
A Statistical Approach Towards Robust Progress
Estimation

Arnd Christian König
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
chrisko@microsoft.com

Bolin Ding
University of Illinois at
Urbana-Champaign

201 N. Goodwin Avenue
Urbana, IL 61801, USA
bding3@uiuc.edu

Surajit Chaudhuri, Vivek
Narasayya

Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
{surajitc,

viveknar}@microsoft.com

ABSTRACT
The need for accurate SQL progress estimation in the context of decision
support administration has led to a number of techniques proposed for this
task. Unfortunately, no single one of these progress estimators behaves ro-
bustly across the variety of SQL queries encountered in practice, meaning
that each technique performs poorly for a significant fraction of queries.
This paper proposes a novel estimator selection framework that uses a sta-
tistical model to characterize the sets of conditions under which certain es-
timators outperform others, leading to a significant increase in estimation
robustness. The generality of this framework also enables us to add a num-
ber of novel “special purpose” estimators which increase accuracy further.
Most importantly, the resulting model generalizes well to queries very dif-
ferent from the ones used to train it. We validate our findings using a large
number of industrial real-life and benchmark workloads.

1. INTRODUCTION
Accurate estimation of the progress of database queries can be

crucial to a number of applications such as administration of long-
running decision support queries. As a consequence, the problem
of estimating the progress of SQL queries has received significant
attention in recent years [6, 13, 14, 5, 12, 16, 15, 17]. The key
requirement for all of these techniques (aside from small overhead
and memory footprint) is their robustness, meaning that the estima-
tors need to be accurate across a wide range of queries, parameters
and data distributions.

Unfortunately, as was shown in [5], the problem of accurate
progress estimation for arbitrary SQL queries is hard in terms of
worst-case guarantees: none of the proposed techniques can guar-
antee any but trivial bounds on the accuracy of the estimation (un-
less some common SQL operators are not allowed). While the
work of [5] is theoretical and mainly interested in the worst case,
the property that no single proposed estimator is robust in general
holds in practice as well.

We find that each of the main estimators proposed in the litera-
ture performs poorly relative to the alternative estimators for some
(types of) queries. To illustrate this, we compared the estimation

errors for 3 major estimators proposed in the literature (DNE [6],
the estimator of Luo et al (LUO) [13] and the TGN estimator based
on the Total GetNext model [6] tracking the GetNext calls at each
node in a query plan) over a number of real-life and benchmark
workloads (described in detail in Section 6). We use the average ab-
solute difference between the estimated progress and true progress
as the estimator error for each query and the compare the ratio of
this error to the minimum error among all three estimators. The
results are shown in Figure 1, where the Y-axis shows the ratio and
the X-axis iterates over all queries, ordered by ascending ratio for
each estimator – note that the Y-axis is in log-scale. As we can see,
each estimator is (close to) optimal for a subset of the queries, but
also degrades severely (in comparison to the other two), with an
error-ratio of 5x or more for a significant fraction of the workload.
No single existing estimator performs sufficiently well across the
spectrum of queries and data distributions to rely on it exclusively.

However, the relative errors in Figure 1 also suggest that by ju-
diciously selecting the best among the three estimators, we can re-
duce the progress estimation error. Hence, in absence of a single
estimator that is always accurate, an approach that chooses among
them could go a long way towards making progress estimation ro-
bust.

Unfortunately, there appears to be no straightforward way to pre-
cisely state simple conditions under which one estimator outper-
forms another. While we know that e.g., the TGN estimator is
more sensitive to cardinality estimation errors than DNE, but more
robust with regards to variance in the number of GetNext calls is-
sued in response to input tuples, neither of these effects be reliably
quantified before a query starts execution. Moreover, a large num-
bers of other factors such as tuple spills due to memory contention,
certain optimizations in the processing of nested iterations (see Sec-
tion 5.1), etc., all impact which progress estimator performs best for
a given query.

1.1 Our Approach
Given this complexity, the task of manually formulating a de-

cision function for selecting among progress estimators appears
daunting; in fact, there are some hardness results on choosing among
estimators (see [5], Section 6.3.) that again indicate that this prob-
lem is hard in a worst-case sense. However, we are encouraged
by the fact that it is relatively easy to (a) obtain large numbers of
examples of the performance of various progress estimators for dif-
ferent queries and data distributions and (b) identify several factors
which are weakly predictive of the best estimator to use for a given
query. Therefore, leveraging statistical machine learning, which
successfully has been applied to many similar scenarios, where the
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Figure 1: Each of the 3 progress estimators performs poorly (relative
to the best among the others) for a large subset of queries.

complexity and number of input “features” made manual reason-
ing infeasible (such as text categorization [18] or web-scale infor-
mation retrieval [4]), but abundance of training data allowed for
automated inference of decision functions, appears promising. In
this paper, we will attempt to define such a statistical model for the
task of selecting among a set of progress estimators the one with
the lowest error, and identify features that are predictive of the cor-
rect choice and that can be obtained within a DBMS at very low
overhead.

While statistical machine learning models are known to be effec-
tive when there is a strong similarity between the data the model is
trained on and the data it is used for, we cannot assume this to be
the case when deploying the learned model in production. Hence,
a key challenge to this approach comes from the fact that we want
to do well for any “ad-hoc” queries, i.e., we must ensure that when
we are faced with different queries (or different data sets) than the
query examples used to train the model, we continue to perform
well in the vast majority of instances. This means that we need to
identify features to use in the model that generalize well across very
different queries, and evaluate our technique’s ability to remain ac-
curate when faced with completely new workloads.

As we will show, our approach does indeed generalize well across
workloads, even on different datasets, and leads to substantial re-
duction in the progress estimation error when compared to any of
the previously proposed progress estimators. In order to demon-
strate this, this paper will focus on a very detailed empirical eval-
uation, for which we will use a large set of different queries from
both synthetic and real-life query workloads and data distributions
and study the effects of various types of differences between test

and training data (such as changes in data size, skew, physical de-
sign and selectivity) on overall progress estimation quality. We will
also show that the techniques have very low overhead, as the com-
putation of all proposed features is very simple; the model used for
estimator selection can be (re-)trained very quickly even for very
large numbers of example queries, allowing for the fast incorpora-
tion of additional training observations if needed.

2. RELATED WORK
The problem of progress estimation for database queries was first

proposed and studied in [6] and [13], with further refinements pro-
posed in [5, 14]. We will describe these techniques in detail in
Section 3.4 and use them as candidate progress estimators which
our technique then selects from. [12] extends the earlier work to
multi-query progress estimation, and [17] studies progress estima-
tion in MapReduce clusters, both of which are scenarios that are
beyond the scope of this paper, but are important extensions for
future work.

The work of [16, 15] introduces techniques that improve the
optimizer estimates of join and group sizes (which are then used
in progress estimation) by taking random samples of the underly-
ing data distributions online for operator-pipelines that involve a
’preprocessing phase’ (such as the build phase during a hash join).
This can provide more accurate estimates with probabilistic accu-
racy guarantees; however, the processing of the samples can induce
significant increases in run-time (e.g., see Table III in [15] where
the authors report run-time increases of 5% for larger scale fac-
tors). Given the desire for low overhead of progress estimation in
large-scale systems, this overhead is the main reason why we do
not include this technique in our experimental comparison in Sec-
tion 6. For operators without a natural preprocessing stage (such
as nested loop joins) the authors of [15] propose using a random
sample of the outer relation which is stored as a “prefix” of the un-
derlying table (i.e., it is read first and joined with the inner relation
to arrive at a join cardinality estimate). Here, it is not clear how to
maintain these prefixes under insertions/deletions to the base tables
or for intermediate query results.

