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ABSTRACT
Knowledge bases of entities and relations (either constructed man-
ually or automatically) are behind many real world search engines,
including those at Yahoo!, Microsoft1, and Google. Those knowl-
edge bases can be viewed as graphs with nodes representing entities
and edges representing (primary) relationships, and various stud-
ies have been conducted on how to leverage them to answer entity
seeking queries. Meanwhile, in a complementary direction, analy-
ses over the query logs have enabled researchers to identify entity
pairs that are statistically correlated. Such entity relationships are
then presented to search users through the “related searches” fea-
ture in modern search engines. However, entity relationships thus
discovered can often be “puzzling” to the users because why the
entities are connected is often indescribable. In this paper, we pro-
pose a novel problem called entity relationship explanation, which
seeks to explain why a pair of entities are connected, and solve this
challenging problem by integrating the above two complementary
approaches, i.e., we leverage the knowledge base to “explain” the
connections discovered between entity pairs.

More specifically, we present REX, a system that takes a pair of
entities in a given knowledge base as input and efficiently identifies
a ranked list of relationship explanations. We formally define re-
lationship explanations and analyze their desirable properties. Fur-
thermore, we design and implement algorithms to efficiently enu-
merate and rank all relationship explanations based on multiple
measures of “interestingness.” We perform extensive experiments
over real web-scale data gathered from DBpedia and a commer-
cial search engine, demonstrating the efficiency and scalability of
REX. We also perform user studies to corroborate the effectiveness
of explanations generated by REX.

1. INTRODUCTION
Search companies have been eager to evolve beyond the “ten

blue links” model and are introducing a suite of features to help on-
line users search and explore information more effectively. Among
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Figure 1: Related entities feature on left panel of Google (left)
and Yahoo! (right).
those features, one of the most intuitive is the so called related en-
tities: when a user searches for an entity, a list of entities that are
in some way related to the given entity are also shown to the user.
This feature can be seen on major search engines like Google and
Yahoo! (screenshots in Figure 1).

However, given an entity, why certain entities are considered re-
lated is often a mystery to the user. For example, it is difficult for
users other than film junkies to understand why ‘Tom Cruise’ and
‘Brad Pitt’ are related, beyond the fact that they are both popular
actors. Informal user studies at Yahoo! indicate that augmenting
related suggestions with concrete explanations would significantly
increase the relevance of the suggestions and increase user engage-
ment. Motivated by these studies, we aim to eliminate the mystery
behind suggestions by providing relationship explanations: Given
a pair of entities, our goal is to effectively and efficiently produce
explanations that describe how the entities are related, based on a
large knowledge base that maintains structured information about
all entities2. We chose knowledge bases as the sources for expla-
nations because of their wide spread availability behind search en-
gines. As a very simple example of such an explanation, when
‘Nicole Kidman’ is shown as related to ‘Tom Cruise’, we would
like to let the users know that they used to be married. A slightly
more sophisticated explanation arises when ‘Brad Pitt’ is shown
as related to ‘Tom Cruise’: we would like to show that they co-
starred in a number of movies, perhaps including example(s) of
such movie(s), say ‘Interview with the Vampires’.

In this study, we choose to separate the explanation generation
mechanism from the related entity selection mechanism, and focus
on generating explanations, given a pair of entities already found
to be related. The main motivation for decoupling explanations
based on a knowledge graph from the reason a pair of entities was
deemed related is that, in most search engines, the related entities

2Note that we are separating the explanation generation mechanism
from the related entity selection mechanism, and focus on gen-
erating explanations given a pair of entities already found to be
related.
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Figure 2: Example explanation for ‘Tom Cruise’ & ‘Brad Pitt’.
The graph pattern is on the left and one of the instances associ-
ated with the pattern is on the right.

generation mechanisms are not semantically meaningful. E.g., two
entities can be considered related simply because search users often
query them together in one session.

Intuitively, we consider a relationship explanation as a constrained
graph pattern and its associated graph instances derivable from the
underlying knowledge base. Specifically, the graph pattern (similar
to a graph query) contains variables as nodes and labeled relation-
ships as edges, and the instances can be considered as the results
of applying the graph pattern on the underlying knowledge base.
One such example is shown in Figure 2 and we shall introduce the
formal definitions in Section 2.

The overall process of relationship explanation consists of two
main steps: (1) Explanation Enumeration: Given two entities, the
starting one (i.e., the one user searched for) and the ending one (i.e.,
the one being suggested by the search engine), identify a list of can-
didate explanations; (2) Explanation Ranking: Rank the candidate
explanations based on a set of measures to identify the most inter-
esting explanations to be returned to the user. Both steps involve
significant semantic and algorithmic challenges. First, since the
knowledge base typically contains several million nodes, efficiently
enumerating candidate explanations is an arduous task. Second,
explanation ranking involves two significant challenges: defining
suitable measures that can effectively capture explanations’ inter-
estingness and computing those measures for a large number of
explanations in almost real time. Finally, we also seek opportuni-
ties to perform aggressive pruning when combining enumeration
and ranking.

It is worth noting that there are quite a few existing works on
mining connecting structures from graphs, such as keyword search
in relational and semi-structured databases [1, 2, 3, 5, 17, 12, 13,
14, 21, 24, 29, 15] and graph mining [8, 10, 18, 22, 25]. The key
differentiating contribution of REX is to consider connection struc-
tures that are more complex than trees and paths for explaining two
entities, and introduce two novel families of pattern level interest-
ingness measures.

To the best of our knowledge, this is the first work addressing
and formalizing the problem of generating relationship explana-
tions for a pair of entities. We make the following main contribu-
tions: First, we formally define the notion of relationship explana-
tion and carefully analyze the properties of desirable explanations
(Section 2). Second, we design and implement efficient algorithms
for enumerating candidate explanations (Section 3). Third, we pro-
pose different interestingness measures for ranking relationship ex-
planations, and design and implement efficient algorithms for rank-
ing explanations efficiently (Section 4). Finally, we perform user
studies and extensive experiments to demonstrate the effectiveness
and efficiency of our algorithms (Section 5).

2. FUNDAMENTALS
In this section, we formally introduce the relationship explana-

tion problem. We start by describing the input knowledge base
(Section 2.1) from which the relationship explanations are gener-
ated. In Section 2.2, we introduce the formal definition for relation-

Figure 3: A subset of the entertainment knowledge base.

ship explanation, which is composed of two essential components:
relationship explanation pattern and relationship explanation in-
stances. In Section 2.3, we describe important properties of rela-
tionship explanations in terms of the graph structure. The subset of
relationship explanations that best satisfy the desired properties are
called minimal explanations and are explored in the remaining of
our study.

2.1 Knowledge Base
As motivated in Section 1, we choose to construct explanations

from an input knowledge base, which is formally represented as a
graph that consists of entities (e.g., persons, movies, etc.) as nodes,
and primary relationships between entities (e.g., starring, spouse,
etc.) as edges3. Entities have unique IDs (e.g., brad pitt)4 and edges
can be either directed (e.g., starring) or undirected (e.g., spouse).
Therefore a knowledge base can be represented as a three-tuple
G = (V,E, λ), where V is the set of nodes, E is the set of edges,
and λ = E → Σ is the edge labeling function.

Figure 3 illustrates a simple running example, which is a sub-
set of the entertainment knowledge base behind the Yahoo! search
engine (the actual knowledge base contains 200K nodes and over
1M edges extracted from DBPedia). The primary relationships are
represented as solid lines with arrows (directed relationships) or
without arrows (undirected relationships).

