairs that have uncertain similarity estimates. It is interest-
ing to note that even though δ = 0.01 requires 2691 secs, it
achieves a very low mean error of 0.001, while being much
faster than LSH exact, which requires 6586 secs. Approxi-
mate LSH requires 883 secs but is much more error-prone,
with a mean error of 0.014. With γ = 0.01, BayesLSH
achieves a mean error of 0.013, while still being around 2x
faster than approximate LSH.

In Table 5, we show the result of varying these parameters
on the output quality. When varying a parameter, we show
the change in output quality only for the relevant quality
metric - e.g. for changing γ we only show how the fraction
of errors > 0.05 changes, since we find that recall is largely
unaffected by changes in γ and δ (which is as it should be).
Looking at the column corresponding to varying γ, we find
that the fraction of errors > 0.05 increases as we expect
it to when we increase γ, without ever exceeding γ itself.
When varying δ, we can see that the mean error reduces
as expected for lower values of δ. Finally, when varying
the recall parameter ǫ, we find that the recall reduces with
higher values of ǫ as expected, with the false negative rate
always less than ǫ itself.

438

(a) RCV1 (b) WikiWords100K (c) WikiWords500K

(d) WikiLinks (e) Orkut (f) Twitter

(g) WikiWords500K (Binary, Jaccard) (h) Orkut (Binary, Jaccard) (i) Twitter (Binary, Jaccard)

(j) WikiWords500K (Binary, Cosine) (k) Orkut (Binary, Cosine) (l) Twitter (Binary, Cosine)

Figure 3: Timing comparisons between different algorithms. Missing lines/points are due to the respective
algorithm not finishing within the allotted time (50 hours).

439

(a) WikiWords100K, t=0.7, Cosine (b) WikiLinks, t=0.7, Cosine (c) WikiWords100K, t=0.7, Binary Co-
sine

Figure 4: BayesLSH can prune the vast majority of false positive candidate pairs by examining only a small
number of hashes, resulting in major gains in the running time.

Dataset
Fastest
BayesLSH
variant

Speedup w.r.t baselines
AP LSH LSH

Ap-
prox

PPJoin

Tf-Idf, Cosine

RCV1 LSH +
BayesLSH

7.1x 4.8x 2.4x -

WikiWords-
100K

LSH +
BayesLSH

31.4x 15.1x 2.0x -

WikiWords-
500K

LSH +
BayesLSH

≥ 42.1x ≥ 13.3x 2.8x -

WikiLinks AP +
BayesLSH-
Lite

1.8x ≥ 248.2x ≥

246.3x
-

Orkut AP +
BayesLSH-
Lite

1.2x ≥ 114.9x ≥

155.6x
-

Twitter LSH +
BayesLSH

26.7x 33.4x 3.0x -

Binary, Jaccard

WikiWords-
500K

LSH +
BayesLSH

2.0x ≥ 16.8x 3.7x 5.2x

Orkut AP +
BayesLSH-
Lite

0.8x 2.9x 2.8x 1.1x

Twitter LSH +
BayesLSH

1.8x 48.4x 4.2x 8.0x

Binary, Cosine

WikiWords-
500K

LSH +
BayesLSH

2.3x ≥ 10.2x 1.2x 5.6x

Orkut AP +
BayesLSH-
Lite

0.8x ≥ 201x ≥

201x
1.0x

Twitter AP +
BayesLSH-
Lite

1.2x 27.4x 1.2x 3.7x

Table 2: Fastest BayesLSH variant for each dataset
(based on total time across all thresholds), and
speedups over each baseline. BayesLSH variants
are fastest in all cases except for binary versions
of Orkut, where it is only slightly sub-optimal. The
range of thresholds for Cosine was 0.5 to 0.9, and for
Jaccard was 0.3 to 0.7. PPJoin is only applicable to
binary datasets. In some cases, only lower-bound
on speedup is available as the baselines timed out
(indicated with ≥).