Statistical (or machine-learning based) models have been pro-
posed for the task of modeling SQL query a number of times before
(e.g., [11, 8]); both of these techniques do not address progress es-
timation itself, but the related problem of estimating the duration of
query execution. Both of these approaches model the target work-
load directly (as opposed to the two-step approach of this paper)
and thus have a very strong dependence of the observations used to
train the model being very similar to the one the model is deployed
on. For example, when the training and test queries used differ-
ent schemata and databases, the approach of [11] often resulted in
predicted run-times that were up to multiple orders of magnitude
longer than the actual time the query ran (see Experiment 4, Figure
15 in [11]).

The implicit assumptions in [8] are even more stringent: each
query (template) seen in the “test” data is seen during the training
phase as well (often, multiple times) and each query is associated
with a single plan (the latter restriction can be lifted, however, by
treating different plans as different queries). Under these assump-
tions, generalizing to “ad-hoc” queries is not an option.

3. BACKGROUND
In this section we first introduce some required notation, describe

the notions of query pipelines and the techniques used to refine
optimizer estimates in the context of progress estimation and give
an overview of existing progress estimators.
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3.1 Notation
The earlier progress estimation techniques of [6, 13, 14, 5, 16,

15] all model a running query Q as a tree of physical operators;
we use Nodes(Q) ⊂ N to enumerate the nodes in the plan and
Op(i), i ∈ Nodes(Q) to denote the physical operator at a node
i. We denote the set of all nodes below i in the execution plan as
Decendants(i).

All known progress estimation techniques base their estimates
on a set of counters collected at various nodes in the physical plan
of a query, which are observed at various points during the query’s
execution. We denote the set of all such observation of a queryQ as
Observations(Q) and – when it is not clear from context – we use
a variable t ∈ Observations(Q) to specify at which point in time
a specific counter-value was observed. Each observation is associ-
ated with the time Time(t) at which it occurred; we also use tstart

and tend to denote the first/last observation made, corresponding to
the start/termination of a query.

The following counters are used by the different techniques to
estimate the progress of Q:
(1) The total number of GetNext calls at node i issued at point t in
the query’s execution; we denote this value by Q.Kt

i ; when Q or t
are clear from context, we drop them from the notation. Note that
disk spills due to lack of memory (e.g., in hybrid hash joins) are
modeled as additional GetNext calls as well.
(2) The total number of GetNext calls at node i issued over the
entire duration ofQ (denoted byQ.Ni). Note that the value of this
counter is generally not known for all nodes in a plan before the
query terminates.
(3) The current estimate of the total number of GetNext calls at
node i issued over the duration of Q (denoted by Q.Et

i ). Since the
value of Ni is typically not known during the execution of Q, most
progress estimators use this estimate instead. The value of Ei is
generally derived from the optimizer estimate at the beginning and
then progressively refined as the query executes (which we will
describe in detail in Section 3.3).
(4) Absolute bounds on the value of Ni which are based on the
cardinality of the inputs to a node and refined as the query executes;
here, we track both lower (Q.LBt

i ) and upper (Q.UBt
i ) bounds.

(5) The number of bytes (logically) read (Q.Rt
i) and written (Q.W t

i )
at a node.

3.2 Pipelines/Segments
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Figure 2: Example execution plan with multiple pipelines.

To capture the notion of nodes in a query plan which execute
concurrently, prior work defined the notion of Pipelines or Seg-
ments (defined in [6], and [13], respectively), which correspond to
maximal subtrees of consecutively executing nodes in a (physical)
operator tree. We denote the set of all pipelines/segments for a
query Q as Pipelines(Q) = {P1, . . . , Pl}; each pipeline Pj is
defined via a subset of nodes Pj ⊆ Nodes(Q).

For each pipeline (or segment), the nodes that are the sources of
tuples operated upon by the remaining nodes (i.e., typically all leaf

nodes of the pipeline, excluding the inner subtree of nested loop
operators) are referred to as the driver nodes (or dominant input) of
the pipeline. We use the set DNodes(Pj) ⊆ Pj to denote the driver
nodes in pipeline Pj . An example operator tree with 3 pipelines is
shown in Figure 2; the shaded nodes correspond to driver nodes.
The notion of segments was further refined in [14].

3.3 Refining Cardinalities
Accurate estimates of the number of tuples at different opera-

tors is of crucial importance to accurate progress estimation. How-
ever, unlike e.g., query optimization, progress estimation can eas-
ily leverage improved estimates obtained after a query has started
to execute (whereas e.g., changing query plans mid-flight is a non-
trivial operation). As a consequence, all progress estimation tech-
niques incorporate some form of online refinement of optimizer
estimates.

The techniques in [6] maintain worst-case bounds on the number
of GetNext calls, based on the number of tuples seen so far and the
size of the input(s). If the value of any Ei ever falls outside of these
bounds, it is set to the nearest boundary value.

[13] uses a more aggressive strategy, updating the Ei counters
using interpolation: for any pipeline, this approach first measures
the percentage of the dominant input(s) consumed in a pipeline pj

as

αPj =

∑
i∈DNodes((Pj)) Ki∑
i∈DNodes((Pj)) Ei

. (1)

Now, given that a node has output Kl tuples so far, we can extrap-
olate the number of tuple output by this node as Êl = Kl/αPj ; the
refinement technique in [13] then interpolates between this value
and the initial estimate El as follows, reflecting the growing confi-
dence in Êl as the query progresses:

Enew
l = αPj × Êl + (1− αPj )× El. (2)

Finally, the techniques of [15] leverage random samples of (some
of) the input relations to give more accurate estimates during query
execution. The use of random samples enables them to provide
probabilistic guarantees of the accuracy of these estimates, but it
requires to either randomly sample from the tuple stream during
query execution (which is potentially expensive) or to pre-compute
these (which is also costly for update-heavy data and not always be
possible in practice).

3.4 Previous Estimators
In the following we briefly review the progress estimators pro-

posed previously. [6] introduced the concept of progress estimation
based on the so-called GetNext Model of progress, which assumes
that the total work (i.e., CPU overhead, I/O, etc.) is amortized
across the GetNext calls issued across all nodes in the execution
plan. Hence, the fraction of the total GetNext calls executed at any
point in a query can be used as an estimate of its progress.

Unfortunately, the total number of such calls (
∑

Ni) issued over
the course of a query’s execution is generally not known before the
query is completed, meaning that the value of this model is primar-
ily theoretical. Instead, the corresponding optimizer estimates Ei

have to be used in place of Ni, resulting in the following estimator:

TGNQ =

∑
i∈Nodes(Q) Ki∑
i∈Nodes(Q) Ei

. (3)

Note that the accuracy of this estimator critically depends on the
accuracy with which the Ei values are estimated. However, note
that in many cases the exact sizes of the inputs to the driver nodes
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of a pipeline are known at the beginning of the pipeline’s execution.
Now, under the assumption that the number of GetNext calls occur-
ring in the pipeline overall is proportional to the number of input
tuples read from the driver nodes, it is possible to (somewhat) side-
step the issue of inaccurate estimation and propose the following
DriverNode estimator for the progress of a pipeline:

DNEPj =

∑
i∈DNodes((Pj)) Ki∑
i∈DNodes((Pj)) Ei

. (4)

This estimator performs well in scenarios where the amount of
GetNext calls triggered by (equal-sized groups of) input tuples is
roughly equal, but performs less well when there is significant vari-
ance in this “per-tuple work”.

The progress of the entire query is now the weighted sum of the
pipelines’ estimated progress:

DNEQ =
∑

Pj∈Pipelines(Q)

DNEPj ×
∑

i∈DNodes((Pj)) Ei∑
i∈Nodes(Q) Ei

. (5)

The estimators proposed in [13] also leverage the notion of pipe-
lines (called segments) and driver nodes (dominant input(s)), but
only track the bytes read at the pipeline inputs and written at the
pipeline output (in addition to reads/writes of spills). We shall re-
fer to this as the Bytes Processed Model of progress. Moreover, the
approach converts this measure into an absolute run-time (as op-
posed to a percentage) by measuring the speed at which these bytes
are read/written during the last T (typically set to 10) seconds. We
refer to the corresponding progress estimator as LUOQ.