2.2 Relationship Explanation
Intuitively, a relationship explanation is a constrained graph pat-

tern along with its associated instances that are derivable from the
knowledge base. We use the terms relationship explanation pattern
and relationship explanation instance to describe the two compo-
nents respectively. The existence of a relationship explanation pat-
tern is independent of the knowledge base. However, an explana-
tion pattern is only meaningful if its associated relationship expla-
nation instances can be found in the knowledge base with respect
to the given entity pair. More concretely, the relationship expla-
nation pattern is modeled as a graph structure that connects two
target nodes representing the given entity pair. Edges in the struc-
ture have constant labels and the remaining nodes in the structure
are variables:

DEFINITION 1 (RELATIONSHIP EXPLANATION PATTERN).
A relationship explanation pattern can be represented as a 5-tuple,
p = (V,E, λ, vstart, vend), where V is the set of node variables,
with two special variables vstart and vend, E is a multiset of
edges, and λ = E → Σ is the edge labeling function.

Relationship explanation instances, on the other hand, capture
the actual data instances from the knowledge base and are used to
support an explanation pattern. Intuitively, given the knowledge
base G, a pair of related entities that map to two nodes vstart and
vend in G, and an explanation pattern p, explanation instances for

3We use the term primary relationships to distinguish them from the
derived relationships that REX will infer during the construction
of the explanations.

4In practice, the IDs are system generated, but for the simplicity of
discussion, we adopt readable titles/names as the IDs.
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Figure 4: Example explanation patterns.

p can be defined based on mappings from p to G, identifying the
subgraphs of G that satisfy the explanation pattern.

DEFINITION 2 (RELATIONSHIP EXPLANATION INSTANCE).
Given the knowledge base G = (V,E, λ), an explanation pat-
tern p = (V ′, E′, λ′, v′start, v

′
end), and two target nodes

vstart, vend ∈ V , an explanation instance of p, denoted as
i(p,G, vstart, vend), or ip, is a mapping f : V ′ → V , where
v′start is mapped to vstart, v′end is mapped to vend and nodes in
V ′ − {v′start, v

′
end} are mapped into V − {vstart, vend}. Edge

constraints must be satisfied: ∀e′ = (v′1, v
′
2) ∈ E′ there must be

an edge (f(v′1), f(v′2)) with label λ′(e′) in G. The set of all p’s
instances are denoted as I(p,G, vstart, vend), or Ip.

For a pair of entities vstart and vend, a relationship explanation
is defined as the pair (p, Ip) consisting of the explanation pattern p
and the explanation instances Ip, where |Ip| ≥ 0.

EXAMPLE 1. Figure 4 illustrates some relationship explana-
tion patterns that have at least one instance from our entertainment
knowledge base between ‘Brad Pitt’ and ‘Angelina Jolie’ or ‘Julia
Roberts’. In particular, Figure 4(a) shows a most simple spouse
relationship pattern. Figure 4(b) shows the co-starring relationship
pattern, i.e., both ‘Brad Pitt’ and ‘Angelina Jolie’ starred together
in one or more movies (which are collectively represented as the
variable node v0). Figures 4(c) and 4(d) illustrate more compli-
cated relationship explanation patterns: the former adds the pro-
ducing relationship between ‘Brad Pitt’ and the movie variable v0
to produce an explanation pattern slightly more complicated than
co-starring, while the latter introduces one additional movie vari-
able (v2) and one director variable (v1) to form the “collaborating
with same director” explanation pattern.

2.3 Properties of Explanations
Definitions 1 and 2 allow a very large space of possible expla-

nations, some of which may not be semantically meaningful. This
prompted us to identify desirable structural properties of the expla-
nations, which are described below. We note that since the struc-
tures of the instances are enforced by their corresponding patterns,
we discuss the structural properties in terms of the patterns. Later,
in Section 4, we describe how instances are critical in determining
the interestingness of the explanations.

Essentiality
We want to capture the desideratum that explanation patterns con-
tain only the “essential” nodes or edges, i.e., all nodes and edges

Figure 5: Example non-minimal explanation patterns.
should be integral to the connection between the target nodes. In
the definition below, we give a syntactic characterization based on
the graph structure of the explanation pattern.

DEFINITION 3 (ESSENTIALITY). A node v (or an edge e) in
an explanation pattern p = (V,E, λ, vstart, vend) is essential if
there is a simple path (i.e., without repeating nodes or edges, and
considering edges as undirected) through v (or e) from vstart to
vend. p is said to be essential if all of its nodes and edges are
essential.

EXAMPLE 2. Figure 5(a) shows a structure that is not essen-
tial: the node v1 and the edge (v1, v0) are not essential since they
are not on any simple path from vstart to vend.

Non-essential nodes and edges can be meaningful. For example,
in Figure 5(a), v1 provides information about the director for the
movie node v0, which can be interesting to users. In essence, this
is akin to putting attribute constraints on the essential nodes. How-
ever, the space of non-essential graphs is extremely huge since they
can be arbitrary graphs. As a result, in this paper, we will only con-
sider explanation patterns that are essential. Non-essential nodes
and edges as well as attribute constraints on essential nodes can be
added in a separate stage when a candidate set of most interesting
essential patterns are generated, and the details of this extension are
beyond the scope of the current study.

Non-decomposability
The next desideratum is that we should not be able to “decompose”
an explanation pattern into an equivalent set of smaller explanation
patterns. From an intuitive semantic perspective, given an explana-
tion pattern p = (V,E, λ, vstart, vend), p is decomposable if there
exist two explanation patterns, p1 = (V1, E1, λ1, v1start, v1end)
and p2 = (V2, E2, λ2, v2start, v2end), such that V1, V2 ⊂ V ,
and for all knowledge base instances and entity pairs, we have:
(Ip1 6= ∅ ∧ Ip2 6= ∅) ⇒ Ip 6= ∅. In another word, whenever
the “sub-patterns” have some instances, then the entire pattern also
must have an instance for decomposable patterns. The following is
a formal definition that syntactically characterizes decomposability
using the graph structure of explanation patterns.

DEFINITION 4 (DECOMPOSABILITY). An explanation pat-
tern p = (V,E, λ, vstart, vend) is decomposable if there exists a
partition ofE intoE1, E2 such that 6 ∃v ∈ V −{vstart, vend} such
that v is an endpoint of an edge e1 ∈ E1 as well as an endpoint
of an edge e2 ∈ E2. p is said to be non-decomposable if it is not
decomposable.

EXAMPLE 3. The explanation pattern in Figure 5(b) can
be decomposed into two disjoint explanation patterns 4(a) and
4(b). The edge partitions of {(vstart, spouse, vend)} and
{(vstart, starring, v0) , (vend, starring, v0)} do not share any
nodes (besides the two target nodes).

We combine the properties of essentiality and decomposability to
denote the notion of minimality: An explanation pattern is said to
be minimal if it is essential and non-decomposable. An explanation
is said to be minimal if its explanation pattern is minimal.
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3. EXPLANATION ENUMERATION
In this section, we study how to efficiently enumerate minimal

explanations upto a limited size n (provided as a system parameter)
for a given node pair vstart and vend in the knowledge base G.

One naive approach is to take advantage of existing graph enu-
meration algorithms [26] to generate all graph patterns and filter
out the patterns that are either non-minimal or with no instances.
We call this naive algorithm NaiveEnum, which is illustrated in Al-
gorithm 1, and use it as the baseline in our experiments. During
the enumeration, any pattern that is either duplicated (i.e., isomor-
phism [11] to a pattern discovered earlier) or with no instance will
be pruned immediately. If the pattern is minimal, then we add it
(and its instances) to the result explanation queue Q. However,
minimality is not a pruning condition in NaiveEnum since non-
minimal graph patterns could later be expanded to minimal graph
patterns under the graph expansion rule of [26]. Not surprisingly,
NaiveEnum is inefficient since it generates a lot of non-minimal
explanation patterns and requires explicit minimality check.

