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ABSTRACT

Taking advantage of the Web, many advertisements (ads for short)
websites, which aspire to increase client’s transactions and thus
profits, offer searching tools which allow users to (i) post keyword
queries to capture their information needs or (ii) invoke form-based
interfaces to create queries by selecting search options, such as a
price range, filled-in entries, check boxes, or drop-down menus.
These search mechanisms, however, are inadequate, since they can-
not be used to specify a natural-language query with rich syntactic
and semantic content, which can only be handled by a question an-
swering (QA) system. Furthermore, existing ads websites are inca-
pable of evaluating arbitrary Boolean queries or retrieving partially-
matched answers that might be of interest to the user whenever a
user’s search yields only a few or no results at all. In solving these
problems, we present a QA system for ads, called CQAds, which
(i) allows users to post a natural-language question Q for retriev-
ing relevant ads, if they exist, (ii) identifies ads as answers that
partially-match the requested information expressed in Q, if insuf-
ficient or no answers to Q can be retrieved, which are ordered using
a similarity-ranking approach, and (iii) analyzes incomplete or am-
biguous questions to perform the “best guess” in retrieving answers
that “best match” the selection criteria specified in Q. CQAds is
also equipped with a Boolean model to evaluate Boolean opera-
tors that are either explicitly or implicitly specified in Q, i.e., with
or without Boolean operators specified by the users, respectively.
CQAds is easy to use, scalable to all ads domains, and more pow-
erful than search tools provided by existing ads websites, since its
query-processing strategy retrieves relevant ads of higher quality
and quantity. We have verified the accuracy of CQAds in retrieving
ads on eight ads domains and compared its ranking strategy with
other well-known ranking approaches.

1. INTRODUCTION
There are huge collections of (un-/semi-)structured data on the

web these days which hold diverse information, including adver-
tisements (ads for short), such as car ads, job ads, house-for-sale
ads, rental ads, etc. The web is a perfect publication forum for
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ads, since ads websites (allow sellers to) post ads for potential buy-
ers who can freely access archived and newly-created ads anytime
and anywhere, which cannot be achieved by any traditional pub-
lication media. Many ads websites, such as ebay.com, provide an
easy-to-use interface that allows users to create keyword queries for
retrieving ads of interest or specify their search criteria using pre-
defined check boxes and push-down menus to simplify the query
construction process. The search mechanisms employed by these
ads websites to identify ads that satisfy users’ needs, however, are
inadequate and insufficient, since a number of ads queries can only
be formulated using rich syntactic- and semantic-structure, such
as “Find single-family units that are not condos, with price no
more than $300k, and located between West Jordan and Bounti-
ful, Utah”. To solve this problem, we present a closed-domain
question-answering (QA) system on ads, denoted CQAds, which
can answer any ads questions. Unlike existing QA systems, CQAds
retrieves answers to a question Q without the burden of performing
syntactic analysis on Q. It interprets the semantics of Q at most by
employing the simple context-switching analysis, which facilitates
the process of transforming the information needs expressed in Q
into a SQL query to be evaluated against the underlying ads data
(records), which yield the source of answers to Q. Moreover, if Q
includes (implicit or explicit) Boolean operators, CQAds evaluates
Q using a novel Boolean model, which infers Boolean operators, if
necessary, to handle the problem of contradictory searching criteria
specified in Q and determines the evaluation order of the selection
criteria. Furthermore, whenever exact-matched answers to Q are
lacking, CQAds retrieves answers that partially match the informa-
tion need expressed in Q ordered according to a similarity-ranking

approach based on various domain-specific correlation measures.
To enhance the effectiveness and efficiency of processing ads

questions, CQAds (i) first uses the Naive Bayes classifier based on
the Joint Beta Binomial Sampling Model to automatically identify
the domain of an ads question Q, (ii) corrects spelling mistakes
using a trie when evaluating Q, (iii) performs an intelligent “best
guess” and retrieves answers that most adequately match an incom-
plete and/or ambiguous selection criterion specified in Q, (iv) ap-
plies substring matching to speed up the process of retrieving an-
swers to Q, and (v) processes each SQL query converted from Q.