The paper [5] introduced two additional estimators, PMAX and
SAFE. It can be shown the ratio error for the PMAX estimator
(when compared to the GetNext model using completely accurate
cardinality estimates) is within a factor of µ of the correct progress
(where µ is average number of GetNext calls performed during the
entire query per input tuple), whereas the SAFE estimator is worst-
case optimal (again, with respect to the ratio error). Note that while
the ratio error is of significant theoretical interest, it is unlikely the
most relevant error metric for practical use, as it overemphasizes
errors very early in a query’s execution; instead, most (but not all)
of our experiments will focus on absolute errors.

4. ESTIMATOR SELECTION
In this section we will describe the Estimator Selection module

that decides which estimator among a given set of candidate esti-
mators to use for progress estimation. The overall architecture is
shown in Figure 3. For any incoming query Q the execution plan
is first generated by the optimizer (or matched in the plan cache);
from this plan we obtain the estimated number of GetNext calls Ei

(and – by multiplying these with the average row width – the esti-
mated number of bytes processed required for the LUO estimator).
As input to the estimator selection, we use two types of features:
the first set are the so-called static features (whose values are de-
termined before the query starts execution) which are based on the
shape of the execution plan and optimizer estimates. We describe
these in detail in Section 4.3. These features are now used by the
estimator selection module to select the progress estimator with the
smallest estimation error among the techniques described in Sec-
tion 3.4 (and a number of new progress estimators we will intro-
duce in Section 5). In particular, as progress estimators for different
pipelines are independent and can be combined as a weighted sum
(see Section 3.4), we can select (potentially different) estimators
for each pipeline/segment in the execution plan.

�����
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Figure 3: Overview of our solution.

Now, as Q starts execution, we obtain additional counters from
the query execution engine which are used by the chosen progress
estimator(s) to produces an estimate of the overall query progress.
Moreover, observing the query execution allows us to use addi-
tional properties of the query (such as the observed variance in the
number of GetNext calls triggered by tuples read from the Driver
Nodes) which we were not able to assess before. Consequently, we
use this data to formulate so-called dynamic features which are also
input to the estimator selection and allow us to – when necessary –
to revise the initial estimator choices online.

4.1 The Learning Task
Next, we will describe the way we model estimator selection as

a machine learning task. Given that our goal is to, when given an
input query, select one among a fixed set of estimators, a natural
setup appears to formulate this as a multi-class classification prob-
lem. However, the key quantity we seek to optimize is not only
the estimator choice, but the size of the overall progress estimation
error. In particular – for many combinations of query and estima-
tor – many estimators do produce (almost) identical estimates (and
thus errors), meaning that there can be several optimal choices. We
need to differentiate such cases from those in which the difference
in estimator accuracy is very large; thus, it is crucial to identify
and model the cases where a given estimator performs very poorly,
thereby allowing the technique to minimize the expected impact of
selection errors, something that a simple classification set-up does
not allow us to do.

As a consequence, we do not model estimator selection as a clas-
sification (or learning-to-rank) task. Instead, we propose a setup
where – for each candidate estimator – we train a regression model
that models the estimation error when using the estimator in ques-
tion. The estimator selection module then selects the estimator with
the smallest predicted error.

It is important to note that this learning task is significantly dif-
ferent from (and likely simpler than) the setup of [11] where the
explicit runtime of Q is predicted before execution. For one, our
models can leverage fairly simple structural properties of pipelines
(e.g., the presence of nested loop joins, which cause issues for DNE
estimators), which by themselves do not give any direct hints re-
garding absolute runtime. Second, our setup offers various forms
of online adaptivity such as the online cardinality refinement de-
scribed in Section 3.3 and the dynamic features obtained as the
query is executing, allowing us to improve initial estimates.
Combining Estimators: In addition to this framework which se-
lects a single estimator, we also experimented with models that es-
timate progress as the weighted combination of estimators. Here,
we found that a simple approach that uses training data to compute
static weights for each different estimator did not perform well. The
different weights varied considerably with the relative frequencies
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of different types of queries in the training workload (e.g., the rela-
tive weight assigned to the DNE estimator would fluctuate with the
number of queries with nested loop joins in the training set). As a
result, the resulting combined estimator was not robust in the sense
that – if the queries it was used for were very different from the
training set – the resulting estimation errors were often very high.
We did not pursue this type of approach further.

4.2 The Learning Model
The learning method we use to compute regression estimates

of the individual estimator’s errors is based on Multiple Additive
Regression-Trees (MART). MART is based on the Stochastic Gra-
dient Boosting paradigm described in [10] which performs gradient
descent optimization in the functional space. In our experiments,
we used the (root) mean square error as the loss function (opti-
mization criterion), used the steepest-decent (gradient descent) as
the optimization technique, and used binary decision trees as the
fitting function - a “nonparametric” approach that applies numeri-
cal optimization in functional space.

In an iterative boosting (or residue-learning) paradigm, at the be-
ginning of every iteration, the estimation errors of the training data
are computed using the current model. The error prediction is then
compared with the actual error outcome to derive the errors (or
residuals) for the current system, which is then used to fit a residue
model – a function that approximates the errors – using MSE (Mean
Square Error) criteria. In MART, we compute the derivatives of
the log-loss for each training data point as the residual and use the
regression tree as the approximation function-residual model. A
regression tree is a binary decision tree, where each internal node
splits the features space into two by comparing the value of a cho-
sen feature with a pre-computed threshold; once a terminal node
is reached, an optimal regression value is returned for all the data
falling into the region. Finally, the residual model is added back to
the existing model so that the overall training error is compensated
for and reduced for this iteration. The new model – the current plus
the residual model – will be used as the current model for the next
boosting/training iteration. The final model after M boosting iter-
ations is the sum of all M regression trees built. A a more detailed
description of MART can be found in [19].
MART vs. other statistical models: In addition to MART, we ini-
tially also evaluated our approach using different statistical mod-
els (including logistic regression models and Support Vector Ma-
chines). Here we found that using MART resulted in significantly
better accuracy, which appears to be in part due to two properties of
MART: for one, MART does not require transformations to normal-
ize the inputs into zero mean and unit variance which is essential
for other algorithms such as logistic regression or neural nets. More
importantly, by its internal use of decision trees, which are able to
“break” the domain of each feature arbitrarily, MART is able to
handle the non-linear dependencies between the feature values and
the estimation errors without using explicit binning as a preprocess-
ing step. This allows us to use a much wider range of features than
linear models would be able to leverage.

4.3 Static Features
We will now define the static features used by our technique, i.e.,

the set of features that do not depend on feedback from query exe-
cution itself. First, we need to encode the physical execution plan
for a pipeline Pj for which we want to select an progress estimator.
One encoding that has been proposed in the context of execution
time prediction is the one of [11], which uses – for each physical
operator type op known to the execution engine – the number of

instances of op in the plan

Countop = |{i ∈ Nodes(Pj) : Operator(i) = op}|
and the cardinalities of tuples for each such operator type

Cardop =
∑

i∈Nodes(Pj)
Operator(i)=op

Ei as features.