Algorithm 1 NaiveEnum(G,vstart,vend,n):Q
1: Q = ∅, Qp = ∅
2: Append a seed pattern (a graph with a single start node) to Qp

3: i = 0
4: while i < length of Qp do
5: Q′p = expand(Qp[i]) (Following the graph expansion rules in the

graph enumeration algorithm gSpan[26], and recording the start and
end node)

6: for p ∈ Q′p do
7: Ip = instances of p in G with respect to vstart and vend (can be

computed efficiently from Qp[i]’s instances and G)
8: if p is not duplicated ∩ |Ip| > 0 ∩ |p.V | ≤ n then
9: Append p to Qp

10: if p is minimal then
11: Append the explanation re = (p, Ip) to Q
12: end if
13: end if
14: end for
15: i = i + 1
16: end while
17: return Q

3.1 Explanation Enumeration Framework
Our goal is to design explanation enumeration algorithms that

directly generate all and only minimal explanations with at least
one instance in the knowledge base. The intuition of our algorithm
comes from the observation that any minimal explanation pattern
is covered by a set of path patterns, which is enforced by the essen-
tiality property in Section 2.3, stating that each node and edge in a
minimal explanation pattern must be on a single path between two
target nodes. We call the set of path patterns that cover a minimal
explanation pattern the covering path pattern set of the explanation
pattern:

DEFINITION 5 (COVERING PATH PATTERN SET). Given a
minimal explanation pattern p0 = (V,E, λ, vstart, vend), we
say that a multiset of path patterns S = {p1, p2, ..., pm} is a
covering path pattern set if the set of path patterns in S cover all
the edges and nodes in p0; i.e., (1) each pi (1 ≤ i ≤ m) maps to a
simple path between vstart and vend through edges in E, and (2)
every node in V and every edge in E appears in at least one pi

(1 ≤ i ≤ m).

THEOREM 1. Each minimal explanation pattern must have at
least one covering path pattern set.

Figure 6: Example Minimal Explanations for Kate Winslet and
Leonardo Dicarprio

Proofs for the theorems are omitted due to space constraints.
Some minimal explanation patterns might have multiple covering
path pattern sets. We also observe that we can compute the in-
stances of a minimal explanation pattern from the instances of the
path patterns in its covering path pattern set, instead of evaluating
against the knowledge from scratch.

EXAMPLE 4. The minimal explanation pattern p0 in Figure 6(a)
has a covering path pattern set containing the path patterns p1 in
Figure 6(b) and p2 in Figure 6(c). Similarly, the instance i1 of p0

can be computed from the instance i2 of p1 and the instance i1 of
p2.

Theorem 1 suggests a general framework for minimal explana-
tion enumeration: (1) Enumerate all path explanation patterns, in-
cluding their associated instances; (2) Generate all the minimal ex-
planation patterns (and their instances) by combining the path ex-
planation patterns (and their instances). We only need to do explicit
instance evaluation for the path explanations since instances of all
other minimal explanations can be computed from them. When a
pattern size limit n (i.e., the number of nodes in the pattern) for
a minimal explanation pattern is specified, we can derive a corre-
sponding path pattern length limit l for the covering path patterns
as l = n− 1.

Algorithm 2 GeneralEnumFramework(G,vstart,vend,n):Q
1: Qpath = PathEnum(G, vstart, vend, n− 1)
2: Q = PathUnion(Qpath, n)
3: return Q

The general enumeration framework is shown in Algorithm 2.
It takes G, vstart, vend and a pattern size limit n as input, and
returns all minimal explanation with size up to n. In particular,
pathEnum enumerates over simple path explanations (including
the patterns and associated instances) for vstart and vend (Sec-
tion 3.2), with path pattern length up to n−1; all path instances are
directly extracted from the knowledge base G. pathUnion com-
bines those simple path explanations into the minimal explanations
(Section 3.3).

3.2 Path Explanation Enumeration
Path explanation enumeration takes vstart and vend as input, a

length limit l and the knowledge base G as parameters, and returns
Qpath—the set of all path patterns for vstart and vend with lengths
up to l (and their instances). Since path explanation enumeration
can be viewed as a special case of keyword search in databases [1,
2, 3, 5, 17, 12, 13, 14, 21, 24, 29, 15] when the queried keywords
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match exactly two tuples, we adapt our algorithms from existing so-
lutions instead of inventing new algorithms. There are two typical
paradigms in performing keyword search in databases: (1) viewing
databases as a tuple graph (tuples and their attribute values are con-
sidered as nodes and key/foreign key relationships are considered
as edges) and directly searching for the instance level connecting
structures[5, 17, 3, 12]; (2) first enumerating the schema level con-
necting structure (usually called candidate networks, akin to our
path pattens here) and then evaluating the candidate networks to
find out all the instances [1, 2, 13, 14, 21, 24, 29, 15]. We describe
our algorithms of path enumeration following the first paradigm,
since the knowledge base is already represented as a graph. Once
all path instances are generated, we group them into path patterns
by simply changing the nodes in the path instances to variables, a
relatively straightforward process. However, algorithms and intu-
itions from both lines of work can be adapted into our framework.

The first path enumeration algorithm PathEnumBasic is adapted
from BANKS [5]. BANKS runs concurrent single source shortest
path algorithms from each source node and finds the root node
connecting a set of source nodes that describe all the keywords.
We apply a similar strategy to generate partial paths from both tar-
get nodes vstart and vend concurrently. We generate all the path
instances limited by length dl/2e starting from vstart and all the
path instances limited by length bl/2c starting from vend, with
shorter paths being generated first. Two path instances i1 and i2
from opposite directions can be connected to generate a full path
instance if they end at a common node. Although this algorithm
is adapted from BANKS, the same intuition also comes from Dis-
cover[14] if we are considering pattern level path enumeration: in
the candidate network evaluation step of Discover, the optimizer
iteratively chooses the most frequent (shared by most other can-
didate networks) “small” (number of instances is restricted by the
input keywords) relations to evaluate. In our setting, this is equiv-
alent to iteratively evaluate the shortest unevaluated path patterns
connecting to any target node.

The second path enumeration algorithm PathEnumPrioritized is
again a direct adaption from BANKS2 [17], an improved version
of BANKS. When generating paths from both target nodes, instead
of always expanding the shortest partial paths, an activation score
is used to prioritize the expanding. The activation score captures
the following intuition: if expansion from one target node reaches
a node with large degree, it might be very expensive to do further
expansion; instead, waiting for the expansion from the other target
node might be less expensive. The activation score is defined as
follows: Initially, the activation score of each target node is set to
1 divided by its degree. Each time the algorithm picks a node with
largest activation score to expand the paths ending at that node.
During the expansion, activation score of the node spread to its
none-target node neighbors (the activation score spread to each new
node is set to the activation score of the original node divided by
the degree of new node) and the activation score of original node
is set to 0. For each none-target node, activation scores provided
by different neighbors are added up. If a node receives activation
scores from both target nodes, it indicates the identification of new
connecting paths. Again, if our algorithm was adapted from can-
didate network generation and enumeration, the intuition for the
same strategies comes from Discover[14] when we assume b > 0
in the cost model (i.e., we take into consideration the estimated size
of join results) for candidate network evaluation.