Figure 2: Effect of varying γ, δ, ǫ separately on the
running time of LSH+BayesLSH. The dataset is
WikiWords100K, with the threshold fixed at t=0.7
for cosine similarity. For comparison, the times for
LSH Approx and LSH are also shown.

Dataset t=0.5 t=0.6 t=0.7 t=0.8 t=0.9
AllPairs+BayesLSH

RCV1 97.97 98.18 98.47 99.08 99.36
WikiWords100K 98.52 98.84 99.2 98.58 96.69
WikiWords500K 97.54 97.82 98.21 98.16 96.66

WikiLinks 97.45 98.04 98.46 98.68 99.18
Orkut 97.1 97.8 98.86 99.84 99.99

Twitter 97.7 96 96.88 97.33 98.77
AllPairs+BayesLSH-Lite

RCV1 98.73 98.82 98.89 99.26 99.55
WikiWords100K 98.88 99.31 99.62 99.69 99.5
WikiWords500K 98.79 98.72 98.98 98.74 98.83

WikiLinks 98.53 98.91 99.16 99.18 99.45
Orkut 98.4 98.64 99.3 99.87 99.99

Twitter 99.44 98.82 97.17 97.18 99.06

Table 3: Recalls (out of 100) of AllPairs+BayesLSH
and AllPairs+BayesLSH-Lite across different
datasets and different similarity thresholds.

440

t=0.5 t=0.6 t=0.7 t=0.8 t=0.9
LSH Approx

RCV1 7.8 4.3 2.25 0.8 0.04
WikiWords100K 4.7 3.6 1 0.3 0.02
WikiWords500K 8.3 5.7 2.9 0.9 0.1

WikiLinks - - 1.6 0.4 0.06
Orkut - - - - 0.0072

Twitter 4 5.1 2.6 0.4 0.02
LSH + BayesLSH

RCV1 3.2 2.9 3.2 2 1.4
WikiWords100K 2.7 2.3 3.5 4.9 2.2
WikiWords500K 3.4 3.4 3.2 2.9 2.1

WikiLinks 2.96 2.82 2.3 2 1.6
Orkut - - 1.5 0.6 0.09

Twitter 2.3 4 3.1 4.8 4.3

Table 4: Percentage of similarity estimates with er-
rors greater than 0.05; comparison between LSH Ap-
prox and LSH + BayesLSH

Parameter
value

Fraction er-
rors > 0.05
for varying γ

Mean
error for
varying δ

Recall for
varying ǫ

0.01 0.7% 0.001 98.76%
0.03 2% 0.01 97.79%
0.05 3% 0.017 97.33%
0.07 4.2% 0.022 96.06%
0.09 5.4% 0.027 95.35%

Table 5: The effect of varying the parameters γ, δ, ǫ

one at a time, while fixing the other two parameters
at 0.05. The dataset is WikiWords100K, with the
threshold fixed at t=0.7; the candidate generation
algorithm was LSH.

6. CONCLUSIONS AND FUTURE WORK
In this article, we have presented BayesLSH (and a sim-

ple variant BayesLSH-Lite), a general candidate verifica-
tion and similarity estimation algorithm for approximate
similarity search, which combines Bayesian inference with
LSH in a principled manner and has a number of advan-
tages compared to standard similarity estimation using LSH.
BayesLSH enables significant speedups for two state-of-the-
art candidate generation algorithms, AllPairs and LSH, across
a wide variety of datasets, and furthermore the quality of
BayesLSH is easy to tune. As can be seen from Table 2,
a BayesLSH variant is typically the fastest algorithm on a
variety of datasets and similarity measures.

BayesLSH takes a largely orthogonal direction to a lot of
recent research in LSH, which concentrates on more effective
indexing strategies, ultimately with the goal of candidate
generation, such as Multi-probe LSH [18] and LSB-trees [25].
Furthermore, a lot of research on LSH is concentrated on
nearest-neighbor retrieval for distance measures, rather than
all pairs similarity search with a similarity threshold t.