However, this encoding uses the absolute cardinalities, which
are more relevant in the context of execution time prediction, but
can be misleading in the context of progress estimation: for ex-
ample, when a nested loop join is expected to output 100K tuples,
this might be negligible compared to the outer input being several
millions of tuples (thereby making a DNE estimator a likely can-
didate), but very significant when the outer input is very small.
Therefore, in addition to the above features, we also encode the
relative cardinalities as well. In particular, we encode the cardi-
nalities (relative to the (estimated) total number of tuples) at nodes
with an operator op, as well as the relative cardinalities of their “in-
put subtrees” and of the subtrees they feed into, formally defined as
follows:

SelAtop =

∑
i∈Nodes(Pj)∧Operator(i)=op

Ei

∑
i∈Nodes(Pj)

Ei

SelAboveop =

∑
i∈Nodes(Pj)|∃j:Operator(j)=op∧j∈Decendants(i)

Ei

∑
i∈Nodes(Pj)

Ei

SelBelowop =

∑
i∈Nodes(Pj)|∃j:Operator(j)=op∧i∈Decendants(j)

Ei

∑
i∈Nodes(Pj)

Ei

To illustrate these definitions, consider the query plan in Fig-
ure 2; here, the value of SelBelowMerge Join would include the
Ei values of the filter node and the two index scans, whereas
SelBelowFilter would include the Ei value at the merge join. Fi-
nally, we also encode the cardinalities (relative to the (estimated)
total number of tuples) of all driver nodes in a pipeline in the fea-
ture SelAtDN .

4.4 Dynamic Features
In the following we will describe the dynamic features (i.e., fea-

tures that are obtained after a query has started execution) we use
for estimator selection. Using these we may revise our initial choice
of progress estimators as a query executes, ideally arriving at a
more accurate estimator as the query goes on. Given that for appli-
cations of progress estimation such as deciding whether to cancel a
long-running query the importance of accurate estimates becomes
larger as the query executes, being able to leverage this execution
feedback for estimator selection can be quite valuable. In the fol-
lowing, we will first illustrate factors in estimator selection that can
not be captured well using static features, but can be assessed more
accurately after a query has started executing. We then describe the
dynamic features we use in detail.

4.4.1 Limitations of Static Features
Given that the set of static features defined above already exceeds

the ones proposed in [11], one might question why additional fea-
tures are necessary. To illustrate this, we will first demonstrate that
the estimation errors for two simple progress estimators (DNE and
TGN) are a function of (a) the “variance” in the amount of work
done for the tuples from the driver node input (over the different
observations) and (b) the cardinality estimation error(s) made by
the optimizer. Both of these cannot be reliably assessed before
query execution. However, for many pipelines, we can estimate
both of these factors with some degree of accuracy by monitoring

386



the flow of tuples during the pipeline’s execution. In fact, under the
assumption of (nearly) random tuple orderings (and limited skew),
the initial estimates of both of these factors become rather accurate
after only a small fraction of the query has executed, which we can
then use to revise the initial choice of progress estimators. Note
that while the worst-case results of [5] with regards to determining
the most accurate estimator online continue to hold, these rely on
specific data distributions with adversarially chosen data ordering,
which are highly unlikely in practice.

First, consider the estimation error for the DNE estimator at an
observation t. For the purposes of this example, we will assume
that the GetNext Model (which corresponds to the TGN estima-
tor using the correct Ni in place of their estimates Ei) is the cor-
rect “gold standard” of progress (how well this assumption holds in
practice is something we will experimentally verify in Section 6.7).
We will consider a trivial execution plan, containing two nodes, a
table scan (node 0) followed by a filter (node 1), with node 0 being
the driver node.

Given this setup, the average number of GetNext calls triggered
by each tuple read at the driver node is N0/N1. Now, the absolute
progress estimation error for an observation t can be written as:

∥∥∥∥

DNE Estimator︷︸︸︷
Kt

0

Et
0

−

“True” Progress︷ ︸︸ ︷
Kt

0 + Kt
1

N0 + N1

∥∥∥∥ = [ as driver-node input size is known ]

∥∥∥∥
Kt

0

N0
− Kt

0 + Kt
1

N0 + N1

∥∥∥∥ =

∥∥∥∥
(

“Variance” in GetNext calls︷ ︸︸ ︷
(N1/N0) ·Kt

0 −Kt
1

)

N1 + N0

∥∥∥∥

Thus, the progress estimation error corresponds to the (weighted)
difference between the expected work at node 1 (= (N1/N0)K

t
0)

– and the actually observed one (= K1). Similar constructions also
hold for more complex plans. Using a similar model construction
for the TGN estimator, we obtain:

∥∥∥∥

TGN Estimator︷ ︸︸ ︷
Kt

0 + Kt
1

Et
0 + Et

1

−

“True” Progress︷ ︸︸ ︷
Kt

0 + Kt
1

N0 + N1

∥∥∥∥= [ as driver-node input size is known ]

∥∥∥∥
Kt

0 + Kt
1

N t
0 + Et

1

− Kt
0 + Kt

1

N0 + N1

∥∥∥∥=

∥∥∥∥
Kt

0 + Kt
1

(N0+N1)(N0+Et
1)

Estimation Error︷ ︸︸ ︷
(N1 − Et

1)

∥∥∥∥

Thus, here the progress estimation error is a weighted function of
the error in the query optimizer’s cardinality estimation for node 1.
Again, similar constructions also hold for more complex plans.

Now, since both the variance in per-tuple work and the cardinal-
ity estimation error can (for many combinations of queries and data
orderings) be estimated with some degree of accuracy online when
observing the execution of a query (using the same counters that
progress estimators are based on), this motivates the use of “dy-
namic” features which are computed during (the early stages of)
query execution and which indirectly leverage information about
both factors: while the dynamic features we propose do not quan-
tify the variance in “per-tuple work” or cardinality estimation er-
rors directly, they seek to characterize their effects on the various
progress estimators with regard to the Total GetNext Model as well
as the actual time passed between observations.

4.4.2 Defining Dynamic Features
The first set of dynamic features we will describe quantify the

relative differences in estimation provided by different progress es-
timators at different points in a query’s execution. To illustrate how

such features could potentially be useful, consider the case where
we measure the difference between the progress estimate provided
using the DNE and TGN estimators for a nested-loop join pipeline.
Now, if both progress estimators make similar progress during the
initial part of the query, but the TGN estimator subsequently makes
much more rapid progress, this can be an indicator of some tuples
from the driver node joining with a large number of tuples on the
inner side of the join, which in turn indicating large variance in “per
input-tuple work”.

Ideally, we would want to compute these differences between
estimators at consistent points in query execution (so that we have
similar points of reference when training the estimator selection
model), e.g., at 2%, 5% and 10% of a query’s execution. Obvi-
ously, this is not feasible – if we knew during a query’s execution
which fraction of it was done, progress estimation would be trivial.
Instead, we use the fraction of the driver node input (the size of
which is know up-front for many queries) that has been consumed
to create these “markers” when generating a feature. For this pur-
pose, we first define t{x} ∈ Observations(Q) as the first ob-
servation for which x% of the driver node input was “consumed”,
i.e.,

∑
i∈DNodes Kt

i /
∑

i∈DNodes Et
i ≥ x/100. We also use the

notation DNEt{x} to denote the DNE estimate of progress at ob-
servation t{x} (and similarly for other progress estimators). Now,
we define the difference between DNE and TGN “at x%” as

DNEvsTGNx =

∥∥∥∥DNEt{x} − TGNt{x}
∥∥∥∥.

We then use these differences – for x ∈ {1, 2, 5, 10, 20} – as fea-
tures in estimator selection. Similarly, we define the differences
between all other estimators, including the novel estimators which
we will introduce in Section 5.

The second set of dynamic features quantifies how well the esti-
mators correlate with time itself over the fraction of the query we
have observed so far; for this purpose, we take a sequence of k ob-
servations t{x/k}, t{(2x)/k}, . . . , t{(kx)/k} and compute – for
each observation – the fraction of time since the start of the query
and the fraction of progress that – according to different estimators
– these points correspond to.

For example, for the DNE estimator, we compute the following
features for i = 1, . . . , k:

CorDNE,i,x =
T ime(t{ix/k})− Time(tstart)

Time(t{x/k})− Time(tstart)
· 1

DNEt{x}

5. NOVEL ESTIMATORS
Given the framework for estimator selection introduced in the

previous section, we can now also consider extending it with addi-
tional progress estimators. As long as we can rely on the framework
to pick a suitable estimator (with high likelihood), these progress
estimators do not necessarily need to be well-suited for arbitrary
queries/pipelines, but only have to improve progress estimates for
specific scenarios. Here, we propose the different estimators to ad-
dress the effects of different issues such as correction of selectivity
errors, dealing with “partial” batches, etc. on progress estimation
in practice.