3.3 Path Explanation Combination
Path explanation combination takes the length-limited path ex-

planations Qpath as input, the pattern size limit n as parameter,

and return Q—the set of all minimal explanations with limited pat-
tern size. Combining path explanations to generate minimal expla-
nations is a non-trivial task. Any set of path explanation patterns
could be a covering path pattern set for some minimal explanation
patterns and there are many ways of combining path patterns in a
covering path pattern set. In order to have a better understanding
of how we can generate all the minimal explanation patterns (and
hence the explanations), we partition the set of all minimal expla-
nation patterns MinP into disjoint sets, depending on the minimal
cardinality (number of path patterns) of any covering path pattern
set of a minimal explanation pattern:

MinP = {MinP (k), k = 1..∞}, (1)

whereMinP (k) represents the set of minimal explanation patterns
with minimal covering path pattern set cardinality of k. In partic-
ular, MinP (1) represents all path patterns. We can extend the
notion of covering path pattern set to include non-path minimal
patterns:

DEFINITION 6 (COVERING PATTERN SET). Given a mini-
mal explanation pattern p0 = (V,E, λ, vstart, vend), we say that
a multiset of patterns S = {p1, p2, ..., pm} is a covering pattern
set if the set of patterns in S cover all the edges and nodes in p0;
i.e., (1) each pi (1 ≤ i ≤ m) maps to a sub-component of p0 con-
necting vstart and vend through edges in E, and (2) every node in
V and every edge in E appears in at least one pi (1 ≤ i ≤ m).

Just like covering path pattern set, given a knowledge base, the
instances of a minimal pattern can be computed from instances
of patterns in its cover pattern set. The following theorem shows
that MinP (k), k > 1 can be derived from minimal patterns with
smaller cardinality:

THEOREM 2. Each explanation pattern in MinP (k) (k >
1) must have a covering pattern set composed of a pattern in
MinP (k − 1) and a pattern in MinP (1).

Theorem 2 suggests that starting from MinP (1), we could it-
eratively enumerate MinP (k), k > 1 from MinP (k − 1) and
MinP (1). Our first path explanation combination algorithm PathU-
nionBasic (Section 3.3.1) directly applies this finding to reduce the
enumeration space. In Section 3.3.2 we discuss additional pruning
opportunities for PathUnionBasic and propose an even more effi-
cient combination algorithm PathUnionPrune.

3.3.1 PathUnionBasic
Algorithm 3 illustrates the pseudocode for PathUnionBasic, and

we explain its critical components as follows:
Enumeration (Line 1 - Line 15): Path explanations in Qpath

are used as the seed explanations and put in an explanation queue
Q. For each explanation re in Q, the algorithm combines re with
each path explanation in Qpath to generate new minimal explana-
tions. The Explanation Merging component ensures that the gener-
ated explanation patterns are minimal and each is associated with
at least 1 instance. The Duplication Checking component ensures
that only unique explanations are appended to Q (i.e., duplicates
are pruned). The process stops when all explanations in Q have
been expanded and no more explanations can be generated. All
the minimal explanations with limited pattern size are guaranteed
to be in Q at the end of the process. (Proof omitted due to space
constraints.)

Explanation Merging (Line 24 - Line 41): To define the merge
of two explanations, we consider a partial one-to-one mapping be-
tween the patterns of two explanations, say p1 = (V1, E1, λ1,
v1start, v1end) and p2 = (V2, E2, λ2, v2start, v2end):
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Algorithm 3 PathUnionBasic(Qpath,n):Q
1: Q = Qpath; Qexpand = Qpath

2: while Qexpand 6= ∅ do
3: Qnew = ∅
4: for all (re1, re2) pair in Qexpand ×Qpath do
5: Qtemp = merge(re1, re2, n)
6: for re ∈ Qtemp do
7: if duplicated(re, Q ∪Qnew) = False then
8: Append re to Qnew

9: end if
10: end for
11: end for
12: Append Qnew to Q
13: Qexpand = Qnew

14: end while
15: return Q

16: function duplicated(re,Q):duplicated
17: for re1 ∈ Q do
18: if exist an ismorphism between re’s pattern and re1’s pattenrn then
19: return True
20: end if
21: end for
22: return False
23: end function

24: function merge(re1,re2,n):Qnew

25: (p1, Ip1 ) = re1’s pattern and instances
26: (p2, Ip2 ) = re2’s pattern and instances
27: Qnew = ∅
28: for all partial one-to-one mapping f from p1.V to p2.V do
29: pnew = p1 ∪f p2

30: Ipnew = ∅
31: for all (i1, i2) pair in Ip1 × Ip2 do
32: if i1, i2 is the same on every pair of matched nodes then
33: Append inew = i1 ∪f i2 to Ipnew

34: end if
35: end for
36: if |pnew.V | ≤ n and |Ipnew | > 0 then
37: Append renew = (pnew, Ipnew ) to Qnew

38: end if
39: end for
40: return Qnew

41: end function

(1) v1start and v1end should be mapped to v2start and v2end

respectively.
(2) A non-target node v1 ∈ V1− {v1start, v1end} of p1 could

be mapped to a non-target node v2 ∈ V2− {v2start, v2end} of p2

or does not map to any node. (Same restriction for v2)
(3) One-to-one mapping is enforced (when there is a mapping).
(4) At least one non-target node of p1 should be mapped to a

non-target node of p2.
Given this partial one-to-one mapping function f , a new expla-

nation pattern can be merged from p1 and p2 following the map-
ping function f . We use an operator ∪f to represent this merg-
ing: nodes and edges in both patterns should be put into the new
pattern, with each pair of matched nodes merged as one node. If
there are multiple edges with same label between a pair of nodes
in the new pattern, they are merged as well. Since each node and
edge of the new pattern are coming from two minimal explana-
tion patterns, it is guaranteed to be on a single path between target
nodes. Therefore the new pattern is essential. On the other hand,
requirement (4) of the mapping guarantees that the new pattern is
also non-decomposable. Therefore the new explanation pattern is
minimal. The instances of the new explanation can be generated by
enforcing the same mapping on each pair of instances from re1 and
re2, with the requirement that two instances agree on every pair of

matched nodes. The new explanation is kept only if it has at least
one instance.

EXAMPLE 5. Consider the two patterns p1 in Figure 6(b) and
p2 in Figure 6(c). A valid partial one-to-one mapping between the
two patterns is p1.v(start)—p2.v(start), p1.v(end)—p2.v(end),
nothing—p2.v1, p1.v2—p2.v2. Combining p1 and p2 following
the mapping yields the pattern p0. p0’s instance i1 can be com-
puted from i2 of p1 and i1 of p2 following the mapping.

Duplication Checking (Line 16 - 23): An explanation could be
generated multiple times during the enumeration (e.g., combina-
tion of different pairs of minimal explanations could yield the same
minimal explanation). We perform duplication check for a new ex-
planation by checking graph isomorphism [11] of its explanation
pattern against patterns of any existing explanations. If a graph iso-
morphism is detected, then the new explanation is duplicated and
therefore ignored.

3.3.2 PathUnion with Pruning
PathUnionBasic generates all but only the minimal explanations

with at least 1 instance. Therefore it is much more efficient than the
baseline algorithm. However, since a minimal explanation might be
generated multiple times during the enumeration (indicating some
of the combinations might be unnecessary), the efficiency of the al-
gorithm is still restricted by the number of times we need to merge
the minimal explanations. The following theorem allows us to de-
crease the number of merges required:

THEOREM 3. Each explanation pattern in MinP (k), (k > 2)
must have a covering pattern set {p1, p0} of size 2, such that p0, p1

∈ MinP (k − 1), and p0 and p1 share a MinP (k − 2) subcom-
ponent p2. i.e., the pattern graph of p2 is a subgraph of patterns of
p0 and p1, and start and end node of p2 map to start and end node
of p0 and p1.