CQAds offers a fully-automated, powerful question-answering
search engine to help its users locate desired ads of interest. CQAds
does not require experts to build complex ontologies or knowledge-
based systems to interpret and retrieve answers to users’ questions;
instead, it solely relies on a set of simple, pre-defined rules that
transform a question into its corresponding SQL statement. It em-
ploys a Boolean model and question-processing techniques to han-
dle explicit and implicit Boolean queries that enrich the expressive

power of CQAds. Moreover, CQAds retrieves partially matched
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answers to a user’s question using a similarity formula, which re-
lies on numerical attribute value proximity, as well as categorical
attribute value similarity based on a novel query-log analysis ap-
proach. CQAds introduces new and novel methods for query-sense
disambiguation, query interpretation, incomplete questions analy-
sis, and shorthand notations identification on users’ questions.

We organize our paper as follows. In Section 2, we discuss pre-
vious work on closed-domain QA systems and existing strategies
on ranking partially-matched answers. In Section 3, we introduce
the Naive Bayes classifier used for classifying users’ questions into
their corresponding ads domains. In Section 4, we detail the design
of CQAds for processing (Boolean) ads questions. In Section 5,
we present the experimental results which verify the effectiveness
and efficiency of CQAds in answering questions on eight distinct
ads domains. In Section 6, we give a conclusion. Throughout the
paper, we demonstrate CQAds using car ads as a running example.

2. RELATED WORK
We present existing closed-domain QA systems and different

ranking strategies in this section.

2.1 Closeddomain QA systems
Chung et al. [4] propose a weather forecasting QA system based

on a named-entity tagger, a dependency parser, a set of inference
rules, and an ontology that distinguishes weather terms and infor-
mation about cities. Wang [22] also relies on an ontology and pre-
defined question templates to answer questions in mobile-service
areas. Vargas-Vera and Lytras [21] introduce AQUA, a framework
that combines natural language processing, ontologies, logic, and
information retrieval technologies to answer questions on academic
people and organizations. Ferrandez et al. [8] develop QACID,
an ontology-based question answering system applied to the cin-
ema domain, which depends on (i) a domain ontology, (ii) cinema-
related information, (iii) a lexicon that matches words in natural
language queries and ontology instances, and (iv) a pattern database
(DB) to deduct semantic inferences between a query Q and its pat-
terns. Contrary to CQAds, the systems in [4, 8, 21, 22] depend
on ontologies that must be manually constructed to answer ques-
tions. Furthermore, these QA systems do not provide a partial
matching mechanism, which retrieves closely-related results if no
exact-matched answers exist.

A medical QA system is introduced in [20]. Given a user’s
question Q, the QA system relies on WordNet, Unified Medical
Language System (a previously developed medical question taxon-
omy), and natural language processing techniques, to retrieve pas-
sages from a set of documents that likely contain the answers to Q.
The system in [20] retrieves only exact-matched answers.

Wang and Luo [23] present a Chinese QA system that answers
questions in the telecom product domain. The authors assume that
a user’s query Q, as well as web documents with the answers to Q,
are semantically well-formed. However, since there is no central
editorial board to edit documents on the web, the semantics and
grammar of sentences in a web page are not always well-formed,
which contradict the assumption made by the authors. Moreover,
the system in [23] cannot handle short, poorly-formed questions.

2.2 Ranking partiallymatched answers
Most ranking approaches, which can be applied to QA systems,

focus on defining a scoring function, ranging from using the Eu-
clidean distance to the probabilistic model [12] to quantify the de-
gree of relevance between a query and a potential answer. These
scoring functions, however, are not effective for every domain, since
a partially-matched answer A to a query Q does not necessarily

mean that keywords in Q are highly similar to keywords in A.
For example, “Honda Accord” is relevant to a search for “Toy-
ota Camry”, since both cars are compact and offer similar features.
CQAds, on the other hand, relies on word similarity, in addition to
other similarity measures not based on (exact) keyword matching,
to retrieve partially-matched answers to a user’s question.

Das et al. [6] introduce an attribute-selection method that deter-
mines the top-m attributes which the users are most likely interested
in for ranking the top-n retrieved results of a DB query. The main
difference between CQAds and the approach in [6] is their com-
plexity. The “N -1” approach of CQAds selects the attributes to be
considered and ranks retrieved records in a simple linear order.

In [10], the SQL query language is extended to allow users to in-
dicate the preferred ranking function on the attributes specified in a
DB query. The ranking strategy, however, relies on user’s feedback
that in turn requires background knowledge in using SQL, which
ordinary users are lacking. CQAds does not require any human
feedback in processing a user’s question.