5.1 Estimators for Batch Operations
One assumption implicit in most estimators discussed so far is

that – within a pipeline or segment – tuples flow from the input
driver nodes to the top node of the pipeline (or are filtered) without
any blocking. However, there exist some query processing opti-
mizations that do result in blocking effects. For example, one com-
mon optimization used for nested iterations is the introduction of
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“partial” batch sorts. Here, a portion of the outer input is sorted in
order to subsequently localize references in the inner subtree (for
details see e.g., [9]), which can yield significant improvements in
nested loop join processing [7].

This optimization may lead to significant inaccuracy for estima-
tors that base the overall progress significantly on the progress seen
at the diver nodes (dominant inputs), especially for larger batch
sizes, which e.g., may occur for longer-running queries for which
some query execution engines increase batch sizes dynamically
(e.g., see [9], Section 8.3.). In order to deal with these types of
queries, we propose a variant of the DNE estimator which includes
these types of batch sort operators among the driver nodes:

BATCHDNEPj =

∑
i∈DNodes(Pj)∨Op(i)=BatchSort Ki∑
i∈DNodes(Pj)∨Op(i)=BatchSort Ei

(6)

5.1.1 DNE with IndexSeeks
As discussed in [5] in detail, a significant challenge to progress

estimation and in particular estimators based on the progress seen at
driver nodes only are query plans containing nested iterators: when
the data distributions on the inner side of the iterator are skewed,
the amount of processing and I/O required for tuples from the outer
side may vary significantly, which may not be reflected in the es-
timator. As a consequence, we propose an estimator that behaves
like DNE, but also includes all Index Seek operations among the
driver nodes:

DNESEEKPj =

∑
i∈DNodes(Pj)∨Op(i)=IndexSeek Ki∑
i∈DNodes(Pj)∨Op(i)=IndexSeek Ei

(7)

5.2 Cardinality Interpolation
For this estimator, we adopt the strategy of [13] (detailed in Sec-

tion 3.3) to refine the estimated number of GetNext calls by inter-
polating between the initial estimate and the (scaled-up) number of
GetNext calls seen so far, and using this new estimate in the TGN
estimator. Using αPj as defined in equation (1) as an estimate of the
fraction of the pipeline done so far gives us the following progress
estimator:

TGNINTPj =

∑
i∈Nodes(Pj) Ki∑

i∈Nodes(Pj)

Ki + (1− DNEPj )
∑

i∈Nodes(Pj)

Ei
(8)

6. EXPERIMENTAL EVALUATION
In this section we evaluate the effectiveness of the ideas proposed

in this paper and test whether the estimator selection technique de-
scribed in Section 4 significantly improves accuracy of progress es-
timation. Our evaluation methodology aims to uncover whether the
estimator selection method is able to generalize gracefully even as
the similarity between the queries used to train the machine learn-
ing model and queries used to test the model decreases. We there-
fore approach this empirical evaluation from three angles. First,
we systematically vary key parameters such as data size, physi-
cal database design and selectivity that can affect accuracy, and
measure how well our estimator selection module is able to se-
lect among three existing estimators: DNE, LUO, and TGN. For
this controlled experiment, we use the well-known TPC-H deci-
sion support benchmark [2] workload over databases with various
data distributions. Second, we study the effectiveness of estimator
selection for the case of “ad-hoc” queries, i.e. queries that have
not executed previously on the system. We study this by training
estimator selection on a set of workloads and testing it on an en-
tirely different workload on a different database altogether. We use

the TPC-H and TPC-DS decision support benchmarks and two real
world decision support workloads (described below).

We complement the above set of experiments on estimator se-
lection robustness by reporting which features of the models were
most important (Section 6.5), and measuring the scalability of model
training as the size of the training workload increases (Section 6.4).
After this, we analyze how many of the proposed progress estima-
tors are really necessary in the context of estimator selection. We
conclude this section with a brief discussion of the empirical effec-
tiveness of the GetNext and the Bytes Processed models of progress
estimation, which form the theoretical basis of the previous state-
of-the-art progress estimators (Section 6.7).
Experimental Setup: All experiments were conducted on a 2.66
GHz Intel Xeon PC with 8GB of main memory using a SQL Server
2008 database engine.
Databases and Workloads: Since the difficulty of progress esti-
mation for a given query depends on the specific operators present
in the query’s execution plan as well as parameters such as data
size, skew and physical design, we used the following 6 databases
and workloads to ensure that we cover a significant range over these
parameters:

(1) Over 200 randomly chosen queries from the TPC-DS bench-
mark [2]. The database size is approx. 10GB. Workloads (2)-(4)
each consist of 1000 queries from the TPC-H benchmark [2] – the
database is generated using a Zipfian skew-factor Z=1 [1], to in-
duce variance in the “per-tuple work”. Because the accuracy of
progress estimation can be heavily influenced by the types of ex-
ecution plans seen (e.g., nested loop joins are known to be more
difficult than “scan based” queries [5] and typically depend on the
existence of indexes on the inner relation), we varied the underlying
physical design of the database for the three instances of TPC-H.
We considered the following configurations: (a) “untuned” which
contains only the minimal set of indexes required by integrity con-
straints, (b) “fully tuned” which contains all indexes recommended
for this workload by the SQL Server Database Tuning Advisor [3]
(DTA) and (c) “partially tuned” which contains all indexes recom-
mended by DTA when the space for indexes is restricted to half the
space used by the fully tuned configuration. To illustrate that this
tuning indeed has significant effect on the operators seen during
progress estimation, we report the fraction of pipelines containing
different operators for TPC-H under the three physical designs in
Figure 1. (5) “Real-1” is a real-world decision-support and report-

Operator not tuned “partially” tuned fully tuned
NEST. LOOP JOIN 32.6% 26.6% 42.1%
MERGE JOIN 22.7% 12.8% 12.9%
HASH JOIN/AGG. 78.8% 82.9% 72.9%
INDEX SEEK 47.4% 65.3% 96.2%
BATCHSORT 11.7% 8.3% 33.9%
STREAMAGG. 18.2% 9.7% 21.4%

Table 1: Fraction of pipelines with different operators for TPC-H un-
der different physical designs.

ing workload over a 9GB Sales database. Most of the queries in this
workload involve joins of 5-8 tables as well as nested sub-queries.
The workload contains 477 distinct queries. (6) “Real-2” is a differ-
ent real-life decision-support workload on a larger data set (12GB)
with even more complex queries (with a typical query involving 12
joins). This workload contains a total of 632 queries.

Note that all queries in the different workloads were executed in
isolation; extending progress estimation to account for interactions
between concurrently executing queries is an interesting challenge,
but beyond the scope of this paper.
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Test Set: “small” queries “medium” queries “large” queries
Estimator % optimal % optimal % optimal
DNE 18.8% 29.7% 44.4%
TGN 71.3% 51.1% 40.0%
LUO 9.8% 19.0% 15.5%
EST. SEL. 63.9% 52.0% 69.0%

Table 2: Sensitivity Analysis: varying the total number of GetNext
calls between test/training sets. The accuracy of estimator selection
does not appear to be affected.