Another way to interpret this theorem is that: Let p1 ∈ MinP (k)
(k > 2), p2 ∈ MinP (k − 1) and p5 ∈ MinP (1). In order to
generate p1 from p2 and p5, there must be p3 and p4 that satisfy
following conditions: p3 ∈ MinP (k − 1); p4 ∈ MinP (k − 2)
and is a subcomponent of p2; p3 can be merged from p4 and p5.
Based on this interpretation, we can reduce the number of times we
need to combine a minimal explanation with a path explanation.
Specifically, during the enumeration, for each explanation inQ that
has its pattern p2 in in MinP (k − 1), we record the pairs of p4 ∈
MinP (k − 2) and p5 ∈ MinP (1) (and hence the corresponding
explanations) it was generated from. For an explanation with its
pattern p2 ∈MinP (k−1), by comparing the composition history
with other explanations that have patterns in MinP (k − 1) and
enforcing the requirement from Theorem 3, we can decide whether
the subset of paths should be merged with p2. The pseudocode
of the enumeration algorithm with pruning is in Algorithm 4 and
we call this algorithm PathUnionPrune. We use queues Hexpand

and Hnew to store the composition history for MinP (k − 1) and
MinP (k)’s corresponding explanations respectively.

4. INTERESTINGNESS MEASURES
AND EXPLANATION RANKING

When the number of minimal explanations is larger than what we
can expect users to consume, it is important to rank them in order of
their “interestingness.” This interestingness measure can be defined
in a variety of different ways and is often subjective. In this paper,
we aim to present a comprehensive set of such measures and design
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Algorithm 4 PathUnionPrune(Qpath,n):Q
1: Q = Qpath; Qexpand = Qpath

2: while Qexpand 6= ∅ do
3: Qnew = ∅; Hnew = ∅
4: for all i1 in [0 .. length(Qexpand) - 1] do
5: Spath = ∅
6: if Qexpand = Qpath then
7: Spath = [0 .. length(Qpath) - 1]
8: else
9: for all i2 in [0 .. length(Qexpand) - 1] do

10: for all ((x, j1),(x, j2)) pair in Hexpand[i1] ×
Hexpand[i2] do

11: Add j2 to Spath

12: end for
13: end for
14: end if
15: for all i2 in Spath do
16: Qtemp = merge(Qexpand[i1], Qpath[i2], n)
17: for re ∈ Qtemp do
18: if duplicated(re, Q) = False then
19: if duplicated(re, Qnew) = False then
20: Append re to Qnew

21: Append ∅ to Hnew

22: end if
23: ire = re’s index in Qnew

24: Append (i1, i2) to Hnew[ire]
25: end if
26: end for
27: end for
28: end for
29: Append Qnew to Q
30: Qexpand = Qnew; Hexpand = Hnew

31: end while
32: return Q

efficient algorithms for computing them. In Section 5, we conduct
user studies to analyze the effectiveness of our proposed measures.

We start by formally defining a generic interestingness measure.
We pay particular attention to one of the key properties of a mea-
sure, namely monotonicity. We shall see that anti-monotonicity,
which holds for some of our measures, can be used for pruning in
enumeration and ranking of explanations.

DEFINITION 7 (MEASURE AND MONOTONICITY).
An interestingness measure M is a function that takes
as input the knowledge base G = (V,E, λ), an expla-
nation pattern p = (V ′, E′, λ′, v′start, v

′
end), and tar-

get nodes vstart, vend ∈ G.V and returns a number
M(G, p, vstart, vend) ∈ R.

We say that a measureM is monotonic (anti-monotonic, resp.)
if and only ifM(G, p1 = (V ′1 , E

′
1, λ
′
1, v
′
start, v

′
end), vstart, vend)

≥ (≤, resp.)M(G, p2 = (V ′2 , E
′
2, λ
′
2, v
′
start, v

′
end), vstart, vend)

whenever the graph G2 induced by V ′2 , E
′
2, λ
′
2 is a subgraph of G1

induced by V ′1 , E
′
1, λ
′
1.

Note that although an interestingness measure is defined in terms
of an explanation pattern, by including the knowledge base as one
of the inputs to the measure function, the corresponding instances
can also be derived. Therefore, an interestingness measure actually
measures the interestingness of explanations.

Most existing measures for connecting structures is derived from
their topological structures; examples of them include the size mea-
sure and random walk measure, which we will discuss in Sec-
tion 4.1. However, these measures do not capture the aggregated
information of the instances, e.g., co-starred in 10 movies. There-
fore, we propose two novel families of interestingness measures:
aggregate measures and distributional measures. Aggregate mea-

sures are obtained by aggregating over individual instances. One
intuitive aggregate measure is the count measure, where the inter-
estingness of an explanation is proportional to the number of ex-
planation instances obtained by applying the explanation pattern to
the knowledge base. We can compare simple aggregate measures
against those of other pairs of entities to produce distributional
measures. We describe aggregate and distributional measures in
Sections 4.2 and 4.3 respectively.

4.1 Structure-based measures
The structure of an explanation pattern can affect the interest-

ingness of an explanation. These kinds of interestingness measures
are frequently used in existing works [1, 2, 3, 5, 17, 12, 13, 14,
21, 15, 8, 10, 18, 22, 25]. We describe two representatives in this
section: the size measure and the random walk measure. Size of
pattern is a simple but useful summarization of the structural in-
terestingness, and it can be easily used together with any other in-
terestingness measure. Another structural interestingness measure
we consider is based on an extension of the random walk process
described in [10]: each connecting instance graph is regarded as
an electrical network (e.g. each edge represents a resistor) and the
amount of current delivered from the start entity to the end entity
is used as the interestingness of the connecting graph. In our case,
we apply the random walk on the pattern and use the result as the
interestingness measure for the explanation.

4.2 Aggregate Measures
Aggregate measures follow the intuition that the more instances

an explanation has, the more interesting it is. For example, con-
sider the explanation in Figure 4(b) (co-starring): the more movie
instances v0 can map to, the higher the aggregate measure is, and
the more interesting the explanation is. We distinguish two ways of
aggregating the number of instances: count and monocount.

Count
The count measure simply gives the total number of distinct in-
stances an explanation has. Formally, we have:

Mcount(G, p, vstart, vend) = |{f |f satisfies Definition 2}|

While intuitive to define, Mcount is neither monotonic nor anti-
monotonic[4], which makes it difficult to compute due to the lack
of pruning possibilities.

Monocount
To address the shortcoming ofMcount, we propose an alternative
count measure that has the anti-monotonicity property. Given G,
p = (V ′, E′, λ, v′start, v

′
end) and the target nodes, let uniq(v),

v ∈ V ′ denote the number of distinct assignments that can be made
to any variable over all instances:

uniq(v) = |{f(v)|f satisfies Definition 2}|

The monocount of p gives the fewest number of assignments over
all variables (except the two target nodes):

Mmonocount(G, p, vstart, vend) = min
v∈p.V ′−{v′

start,v′
end
}
uniq(v)

We override the above formula and define monocount to be 1 in the
special case that there is a direct edge between the target entities.

EXAMPLE 6. Let us assume that in Figure 6(a), there is an-
other instance with v1 mapping to “sam mendes” and v2 mapping
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to “revolutionary road II”. Then in this case |uniq(v1)| = 1 and
|uniq(v2)| = 2, therefore minvi(|uniq(vi)|) = 1 and the mono-
count is 1. In comparison, the count would be 2 in this case.

Note that when there is a single non-target variable,Mmonocount

=Mcount. Our measure is an extension of the anti-monotonic sup-
port of sub-graphs within a single graph that was introduced in [6].