There are two promising avenues for future research with
BayesLSH. First is to extend BayesLSH for similarity search
with learned (kernelized) metrics, since such similarity mea-
sures are often superior for complex domains [13]. Secondly,
we believe that a BayesLSH-Lite analogue can be developed
for candidate pruning in the case of nearest neighbor re-
trieval for Euclidean distances (although the final distance
may have to be calculated exactly).

Acknowledgments: We thank Luis Rademacher and anony-
mous reviewers for helpful comments, and Roberto Bayardo

for clarifications on the AllPairs implementation. This work
is supported in part by the following NSF grants: IIS-1141828
and IIS-0917070.

7. REFERENCES
[1] S. Agarwal, N. Snavely, I. Simon, S. Seitz, and R. Szeliski.

Building rome in a day. In ICCV, pages 72–79, 2009.

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions.
Communications of the ACM, 51:117–122, 2008.

[3] R. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs
similarity search. In WWW, 2007.

[4] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher.
Min-wise independent permutations (extended abstract). In
STOC ’98, pages 327–336, New York, NY, USA, 1998. ACM.

[5] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.
Syntactic clustering of the web. In WWW, 1997.

[6] M. S. Charikar. Similarity estimation techniques from rounding
algorithms. In STOC ’02, 2002.

[7] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In SOCG, pages 253–262. ACM, 2004.

[8] A. R. Didonato and A. H. Morris, Jr. Algorithm 708:
Significant digit computation of the incomplete beta function
ratios. ACM Trans. Math. Softw., 18, 1992.

[9] T. Elsayed, J. Lin, and D. Metzler. When close enough is good
enough: Approximate positional indexes for efficient ranked
retrieval. In CIKM, 2011.

[10] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. In VLDB, 1999.

[11] M. Henzinger. Finding near-duplicate web pages: a large-scale
evaluation of algorithms. In SIGIR, 2006.

[12] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In STOC, 1998.

[13] P. Jain, B. Kulis, and K. Grauman. Fast image search for
learned metrics. In IEEE CVPR, 2008.

[14] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a
social network or a news media? In WWW, 2010.

[15] D. Lewis, Y. Yang, T. Rose, and F. Li. Rcv1: A new
benchmark collection for text categorization research. JMLR,
5:361–397, 2004.

[16] P. Li and C. König. b-bit minwise hashing. In WWW, 2010.

[17] D. Liben-Nowell and J. Kleinberg. The link-prediction problem
for social networks. J. Am. Soc. Inf. Sci. Technol.,
58:1019–1031, May 2007.

[18] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li.
Multi-probe lsh: efficient indexing for high-dimensional
similarity search. In VLDB, pages 950–961, 2007.

[19] G. S. Manku, A. Jain, and A. Das Sarma. Detecting
near-duplicates for web crawling. In WWW, 2007.

[20] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and Analysis of Online Social
Networks. In IMC, 2007.

[21] D. Ravichandran, P. Pantel, and E. Hovy. Randomized
algorithms and nlp: using locality sensitive hash function for
high speed noun clustering. In ACL, 2005.

[22] V. Satuluri and S. Parthasarathy. Bayesian locality sensitive
hashing for fast similarity search. arXiv:1110.1328v2 [cs.DB].

[23] V. Satuluri and S. Parthasarathy. Symmetrizations for
clustering directed graphs. In EDBT, 2011.

[24] V. Satuluri, S. Parthasarathy, and Y. Ruan. Local graph
sparsification for scalable clustering. In SIGMOD, 2011.

[25] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency
in high dimensional nearest neighbor search. In SIGMOD, 2009.

[26] C. Xiao, W. Wang, X. Lin, and J. Yu. Efficient similarity joins
for near duplicate detection. In WWW, 2008.

[27] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. Efficient
similarity joins for near duplicate detection. ACM
Transactions on Database systems, 2011.

[28] J. Zhai, Y. Lou, and J. Gehrke. Atlas: a probabilistic algorithm
for high dimensional similarity search. In SIGMOD, 2011.

[29] X. Zhu and A. Goldberg. Introduction to semi-supervised
learning. Synthesis Lectures on Artificial Intelligence and

Machine Learning, 3(1):1–130, 2009.

441