Training Parameters: For all experiments, we trained the under-
lying MART models (see Section 4.2) using the M = 200 boosting
iterations; each decision tree has 30 leaf nodes.
Dynamic Features: Among the dynamic features we have defined
in Section 4.4, we use the following “pairwise difference” features
– DNEvsTGNx, DNEvsTGNINTx and TGNvsTGNINTx – as
well as these time-correlation features: CorDNE,i,x, CorTGN,i,x,
CorLUO,i,x, CorBATCHDNE,i,x, CorDNESEEK,i,x and CorTGNINT,i,x

(for i = 1, . . . , 4). We use x ∈ {1, 2, 5, 10, 20}. This means that
in these experiments we stop refining the estimator after 20% of
the driver node input has been read. The numbers we report for
dynamic features are based on these features only; obviously, fur-
ther improvements are possible when dynamic features computed
at later stages of execution are used – but the resulting improve-
ments are of less consequence as more of the query has executed
by the time the improves estimates are seen.
Error Metric: Earlier papers on progress estimation have concen-
trated on both the ratio error as well as the (average) absolute (L1)
error between the estimated and true progress. While the ratio error
is of significant theoretical interest, it overemphasizes errors that
occur very early in the query execution (as either the true progress
or the estimated progress will be very small). Instead, our exper-
iments will mainly focus on the absolute difference between the
estimated and true progress, using both the L1 and – to further pe-
nalize points of large deviation – the L2 norms of these differences.
Here, we define the absolute error as the difference between the ac-
tual progress of the query (measured based on its overall execution
time) and the estimated progress over all observations; for example,
the Lp error for the DNE estimator is defined as:

( ∑

t∈Observations(Q)

‖(DNEt
Q − T ime(t)− Time(tstart)

T ime(tend)− Time(tstart)

)p‖
) 1

p

Because estimator selection operates at the level of individual pipelines
(the weighted sum of which is the overall query progress) we report
the error on the level of individual pipelines in the experiments.

6.1 Sensitivity Analysis for Estimator Selec-
tion

As a first step towards understanding how well our estimator se-
lection component generalizes when the training and test queries
vary in similarity, we systematically vary certain key parameters
between the training and test workloads in this section. Because
this setup requires many different instances of a number of differ-
ent query templates, we use the TPC-H workload here.

In this study we ran a similar experiment to the example de-
scribed in Section 1, evaluating the robustness of 3 major estima-
tors – DNE, TGN and LUO – proposed in prior work as well as the
estimator selection technique choosing among them.
Evaluation Metric: Something we found to hold throughout these
experiments was that the overall average estimation error for the
estimator selection was consistently lower than the one for the 3

Test Set: “fully” tuned “partially” tuned “untuned”
Estimator % optimal % optimal % optimal
DNE 30.5% 40.2% 44.0%
TGN 41.9% 26.8% 38.0%
LUO 27.5% 33.0% 18.9%
EST. SEL. 63.9% 74.7% 67.6%

Table 3: Sensitivity Analysis: varying the physical design between
test/training sets. The different physical designs in turn result in differ-
ent query plans, affecting the choice of optimal estimator.

Test Set: Skew Z = 0 Skew Z = 1 Skew Z = 2

Estimator % optimal % optimal % optimal
DNE 35.9% 54.3% 49.8%
TGN 52.7% 28.7% 32.4%
LUO 11.3% 17.0% 17.8%
EST. SEL. 52.7% 60.0% 59.5%

Table 4: Sensitivity Analysis: varying the data skew between
test/training sets.

individual estimators, despite the differences between training and
test data. Hence, in the following, we will instead concentrate of a
different measure, using the fraction of queries for with the estima-
tor selection correctly predicts the optimal estimator to assess the
sensitivity to the systematic changes.
Varying the selectivity: In this experiment, we study the effects of
variation in the cardinality/selectivity on estimator selection. Here,
we only consider operator pipelines that occur at least 6 times in
total in the workload; for each pipeline, we sort all instances in
the workload by their total number of GetNext calls and then group
them into 3 equal-sized “buckets”, the first one containing the pipe-
lines with the smallest overall number of GetNext calls, the last
group the pipelines with the highest number of GetNext calls and
the remainder in the middle group. We then perform 3 experiments,
in each of which we use two of the groups for training and the other
one for testing. In Table 2 we show the percentage of pipelines
for which each individual estimator has the lowest error as well as
the percentage of pipelines for which the estimator selection model
correctly selects this estimator.

As we can see, the percentages at which different estimators are
optimal vary significantly between the different test sets (e.g., in
case of TGN, the difference is more than 30% between the 1st and
3rd experiment). One result of this variance is that in the first exper-
iment the estimator selection module chooses the optimal estimator
at a lower rate than choosing TGN for every query would result in.
While the resulting average progress estimation error is still the
smallest for estimation selection (and not for TGN), meaning that
estimator selection still is more robust in this scenario than any in-
dividual estimator, this indicates estimation selection is somewhat
sensitive to large differences in cardinality, meaning that the train-
ing data for any estimator selection model should ideally cover a
wide range of cardinalities.

Test Set: “small” data “medium” data “large” data
Estimator % optimal % optimal % optimal
DNE 54.2% 64.2% 57.9%
TGN 28.7% 28.1% 24.9%
LUO 17.0% 7.7% 17.2%
EST. SEL. 57.0% 46.3% 57.2%

Table 5: Sensitivity Analysis: varying the data size.
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Varying the physical design: Next, we use a similar setup to be-
fore, but vary the physical database design, using the three differ-
ent physical designs for TPC-H described in the beginning of Sec-
tion 6, corresponding to different levels of tuning. As shown before
in Table 1, these changes in physical design significantly impact the
operators used in the execution plans and hence the pipelines seen
in progress estimation. The resulting error-ratios are shown in Ta-
ble 3 – with the test set being the “untuned” database in the right
column, “partially-tuned” in the middle one and “fully tuned” in the
leftmost one. Here, we see estimator selection perform extremely
well (and significantly better than any individual estimator); in part
this is due to the fact that we see smaller variance in the rates at
which individual estimators are optimal across the different experi-
ments. Estimator selection performs least well for the “fully tuned”
test data; from Table 1 we can see that this workload has a very dif-
ferent operator mix than the other two, being comprised of many
more nested iterations and containing more batch sorts, for which
estimator selection becomes more difficult due to potential variance
in the number of GetNext calls for each Driver Node tuple. How-
ever, our approach appears to be robust to the types of physical
design changes seen in this experiment.
Varying the data skew: For this experiment, we generated the
TPC-H database with several different skew factors z = 0, 1, 2 [1].
For each of these databases, we re-ran the 1000-query TPC-H bench-
mark, generating three sets of data; for each of the experiments, we
then used two of the data sets for training and queries from the re-
maining one for testing. The resulting selection accuracy is shown
in Table 4. Varying the skew factors introduces very significant
changes in the workload – query plans vary significantly between
skewed and non-skewed data and the (on average) best single esti-
mator varies across these workloads as well: for skewed data DNE
outperforms TGN and LUO, for z = 0 TGN outperforms the other
two. This in turn makes the task of learning the estimator selec-
tion module very challenging, as the underlying biases are very
different, making this experiment a serious test of our ability to
generalize. Still, we can see that the estimator selection performs
significantly better than any individual estimator, even though the
overall accuracy at which we can select the optimal estimator is
reduced when compared to the two previous experiments.
Varying the data size: In this experiment, we use different scale-
factors of the underlying TPC-H database in the training/test set,
using three different TPC-H databases with scale-factors 2, 5 and
10. Interestingly, and similarly to the case of variations in data
skew and physical design, these changes lead to rather different
query plans, which in turn challenge our technique’s ability to gen-
eralize (as some pipelines in the test data may not have been seen
in training). The resulting selection accuracy is shown in Table 5,
with the test data going from small (2GB) to large (10GB) from the
left to the right column. Here, our technique performs better then
the individual estimators for one experiment, but only even to DNE
for Z = 2 and at a rate worse than DNE for Z = 1, making this
setup the most challenging for our technique’s ability to generalize.
This is also reflected in the fact that the rates at which estimator se-
lection selects the optimal estimator is reduced when compared to
the previous experiments.

Overall, the estimator selection approach is mostly able to gen-
eralize well across all of the different variations in workload pa-
rameters we studied in this section. For each of the experiments,
the average estimation error is lower than it would be for any in-
dividual estimator; however, significant changes in the data skew
and size between training and test data noticeably reduce the rate
at which our technique is able to select “correctly”. Consequently,
a range of data sizes and skews should be used as part of model

training. We will study the performance of estimator selection in
the context of fully “ad-hoc” queries next.