4.3 Distribution-Based Measures
Aggregate measures are suitable for comparing explanations for

a given pair of target entities. However, they do not capture the “rar-
ity” of an explanation across different pairs of target entities. For
example, a spousal relationship always has a count of 1, but it is ar-
guably more interesting than a co-starring relationship with a count
of 1. This is because co-starring relationships are much more com-
mon than the spousal relationships. To capture such rarity informa-
tion, we propose two distributional measures—local and global—
that compare the aggregate measure of an explanation against the
aggregate measures of a set of explanations obtained by varying the
target nodes. 5

Let Magg be the specific aggregate measures we adopt, and
{a1, a2, . . . , an} be the sequence of Magg values in increasing
order, local and global distributions Dl = {(al

i, c
l
i)} and Dg =

{(ag
i , c

g
i )} can be defined below, where the former is obtained by

varying only the end target node and the latter is obtained by vary-
ing both target nodes:

cli = |y ∈ G.V | Magg(G, p, vstart, y) = al
i|

cgi = |(x, y) ∈ (G.V ×G.V ) | Magg(G, p, x, y) = ag
i |

Intuitively, cl and cg give the number of entity pairs whose expla-
nations produce the aggregate values of al and ag respectively. The
entire distribution of these count values is then used to compute the
rarity of the given explanation and entity pair using standard statis-
tical techniques. In particular, we compute the position of the given
explanation with respect to the distribution: Let A be the value of
Magg for the given explanation and D = {(a1, c1), . . . , (an, cn)}
be the distribution to be compared against, we have:

Mposition =
X

i|ai>A

ci

Another alternative is to count how many standard deviations A is
away from the mean of D, which turns out to be similarly effective
asMposition. We ignore the details here due to space constraints.

EXAMPLE 7. Consider the co-starring explanation (Figure 4(b))
for Brad Pitt and Angelina Jolie. The corresponding count is 1
since they co-starred in only 1 movie. The local distribution of
counts for Brad Pitt and any other actor/actress is shown as fol-
lows:

Dl = {(1, 130), (2, 8), (3, 10), (4, 2)}

Therefore the corresponding position in the local distribution is 8+
10 + 2 = 20. In contrast, their spousal explanation (Figure 4(a))
also has a count of 1. However, its position in the local distribution
is 0 since no other person with Brad Pitt has a larger count for a
spousal relationship. Therefore by comparing the positions in the
local distribution we can infer that the spousal explanation is more
interesting than the co-starring explanation.

5Although used in a completely different domain, aggregated mea-
sures and distribution-based measures are analogous to the TF-
IDF measure in IR.

4.4 Explanation Ranking
In this section we discuss how to efficiently rank the explanations

given a pair of target entities. Specifically, given an interestingness
measure and a parameter k, the explanation ranking algorithm re-
turns a ranked list of top-k most interesting explanations based on
the interestingness measure.

Algorithm 5 GeneralRankFramework(G, vstart, vend,n,M,k):Q
1: Q = GeneralEnumFramework(G, vstart, vend, n)
2: Qint = ∅
3: for re ∈ Q do
4: AppendM(G, re.pattern, vstart, vend) to Qint

5: end for
6: Sort Q based on Qint

7: Q = first k entries in Q
8: return Q

Algorithm 5 illustrates the general ranking framework, which in-
volves three steps: explanation enumeration (based on Section 3),
interestingness computation, and explanation ranking. This general
ranking algorithm can be applied to all interestingness measures
discussed in the previous subsections.

For certain interestingness measures, however, we can design
more efficient ranking algorithms: increased efficiency can be ob-
tained by aggressively pruning explanations while interleaving the
enumeration, interestingness computation, and ranking steps. The
pruning for distribution based measures is described in Section 5.3.2.
Here, we briefly describe the case of ranking based on anti-
monotonic interestingness measures.

Recall the anti-monotonicity property from Section 4 (which
monocount measure satisfies); the following theorem allows us to
prune enumerations when considering anti-monotonic measures.

THEOREM 4. Given the knowledge base G = (V,E, λ) and
target nodes vstart, vend, and anti-monotonic interestingness mea-
sureM, suppose a relationship explanation re′ = (p′, I ′) is de-
rived from relationship explanation re = (p, I) using PathUnion-
Basic (Algorithm 3) or PathUnionPrune (Algorithm 4). We then
have thatM(G, p, vstart, vend) ≥M(G, p′, vstart, vend). (There-
forem if re is not among the top-k most interesting explanations, no
re′ derived from it is.)
Intuitively, any expansion of an explanation can only reduce the
value of an anti-monotonic measure. Using the theorem, we can
integrate the three steps of the general ranking algorithm by main-
taining a current top-k list of most interesting explanations during
enumeration. Upon generation of each explanation, we perform the
following steps:

Step 1: Calculating the interestingness of the explanation.
Step 2: Updating the top-k list of explanations; explanations not

in the top-k list are pruned out.
Step 3: Continue expansion only from the current set of top-k

explanations.
Finally, the top-k most interesting explanations are returned. In-
tuitively, this algorithm is more efficient than the general ranking
algorithm since fewer explanations are enumerated, and this intu-
ition is supported by our experimental evaluation (Section 5).

5. EXPERIMENTS
We implemented the REX system in Python and performed ex-

tensive experiments using a real world knowledge base to evaluate
its efficiency and effectiveness. Specifically, we analyze the perfor-
mances of explanation enumeration algorithms and ranking algo-
rithms in Sections 5.2 and Section 5.3, respectively. We also per-
form extensive quality assessments based on detailed user studies
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Figure 7: Compare explanation enumeration algorithms.

(Section 5.4) to verify the necessity of our explanation definition
(e.g., including non-path explanations) and the effectiveness of ex-
planations generated by REX. All experiments are performed on a
MacBook Pro with 2.53 GHz Dual Core CPU and 4GB RAM.

5.1 Experimental Settings
Knowledge Base: We extracted from DBpedia (http://dbpedia.org/)

all entertainment related entities and relationships to form our ex-
periment knowledge base. There are a total of 20 entity types and
2, 795 primary relationship types. Overall, the knowledge base
contains 200K entities and over 1.3M primary relationships.

Target Entity Pairs: We generate related entities for evaluation
as follows: we randomly select an entity as the start entity from
the knowledge base and then randomly select one of its related en-
tities as suggested by the search engine6. We categorize the pairs
based on their “connectedness”, which is computed by the number
of simple paths that connect the two entities within a given length
limit7: low (connectedness: 0 - 30), medium (connectedness: 30
- 100), and high (connectedness > 100). From each of the three
groups, we randomly pick 10 related pairs; these 30 related entity
pairs are used for performance evaluation.

5.2 Performance of Enumeration Algorithms

Figure 8: Explanation enumeration time vs. number of expla-
nation instances.

In this section, we compare the performance of our minimal ex-
planation enumeration algorithms. As discussed in Section 3, there
are 3 types of optimizations we consider: (a) using path enumera-
tion and union framework instead of graph enumeration, (b) pick-
ing the best path enumeration algorithm from existing solutions, (c)
optimizing the path union algorithm. To illustrate the usefulness of

6http://search.yahoo.com/
7We set the length limit to 4 to match the pattern size limit of 5 in
our experiments.

each optimization decision, we consider the following combina-
tions: 1. NaiveEnum (using graph enumeration, note that graph
enumeration cannot be used in combination with the other two
types of optimizations), 2. PathEnumNaive8 + PathUnionBasic
3. PathEnumBasic + PathUnionBasic (using path enumeration and
union framework with baseline algorithms for both components),
4. PathEnumPrioritized + PathUnionBasic (using prioritized path
enumeration algorithm with basic path union algorithm), 5. Pa-
thEnumPrioritized + PathUnionPrune (using improved path enu-
meration and union algorithms). We set the pattern size limit to 5
in the experiments.