Bilotti et al. [2] require the user to specify semantic constraints
on his/her query in order to determine the relative importance of
different selection criteria included in the query, which are used
to build structured queries to retrieve answers. Although effective,
the proposed method is not robust for ranking partial matches and
requires additional user’s input for specifying the semantic con-
straints. Pizzato et al. [18] apply the vector-space model (VSM) to
represent words in a question and their semantic role labels to rank
answers in response to a user query. This model does not capture
linguistic and semantic relationships between words, which results
in a low quality and quantity of partially matched answers.

FAQFinder [3] uses a VSM engine to retrieve a list of FAQs rel-
evant to a user’s question Q. When Q is submitted, FAQFinder
uses the keywords in Q to find a question-answer pair among the
FAQs that best matches Q, which is similar to CQAds in retrieving
partially-matched, related answers to a question, if they are needed.
FAQFinder, however, is neither scalable nor reliable, since to an-
swer Q, a question-answer pair that closely resembles Q must exist
in order to provide the user with an answer to Q.

3. CLASSIFYING USERS’ QUESTIONS
One of the major tasks of CQAds is to identify the ads domain,

such as Cars-for-Sale domain, to which a user’s question belongs.
Manually determining the ads domain of the user’s question is not
feasible, which may require the user’s intervention and is a tedious
and inefficient process. In solving this problem, CQAds relies on
the Naive Bayes classifier based on the Joint Beta Binomial Sam-
pling Model (JBBSM) to identify the domains of users’ questions.

The Naive Bayes classifier is simple, easy to implement, robust,
highly scalable, and domain independent. The classifier relies on
the conditional distribution of the class variable to compute the
probability of assigning the natural class c, i.e., an ads domain in
our case, to a document d, i.e., a user’s question in our case, which
is the well-known Bayes’ Theorem.

P (c | d) =
P (c)P (d | c)

P (d)
(1)

where P (d) is the probability of a given document d, P (c) is the
probability of a particular natural class c, and P (d | c) is the prob-
ability of d given that class c occurs.

In choosing the ads domain c to which user’s question d should
be assigned, we compute the conditional probability P (c | d) as
defined in Equation 1 for each one of the possible ads domains. We
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assign to d the ads domain c that yields the highest P (c | d) among
all the ads domains (as shown in Equation 2).

Class(d) = argmaxc∈C P (c | d) (2)

where C is the set of ads domains.
In estimating P (d | c) in Equation 1, we have chosen JBBSM

[1], which considers the “burstiness” of a keyword, i.e., a keyword
is more likely to occur again in d if it has already appeared once in
d. JBBSM accounts for unseen words in a document.

4. OUR QUESTIONANSWERING SYSTEM
In this section, we introduce the question processing and evalua-

tion strategies of CQAds on ads.

4.1 Ads data and question preprocessing steps
CQAds, which relies on a DB that archives ads in different do-

mains (with a table in the DB for each domain) for answering ads
questions, has been designed independently of its underlying ads
DB. In its current implementation, CQAds depends on the tool in-
troduced in [17] to create the underlying DB. In addition, the re-
lational schema for each ads domain in the DB has been prede-
fined based on the attribute values and column names specified in
ebay.com, which is the largest, most comprehensive e-commerce
website on the web.

In a DB, data records are defined using fundamentally different
types of attributes, along with their domain values as specified in
a DB schema. There is a natural difference between a categorical

attribute value (such as a car model) and a numerical value (such
as a price) in the same record. There are also differences in terms of
how users specify search criteria on these two types of data. For ex-
ample, in searching for a particular car the users invariably include
the Make and Model in a question; however, for the price, they
may specify a range with(out) a dollar sign (‘$’), or may simply
be seeking the cheapest ones. To handle the inherent variance in
expressing information needs specified by the users in natural lan-
guage ads questions, CQAds identifies the selection criteria spec-
ified in each question by labeling them with their corresponding
data types (presented in Section 4.1.1), which are eventually used
to match attribute values in DB records.

4.1.1 Attribute types in the ads DB

Each ads record in the underlying DB showcases a particular
product or service PS, which can be recognized by its unique iden-

tifier formed by one or more attribute values in the ad. In addi-
tion, each ad often includes (i) a number of properties that describe
PS and/or (ii) quantitative values that identify the measurable sub-
stances of PS. With that in mind, we have defined the following
ads data types, of which the corresponding data items are alpha-
numerical strings.