6.2 Estimator Selection for “Ad-Hoc” Queries
In this experiment, we are interested in evaluating the robustness

of estimator selection in the case of fully “ad-hoc” queries, where
there is no overlap between training and test workloads.
Test/Training setup: We use the 6 workloads described earlier for
this experiment, but ensure that in the experiments each of the 6
workloads is either only part of the training set that we use to train
the estimator selection module, or the test set that we use to evaluate
it, but never both. Each experiment is based on a test set containing
all queries from one of the workloads and a training sets consisting
of the other 5, resulting in a total of 6 test/training combinations.
All aggregate statistics are now computed by averaging over the
results of each of the corresponding 6 experiments.
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Figure 4: Compared to the DNE,TGN and LUO estimators in isola-
tion, estimator selection improves robustness significantly. Considering
dynamic features improves the estimation error further.

We first compute the ratios between the optimal error and the
one of each estimator (as well as estimator selection), similarly to
the experiments in Section 1; the resulting graph is shown in Fig-
ure 4. We can see that using the estimator selection module results
in the progress estimator with the smallest estimation error being
selected for a much larger fraction of the queries than would be the
case otherwise – whereas using DNE, TGN and LUO is optimal
for 31%, 44% and 25% of the queries, estimator selection selects
the optimal estimator for 55% (static features) or 64% (dynamic
features) of the queries. More importantly, the error (relative to the
optimal estimator) is now significantly less in the cases where the
best estimator is not selected.

To quantify this, Table 6 displays the percentage of cases where
the ratio of estimation error to minimum error exceeds 2x, 5x and
10x for the different techniques. As we can see, estimator selec-
tion is significantly more robust than the alternatives – when using
dynamic features, less than 1% of all queries have a ratio of more
than 5x, whereas this is the case for 7.8%–14.5% of the queries for
the three estimators in isolation.

DNE TGN LUO EST. SEL. (ST) EST. SEL. (DY)
2x 23.6% 26.7% 27.3% 13.2% 6.3%
5x 7.8% 14.5% 11.4% 3.7% 0.8%
10x 1.6% 8.9% 5.0% 1.0% 0.3%

Table 6: Percentage of pipelines where the ratio of estimation error to
minimum error is larger than 2x, 5x and 10x.

To quantify the effects of estimator selection on the actual progress
estimation error, we computed the average L1 and L2 error when
using the DNE,TGN and LUO estimators exclusively as well as
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the error resulting from using estimator selection. For this estima-
tor selection experiment, we evaluated the case where only the three
original estimators can be selected, as well as the case in which the
novel estimators BATCHDNE, DNESEEK and TGNINT are also
available. We evaluated both cases when using static features only
as well as using static + dynamic features. The results are plotted
in Figure 5. As we can see, estimator selection results in significant
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Figure 5: Estimator selection improves robustness significantly, espe-
cially as more estimators are added.

improvements in accuracy over the originally proposed estimators,
with the combination of static and dynamic features outperforming
static features alone, especially when only the three initial progress
estimators where available to the selection module. When addi-
tional estimators are added, the error is reduced further and the dif-
ference between the two feature sets is much less pronounced. Note
that while the differences between absolute errors in this figure do
not appear to be very large, this is partially due to the fact that
the distribution of errors across pipelines is somewhat “skewed”: a
significant fraction of the pipelines are “easy”, with most progress
estimators showing small errors when used on them. In contrast,
a significant fraction of pipelines is “hard” in the sense that nearly
all (but not all) of the progress estimation techniques exhibit large
errors. It is for this subset of pipelines that estimator selection tech-
niques are crucial.

To evaluate the quality of the estimator selection itself (i.e., inde-
pendent of the quality of the underlying estimators), we also com-
puted the errors resulting for a theoretical optimal “oracle” esti-
mator selection module which always picks the progress estimator
with the smallest error. For the scenario where the available esti-
mators are DNE, TGN and LUO, the resulting L1 error was 10.9,
whereas when BATCHDNE, TGNINT and DNESEEK are added,
the L1 error becomes 9.9. This suggests that estimator selection
is already very accurate (close to the lower bound of the “oracle”),
and that the main cause of the remaining error are queries for which
none of the available estimators are accurate to begin with.
Worst-case Optimal Estimators: We also evaluated both the SAFE
and PMAX estimators, but did not plot their errors, as both of them
had more than 2x the error of the worst-performing alternative esti-
mator in practice – here, PMAX performed worse, with an L1 error
of 0.50 (L2 error 0.58), whereas SAFE had an L1 error of 0.40

(L2 error 0.45). These results appear to rule both of them out for
practical applications.

6.3 Error Analysis
In order to understand the nature of the progress estimation er-

rors we observed, we manually analyzed the differences between
the estimated and true progress for a large number of different
pipelines in our experiments; examples can be seen in Figures 6
and 7. We observed that the errors between true and estimated
progress are typically not distributed evenly across a query’s dura-
tion, but that the points of largest absolute deviation typically occur
close to the end of a query (whereas estimation is more accurate
near the beginning). This puts the relative errors seen in Figure 5 in
perspective, as the errors shown there average over all observations
in a query and the differences in the averages are much smaller
than the differences in the largest absolute deviations (for differ-
ent estimators) we saw. Since long-running pipelines often (e.g., in
the two real workloads used in the experiments) execute for hours,
these deviations can correspond to intervals of 30 minutes or more.
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Figure 6: Example of progress estimation errors in a nested loop join
pipeline: here, the partially blocking batch sort operations may result
in significant errors for estimators heavily based on Driver Nodes.

��������������
���������	��
��
����

�� ��� ��� ��� 	�� ����� �� �� ��� ������� � ��� ���� ����
� ��� ���� ����� !�" �" #$%&��

Figure 7: Example of progress estimation errors in a complex hash
join query: selectivity estimation errors may affect the TGN estimator
more, as it doesn’t use interpolation (like LUO or TGNINT) or leverage
Driver Nodes (like DNE or LUO).

Concerning the errors for different types of pipelines, we also ob-
served that the sources of errors in them are fundamentally differ-
ent; in the case of nested iterations such as in Figure 6, the observed
errors often stem from inaccurate cardinality estimates, combined
with the fact that the bounding/interpolation techniques described
in Section 3.3 do not work for these cases, as they offer no mean-
ingful bounds on the number of joining tuples on the inner side of
a join.

Moreover, the introduction of bach sort operations leads to situa-
tions in which all GetNext calls at the driver nodes have completed,
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but the pipeline is still far from finished, leading to a severe over-
estimate of the progress for techniques using driver nodes heavily
(such as DNE, or LUO); issues like this have lead to the formula-
tion of the additional progress estimators described earlier, such as
the BATCHDNE estimator (Section 5.1).

For pipelines without nested iteration, estimators leveraging the
fraction of consumed driver node input can adjust their estimates
later during the query execution (as seen in Figure 7). In contrast,
TGN may provide initially better estimates due to taking into ac-
count work done at intermediate nodes in the query plan, but does
not have a way to recover from cardinality errors. Refining estima-
tor selection based on dynamic features can thus offer performance
superior to any of the individual estimators in this scenario, e.g.,
selecting TGN at the start of the query and LUO near the end.