Figure 7 shows the efficiencies of different explanation enumer-
ation algorithms. Any combination of the path enumeration and
union algorithm, including the most naive version PathEnumNaive
+ PathUnionBasic, shows orders of magnitude improvement over
NaiveEnum, for all three entity pair groups (low, medium and high).
This demonstrates the efficiency of our framework, which does not
generate any non-minimal structure during the enumeration. The
comparison of PathEnumBasic + PathUnionBasic and PathEnumPri-
oritized + PathUnionBasic indicates PathEnumPrioritized is slightly
more efficient than PathEnumBasic. (And both of them are bet-
ter than PathEnumNaive as expected.) Although this improvement
is not our contribution, the result tells us which is the best path
enumeration algorithm to choose. Finally, the comparison of Pa-
thEnumPrioritized + PathUnionBasic and PathEnumPrioritized +
PathUnionPrune shows that PathUnionPrune is more efficient than
PathUnionBasic due to the additional shared-component pruning
performed during the enumeration process: on average, by using
PathUnionPrune, it takes only one third of the time of when using
PathUnionBasic.

Figure 8 shows the enumeration time (using algorithm
PathEnumPrioritized + PathUnionPrune) for all 30 entity pairs,
where x-axis is the number of explanation instances for the pair and
y-axis is the enumeration time. The enumeration time increases lin-
early with the number of explanation instances between the pairs,
which reaches as high as 5000, demonstrating the scalability of the
REX system9.

5.3 Performance of Ranking Algorithms
In this section we evaluate the performance of ranking algo-

rithms. The running time with ranking is affected by two com-
ponents: the time for enumeration and the time for computing the
measure. For simple aggregate measures such as count and mono-
count, the enumeration time dominates. However, for distributional
measures, measure computation takes longer (because the same
measure needs to be computed for additional sample entity pairs).
We show that our pruning algorithms successfully improve the per-
formances for all measures, either through reducing enumeration
time or measure computation time.

5.3.1 Top-k Pruning for Anti-monotonic Measures
Figure 9 shows the effects of top-k (k = 10) pruning for the

measure Mmonocount, following the top-k pruning algorithm for

8PathEnumNaive is a most naive path enumeration algorithm: it
enumerates all length-limited paths from start entity and checks if
each path ends at the end entity. It is worse than any existing so-
lution therefore we do not include it in Section 3.2 as the baseline.
However, because it uses the most naive design without any opti-
mization, its improvement over NaiveEnum shows the benefits of
adopting our framework.

9It is worth noting that density rather than the total size of the
knowledge base affects the performance of enumeration. There-
fore the performance would not be affected much even if we adopt
the full DBPedia knowledge base in our experiments.
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Figure 9: Effect of top-k (k = 10) pruning on monocount com-
puting

Figure 10: Average compute time for different k in top-k prun-
ing
anti-monotonic measures discussed in Section 4.4. In all cases, top-
k pruning reduces the running time to under 0.5 seconds, and it is
sometimes several hundred times more efficient than full enumera-
tion. In Figure 10, we examine how different values of k affect the
running time. As expected, when k is very small, using top-k prun-
ing significantly improves efficiency. As k becomes larger, the im-
provement diminishes. When k is very large, the pruning algorithm
is close to (and in the medium group slower than) the non-pruning
algorithm, since very few results are pruned and maintaining the
top-k list adds overhead.

5.3.2 Computing and Pruning for Distribution-Based
Measures

Figure 11: Average time for computing top-10 explanation us-
ing distribution-based measureMposition.

Despite the fact that distribution-based measures as described in
Section 4.3 are not anti-monotonic and therefore not subject to the
aggressive pruning introduced in Section 4.4, we can potentially

optimize their computation by integrating the measure computation
with explanation ranking. Here, we use the local distribution-based
position measure to illustrate how the pruning can be done.

Specifically, given a pair of target nodes vstart and vend, the
knowledge base G with all the primary relationships stored in a
relational table R(eid1, eid2, rel)10 , an explanation pattern re,
and itsMcount c, the local distributional position of re based on
Mcount can be computed via evaluating a SQL query describing
re’s pattern. Assuming re is the co-starring relationship, the cor-
responding SQL statement is as follows:

SELECT v_start, R2.eid1, count(*) as count
FROM R as R1, R as R2
WHERE v_start = R1.eid1 AND R1.eid2 = R2.eid2

AND R1.rel = ‘starring’
AND R2.rel = ‘starring’

GROUP BY v_start, R2.eid1
HAVING count > c

The structure of the explanation pattern is encoded in the “FROM”
and “WHERE” clauses (e.g., each edge would be mapped to a table
in the “FROM” clause). Each returned record represents a pair of
entities (within the local distribution) that have count greater than
the target entity pair. Therefore, the number of records in the SQL
statement gives the desired position of the explanation.

To improve upon the general brute force Algorithm 5, we main-
tain a top-k list of explanations when computing the interestingness
of the explanations and modify the SQL query above for optimiza-
tion. For example, if we know the current kth most interesting
explanation has a position of p, then we needn’t compute the po-
sition for target entities whose position is guaranteed to be above
p. This optimization can be reflected by simply adding a LIMIT p
clause in the SQL query above.

We implemented this pruning strategy and evaluated its effec-
tiveness for top-k (k = 10) explanation ranking using distribution-
based measureMposition. There are four different scenarios: lo-
cal distribution, local distribution with pruning, global distribution,
and global distribution with pruning. Since the true global distri-
bution would be prohibitively time-consuming to compute, we use
100 local distributions to estimate the global distribution, with each
local distribution associated with randomly chosen start entities.
The computation time in all four scenarios are shown in Figure 11.
First, we note that pruning is beneficial regardless whether the mea-
sure is local or global distribution based. In particular, pruning can
speed up the computation by 2 times for local distributional mea-
sures. However, ranking using global distributional measure is still
quite costly even with pruning. We note that the cost of comput-
ing distributional measures can be further decreased by amortizing
the computation over different pairs by sharing the computation in-
volved. Also, distributional measures can be computed in parallel
as count for different node pairs can be computed separately. Fi-
nally, combination of distributional measures with other measures
could decrease the computation time. For example, we can use
some other measure (e.g., size) as the primary comparison index
and use distributional measures only to tie-break the less expensive
primary index comparison. Our experiments show that in average
computation time based on such combinational measures are sev-
eral times faster than using distributional measures alone.

5.4 Measure Effectiveness
In this section, we analyze the effectiveness of explanations gen-

erated by REX. In Section 5.4.1, we compare the relative effec-
tiveness of different interesting measures and their combinations.
10The knowledge base can be stored using other data models (e.g,
RDF ), and the same computing strategy can still be applied.
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Measure P1 P2 P3 P4 P5 Avg
size 50 51 33 51 52 47

random-walk 55 45 41 45 47 47
count 53 39 38 53 45 46

monocount 54 40 40 52 41 45
local-dist 62 47 53 58 59 55

global-dist 61 37 58 61 58 55
size + monocount 67 60 50 61 59 59
size + local-dist 67 60 50 62 60 60

Table 1: Comparing different interestingness measures.

In Section 5.4.2 we show why only using path is not sufficient to
model all possible interesting explanations.

5.4.1 Effectiveness of Interestingness Measures
We compare the 6 measures discussed in Section 4: size (Msize),

random walk (Mwalk), count (Mcount), monocount (Mmono−

count), position in local and global distributions (Mlocal
position,

Mglobal
position). We also expect that combinations of different mea-

sures, especially combinations of structure based measures (e.g.,
Msize) with aggregated and distributional measures (e.g.,Mcount,
Mmonocount,Mlocal

position,Mglobal
position), could be very helpful since

they try to capture the interestingness of explanations from differ-
ent while complementary directions. Therefore, we also include
some combinational measures in the result to verify the idea.