Type I attribute values in an ad, which showcases PS, yield the
unique identifier of PS that are required values to be in-
cluded in an ad (its DB record, respectively). Type I at-
tributes are primary-indexed fields of the relational schema
which defines the corresponding ads domain. Sample Type I
attributes in the Cars-for-Sale ads domain are “Maker” and
“Model”, and “Toyota” and “Camry” are one of their respec-
tive values.

Type II attribute values describe the properties of PS in an ad,
which are not required values in the ad that showcases PS.
Type II attributes are secondary-indexed fields in the corre-
sponding relational schema. “Color” is a Type II attribute in

the Car-for-Sale ads domain, and “Blue” is one of its domain
values.

Type III attribute values specify the quantitative values of PS in
an ad. A sample Type III attribute is “Salary” in the Jobs ads
domain, and $50,000 is one of its values. In addition, “usd”
is also a Type III attribute value, which identifies the unit of
“Price” (a Type III attribute) in the Cars-for-Sale ads domain.

4.1.2 Conditions specified in users’ ads questions

Any constraint on an attribute value a user specified in an ads
question constitutes a condition. Examples of conditions speci-
fied in a car-ad question that include Type I attribute values are
‘Honda’ (Make) and ‘Accord’ (Model), Type II are ‘automatic’
(Transmission) and ‘4-wheel drive’ (DriveTrain), and Type III
are 2004 (Y ear) and less than $5000 (Price). In designing CQAds,
we assume that a user’s question can include conditions that involve
any combination of Types I, II, and III attribute values.

EXAMPLE 1. Listed below are a few sample car-ads questions.

Q1: Do you have a 2 door red BMW?

Q2: Cheapest 2dr mazda with automatic transmission

Q3: I want a 4 wheel drive with less than 20K miles ✷

To process an ads question with conditions specified on Types I
and II attribute values, CQAds simply matches (i.e., performs equal-
ity comparisons of) the search values (as conditions) to the corre-
sponding ones in a DB record. Evaluating conditions on Type III
attribute values, however, is more involved.

User-specified selection criteria on Type III attribute values can
be categorized as either range or exact matches, such that (i) users
may seek ads above, below, or between certain values, or (ii) they
may seek ads with extreme values within a selected group, such as
“the cheapest car”. CQAds handles both cases by defining what
constitutes a complete condition versus partial condition. Context-

switching analysis is applied to identify partial conditions and merge
them with proximity keywords, if they exist, in a question to create
complete conditions. These analyses are based on superlatives and
boundaries, which are defined below.

• Superlatives (S): used for finding ads with max/min values

- Complete (C): Stand-alone terms that ask for extreme values,
such as cheapest, newest, and oldest

- Partial (P ): Query terms that compare extreme values, e.g.,
fewest, greatest, highest, least, lowest, max, and min

• Boundaries (B): used for finding ads fitting a certain range

- Complete (C): Query terms that compare numerical
attribute values, e.g., cheaper/less (or more) expensive, and
newer/older than

- Partial (P): Query terms that require the specification of an
attribute and one of its values for comparisons, e.g., above,
between, below, greater/higher/less/lower/more than, within,
and under

4.1.3 Keyword tagging using a trie

Given a user’s ads question Q, CQAds first tags keywords (i.e.,
attribute values) in Q with the appropriate labels to interpret the
information need specified in Q, which in turn are translated into
a SQL query statement to be evaluated against the underlying DB
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records. In order to automate the keyword tagging process, we use
a trie, each of which is created for a distinct ads domain to parse
and tag the keywords in a(n) (incomplete) user’s question.

A trie, which is an ordered tree data structure, is an ideal choice
for string processing, since it is faster and saves more disk space
than other data structures. Using a trie, searching for a string (i.e.,
word) of length m takes O(m) time, as compared with a binary

search tree which requires O(m log n) time, where n is the num-
ber of elements in the tree. Tries are also better than hash tables,
especially when the number of items to be searched is relatively
small and static, which is the case in CQAds. The size of each trie
used by CQAds is less than 50 megabytes.