6.4 Training Times
The key parameters that determine the overhead of training the

regression models are the number of boosting iterations M and
the number of training examples (training times are independent
of data volume or query execution times). Table 7 shows the train-
ing times (in seconds) for various parameters. These times include
the time taken for reading in the training data and writing the out-
put model to disk. As we can see, the training cost is very small,

Training Boosting Iterations (M)
Examples 20 50 100 200 500 1K

100 < 1 < 1 < 1 < 1 < 1 < 1
500 < 1 < 1 < 1 < 1 < 1 < 1
3K < 1 < 1 < 1 < 1 1 2
6K < 1 < 1 1 1 2 4
60K 8 9 11 15 15 41

Table 7: Training Times in seconds.

even for very large training sets. Note here that training data can
be captured at low overhead in a running system – all we need to
do is to compute the overall estimation error for the different es-
timators for each query which we want to add to the training set;
since all estimators are essentially based of the same small set of
counters, the overhead for tracking multiple estimators is nearly
identical to the overhead for computing a single one. We then
write out these errors and all features for a query (corresponding
to about 200 double values); as progress estimation is mainly of
interest for long-running queries consuming significant resources,
this overhead is typically not significant. Combined with the low
overhead for model training, this means that it is possible to fur-
ther adapt the estimator selection component in running system by
capturing estimator behavior and retraining the underlying models
without incurring significant cost.

6.5 Feature Importance
In this section, we study the relative importance of the various

features proposed in Sections 4.3 and 4.4. For this purpose, we
initially ran the following greedy feature selection method: first, we
iterate through all proposed features and select the one that – when
building the regression models described in Section 4.1 using only
this feature as input – results in the smallest overall mean square
error. Once we have identified this feature, we add it to the set of
selected features S. We then repeat the greedy selection process,
with the only difference being that all features in S selected so far
are also used for model construction. This way, we incrementally
select the feature that – given a set of features selected so far – gives
us the largest incremental gain in accuracy.

Here, the first feature selected was SelBelowNL Join, which
quantifies the number tuples in inputs to nested loop operators (rel-
ative to the overall number of tuples in the pipeline) and hence
gives some indication of the potential variance in the “per-tuple
work” for the driver-node input. The next feature selected was
CorDNESEEK,4,20, which quantifies how well the DNESEEK esti-
mator (which performed best overall among all individual progress
estimators) correlates with time. Overall, the fact that these fea-
tures are selected first demonstrates the critical nature of nested
iteration for progress estimation (which has also been discussed in
earlier work). The 3rd feature selected was SelAtDN which quan-
tifies the fraction of all GetNext calls performed at the driver nodes
themselves; a high value of this feature is a good indication of a
query for which DNE is the optimal estimator.

Among the 10 features selected next, seven were dynamic fea-
tures (six of them quantifying the correlation between estimator
output and time); this is not surprising, as these features are the
only way to incorporate the passage of time, when it is not cap-
tured through the total GetNext model.

6.6 How many Estimators do we need?
Given the improvements in accuracy we saw when using the ad-

ditional estimators introduced in Section 5, one interesting question
is to revisit the issue of single-estimator robustness we discussed in
Section 1: if one of the new estimators is (close to) optimal for
a sufficiently large fraction of queries, it may serve as a “default
estimator” for all cases, eliminating the need for estimator selec-
tion. To evaluate this question, we computed – for each estimator
– the fraction of times (over all workloads defined earlier) where
it was “almost optimal”, meaning that it was (a) either the optimal
estimator, (b) the absolute difference between it and the optimal es-
timator was very small (less than 0.01) or (c) the relative difference
between it and the optimal estimator was small (less than 1%).

The results of this experiment are shown in the first column of
Table 8. Note that because for any give pipeline several estimators
can be “almost optimal”, the fractions in the table add up to more
than 100%.

Estimator % (close to) optimal % significantly outperforms
DNE 37.6% 0.2%
TGN 37.7% 17.7%
LUO 30.3% 3.86%
PMAX 0.2% 0.06%
SAFE 4.7% 4.2%
BATCHDNE 39.2% 2.2%
DNESEEK 45.5% 9.4%
TGNINT 31.1% 6.69%

Table 8: Fraction of queries for which (a) estimators were (nearly)
optimal or (b) significantly outperform all others.

As we can see, neither of the new estimators is optimal for a
significantly larger fraction of pipelines than the original ones and
none of them even passes the 50% mark. The two highest-scoring
estimators are BATCHDNE and DNESEEK, which improve upon
DNE for specific sub-cases of nested-loop iterations, but do not
extend beyond them. Thus, it appears we cannot rely on a single
estimator for all queries. This again underscores the importance of
accurate estimator selection techniques.

Using a similar methodology, we might ask how many (and which)
estimators we require in estimator selection? If an estimator does
not noticeably outperform all—/ others on at least part of the space
of SQL queries then we need not consider it in estimator selection.
In the 3rd column of Table 8 we show for each progress estima-
tor the fraction of queries for which it significantly outperforms all
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others (meaning that it (a) has the lowest error, (b) the absolute dif-
ference between it and the next-best estimator is larger than 0.01
and (c) the relative difference between it and the optimal estimator
is larger than 1%).

As we can see, only two of the estimators (DNE and PMAX)
do not significantly outperform the remainder for at least 2% of the
instances. The main reasons for the small percentage for DNE is
that two other estimators – BATCHDNE and DNESEEK – produce
identical estimates to DNE for a significant fraction of instances
(namely those not containing Batch Sort or Seek operators). All
other estimators significantly outperform the alternatives in a suffi-
ciently large fraction of cases to be considered necessary for esti-
mator selection.

6.7 Validating the Total GetNext and Bytes
Processed Models

One implicit assumption in all hardness results of [5] on progress
estimation is that the theoretical GetNext Model of progress is in
fact a good measure of the time taken by a query (which is the
metric users typically care about). As a consequence, we evaluated
the error seen when using this model, which corresponds to the
TGN estimator described in equation (3), but using the true number
of total GetNext calls Ni (which we obtained after query execution)
in place of their estimates Ei.

Similarly, we also evaluated the model proposed in [13] based
on the number of bytes processed at the dominant nodes and the
end of each pipeline, again while substituting the correct number
of total bytes written/output in the estimator.

The main goal for this experiment was to assess if these ide-
alized models do indeed capture the progress of a large body of
queries/pipelines accurately or if these models have themselves need
to be re-thought. For evaluation, we again use the same setup as in
Figure 5; here, the GetNext Model of progress gives an L1 error of
0.062 (L2 error of 0.073). Note that this error is significantly lower
than the one of the other individual estimators or the estimator se-
lection, neither of which does have access to accurate cardinality
information, however. The model of [13] (with accurate cardinal-
ities) performs significantly worse, coming in with a L1 error of
0.12 (L2 error of 0.142), meaning that even with exact cardinali-
ties, the model of [13] performs on-par with estimator selection.

In conclusion, the GetNext Model of progress appears to be a
sound basis for theoretical modeling of progress estimation, given
that it correlates well with execution time in practice. This model
has the “advantage” of 100% accurate knowledge of cardinalities,
which is not attainable in practice; however, the experiments above
indicate that significant improvements for progress estimation may
be possible by improving upon the current techniques used to refine
cardinality estimates during query processing.

7. CONCLUSION AND OUTLOOK
In this paper we studied the problem accurate progress estima-

tion, proposing a statistical model for selecting among a set of
progress estimators for a given query. In particular, we are inter-
ested in the robustness of the proposed techniques, meaning that
they should result in accurate prediction even if the queries/data
used in training are different from the ones the models are deployed
on. We identified a number of features that are weakly predictive
of the different estimator errors and formulated statistical models
based on them, which form the basis of the estimator selection. We

found that these features generalize well across different queries
and databases; thus, the estimator selection performs well even
when faced with novel “ad-hoc” queries.

Given that the main source of errors in the current framework
appears to be the quality of the underlying estimators and not the
selection itself (see Section 6.2) one key to improving progress es-
timation further appears to be the study of additional progress es-
timators; when combining them with an estimator-selection frame-
work, these may be somewhat specialized and address only a sub-
class of queries. Further, given the high accuracy of the theoret-
ical Total GetNext model (see Section 6.7), which assumes accu-
rate knowledge of cardinalities, a further venue towards improved
progress estimation may be the study of better online cardinality
refinement.
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