We randomly selected 5 entity pairs for this study 11: P1: (brad
pitt, angelina jolie), P2: (kate winslet, leonardo dicaprio), P3:
(tom cruise, will smith), P4: (james cameron, kate winslet), P5:
(mel gibson, helen hunt). For each pair, each measure is used to
rank the top-10 most interesting explanations. The resulting expla-
nations are randomized and mixed together so the user can’t tell
how an explanation is measured by each measure. The user is then
asked to label each explanation as very relevant (score 2), some-
what relevant (1), or not relevant (0). For each ranking methodol-
ogy, a DCG-style score 12 is computed as follows:

score(M) = mΣi(wi × si), i ∈ [1, 10]

where m is a normalization factor to ensure the scores fall within
[0, 100], wi are the weights given for each rank position (in our
case, wi = 1/ log2(i+ 1))13, and si are the individual explanation
scores at position i as ranked by the corresponding measure.

A total of 10 users responded to our user study. The average
scores of different measures for each entity pair are shown in first
6 lines in Table 1. The effectiveness ofMsize, Mwalk, Mcount

and Mmonocount are very similar. (The most simple size mea-
sure is even slightly better.) As we expected, the two distribution-
based measures are statistically better than the simple aggregate
measures and structure based measures. It is interesting to see
that, despite its much more limited sampling scope,Mlocal

position per-
forms as well as Mglobal

position in terms of ranking quality. Given
that Mlocal

position is much cheaper to compute (Figure 11), we rec-
ommend thatMlocal

position be always used in place ofMglobal
position if

distribution-based measures are desired.
We also consider two very simple combinations of the measures:
Msize&monocount (using Msize as the primary comparison in-
11During the selection, we removed any pairs with at least one node

not recognized by the authors to ensure respondents can easily
judge the correctness and interestingness of the explanations.

12Discounted cumulative gain is a frequently used ranking measure
in web search [16].

13The effects of the exact weight values do not change our results
much as long as the relative orders are maintained.

dex and use Mmonocount as the secondary comparison index),
Msize&local−dist (usingMsize as the primary comparison index
and use Mlocal−dist as the secondary comparison index). Intu-
itively, we expect these two measures are much better than size
measure alone since size measure is too coarse-grained to distin-
guish all interesting explanations. The results of the combinations
are show in line 7 - 8 of Table 1. It turns out that their combina-
tions are better than any individual interesting measures. It is worth
pointing out that these are two very preliminary combinations, and
we can definitely further improve the combinations using machine
learning techniques. While we believe the current results are suf-
ficient to demonstrate the idea and we leave the detailed study as
future work.

Summary: When restricted to individual measures, distribu-
tional measures achieves the best effectiveness. The combination of
structure based measures (e.g., size) with aggregated and distribution-
based measures provide better ranking results than any individual
measures. To achieve best effectiveness, machine learning algo-
rithms can be used to train best combination of all measures; when
efficiency is also a concern, we can restrict the combination on anti-
monotonic measures (e.g.,Msize,Mmonocount), which will still
achieve reasonable effectiveness while can be computed efficiently.

5.4.2 Comparing Path and Non-Path Explanations
Based on the user study of previous section, for each target en-

tities pairs, we can pick up to 10 most interesting explanations14

based on user judgment. Among all top-5 explanations, only 36%
of them are paths (64% are non-paths); among all top-10 explana-
tions, 38% of them are paths. The results demonstrate of necessity
of including non-paths in the explanation definition.

6. RELATED WORK
There are a few recent studies on discovering relationships be-

tween various web artifacts. E.g., [20] connects two search terms
by extracting pairs of pages based on their common search results;
[23] extracts a chain of news articles that connect two news articles
based on shared words. Our work is complementary to these as
we study entities specifically and leverage a rich knowledge base
and a comprehensive set of interestingness measures based on both
aggregates and distributions.

Our work is related to the vast literature on keyword search in
relational and semi-structured databases [1, 2, 3, 5, 17, 12, 13, 14,
21, 24, 29, 15]. The two major distinctions between REX and these
works are: (1) We consider connection structures that are more
complex than trees and paths for explaining two entities; (2) We
introduce two novel families of pattern level interestingness mea-
sures.

Our path (instance and pattern) enumeration component can be
viewed as a special case of keyword search in databases, where in-
put keywords match exactly two entities. Therefore we can directly
adapt algorithms from these works. The first algorithm PathEnum-
Basic is adapted from BANKS [5], which does concurrent shortest
path run from each target node. The same intuition also comes
from Discover [14] if we are considering pattern level search. The
restriction of “small” relation and the evaluation ordering based on
candidate network sharing “frequency” leads us to a very similar
solution in our problem settings. The second path enumeration al-
gorithm PathEnumPrioritized with node activation score is adapted
from BANKS2 [17]. If we consider pattern level enumeration, the
same intuition can also come from Discover [14] when we assume

14We also require the average score of an explanation to be at least
1 to avoid include uninteresting explanations
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b > 0 in the cost model (i.e., considering the estimated size of join
results) when prioritizing the candidate network evaluation.

We emphasize that path enumeration algorithms are not our pri-
mary contribution and our framework is flexible enough to take ad-
vantage any state-of-art keyword search or path enumeration algo-
rithms. Other related work directly dealing with path enumeration
can be found in [28, 19, 7], although they either work in slightly
different problem settings or provide similar intuitions as discussed
above.

A lot of keyword search papers also discuss ranking based on
various interestingness measures. Most of the papers focus on the
interestingness at the instance level. Usually, size of the connecting
structure is used as the basic metrics. Other enhancements include
taking into consideration edge weights [5, 17], node weights [3]
and keyword to structure mapping scores [13, 21] inspired by IR
techniques. The interestingness measures we proposed are orthog-
onal to these instance level interestingness measures. We capture
the pattern level interestingness by properly aggregating (e.g., count
based measures) and normalizing (distributional measures) the in-
stance level measures. Indeed, some work has also considered
pattern-level interestingness [24, 29]. However, their problem set-
tings are different: They assume the user of the system to be a do-
main expert or have a clear search intension (although lack knowl-
edge of the schema or format of data sources). Therefore, these
works mainly rely on user feedback to refine and discover the best
queries.

There are also quite a few papers on graph mining that mine con-
necting structures between a set of nodes [8, 10, 18, 22, 25]. How-
ever, these algorithms only return a single large connection graph
containing a lot of interesting facts, without distilling individual ex-
planations from the remaining part of the connection graph. REX,
other the other hand, finds multiple interesting explanations and
ranks them to describe different aspects of a relationship.

Our work is also closely related to various studies in the frequent
graph mining literature. In particular, [9, 26, 27] describes efficient
algorithms for identifying frequent sub-graphs from a database of
many graphs. While our pruning techniques for anti-monotonic
measures are inspired by these algorithms, our problem setting is
fundamentally different from their transactional setting: we are
mining interesting patterns from a single large graph (i.e., the knowl-
edge base) instead of a database of (relatively) small graphs. More
recently, [6] studies the notion of pattern frequency in a single
graph setting and proposes the notion of monocount as the mini-
mum number of distinct nodes in the original graph that any node
in the pattern maps to. Our Mmonocount is an extension of this
notion. It is worth noting that none of those prior works study
distribution-based measures for interestingness.

7. CONCLUSION
Given the increasing importance of features like “related searches”

on major search engines particularly for entity searches, it is desir-
able to explain to the users why a given pair of entities are related.
And, as far as we know, our work is the first to propose this relation-
ship explanation problem. Furthermore, we studied the desirable
properties of relationship explanations given a knowledge base,
and formalized both aggregate-based and distribution-based inter-
estingness measures for ranking explanations. The overall problem
was decomposed into two sub-problems: explanation enumeration
and explanation ranking; we designed and implemented efficient
and scalable algorithms for solving both sub-problems. Extensive
experiments with real data show that REX discovers high quality
explanations efficiently over a real world knowledge base.
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