Since CQAds translates each user’s question Q into an SQL
query for processing, it must (i) identify all the selection criteria

specified in Q and their corresponding attribute value types, i.e.,
Types I, II, or III, (ii) translate each one independently into an SQL
subexpression, and (iii) combine them into an SQL query. There are
two types of keywords a user can include in a question processed by
CQAds, i.e., the stand-alone and combined keywords. Stand-alone

keywords in a question exist independently, and each conveys a se-
lection condition by itself, such as the Make or Model of a car.
Each stand-alone keyword K is recognized by a trie when there ex-
ists a path from the root to a leaf node in the trie when K is parsed.
Combined keywords in a question, however, do not convey a se-
lection condition independently, i.e., they require other identify-
ing keyword(s), such as Mileage and dollars ($), and their cor-
responding values. Combined keywords CK can be detected by
locating a space after a node in the trie labeled by the first keyword
in CK and the remaining path to a leaf node in the trie yields the
remaining keywords in CK. Each node N in the trie has a value
and a label. The value of N is the letter N represents, whereas the
label of N is the concatenation of all letters on the path from the
root node to N . If the label of a node is a valid English word (iden-
tified by online dictionaries), the node is labeled by a keyword.

Every node N labeled by a keyword K in a trie is assigned an
identifier (ID), which is an interpretation of the functionality of K.
Identifiers are used by CQAds for translating a user’s question into
its equivalent SQL query and are pre-programmed into the trie. A
node identifier is determined based on (previous) node identifiers
in the path from the root node of the trie. When a leaf node N
with an identifier I is encountered, CQAds adds I to a list, which
maintains all the identifiers in the order they are detected. If N is
not a leaf node, then the next keyword in the question is scanned;
the process is repeated until either a leaf node is reached or the
potential missing identifier is detected (in a complete ads question.)

4.1.4 Trie construction

A trie is built for each ads domain in CQAds. To construct a trie
for an ads domain D, CQAds requires the relational schema for D
and the trie identifiers, which are pre-defined, and the identifiers
are the same for each ads domain. The identifiers used in the tries
are shown in Table 1, called identifiers table.

Prior to constructing the trie for the first ads domain, the iden-

tifiers table is created manually, which is used by all the tries of
different ads domains. The table includes a list of keywords, which
are either comparison operators or phrases “Type I/II/III attribute
values”, and an identifier is assigned to each keyword. Using the
identifiers table, if a given keyword K is a Type I attribute value,
then CQAds assigns K the identifier ‘ “Type I attribute” = K’.

To add a new ads domain D to CQAds, we extract from multi-
ple ads websites a set of randomly-selected 500 ads belonged to D.
We (i) manually create an ads domain-specific table for D, which
includes the Type I attribute values extracted from the push-down

menus provided by the ads websites and Types II and III attribute
values in the ads, and (ii) construct the trie for D. Each character C
in each non-stopword in the ads is sequentially added as a node N
in the trie such that the value of N is ‘C’ and the label of N is the
concatenation of the values of the nodes preceding N . If the label
of N is a valid entry, a comparison operation (an attribute value,
respectively), which is included in the identifiers table (the corre-
sponding domain-specific table, respectively), N is assigned the
ID extracted from the corresponding entry in the identifiers table.
Otherwise, a new node N ’ is created for the character following C
and N ’ is linked to N .

During the process of identifying the types of keywords in an
ads question Q of domain D using the corresponding trie and prior
to evaluating Q against the DB records of D, CQAds eliminates
all the non-essential keywords, which are (i) stopwords, which
carry little meaning, and (ii) keywords in Q that are neither su-
perlatives/boundaries (as defined in Section 4.1.2) nor Type I/II/III
attribute values in D.

EXAMPLE 2. Consider the sample questions in Example 1 again.
After non-essential keywords are removed from each of the ques-
tions, the simplified questions are:

Q1: 2 door red BMW

Q2: Cheapest 2dr mazda automatic

Q3: 4 wheel drive less than 20k miles

Subsequently, the identified essential keywords, along with their
tagged corresponding types and/or selection conditions, in the sim-
plified questions are shown below.

Q1: “2 door”/TII “red”/TII “BMW”/TI

Q2: “Cheapest”/TIII-CS “2dr”/TII “mazda”/TI “automatic”/TII

Q3:“4 wheel drive”/TII “less than”/TIII-PB “20k mi.”/TIII-CB

where TI , TII , TIII , C, P , S, and B are defined as in Sections
4.1.1 and 4.1.2, and T stands for Type. ✷

The importance of properly identifying Type III elements is evi-
dent from the evaluation order discussed in Section 4.3.

4.2 Misspellings, Incomplete Queries, and
Shorthand Notations

Users may create questions with errors. We have implemented
simple algorithms to handle spelling mistakes (discussed in Sec-
tion 4.2.1), missing attributes (detailed in Section 4.2.2), and short-

hand notations (introduced in Section 4.2.3) in users’ questions.

4.2.1 Using a prefix trie to correct spelling

Occasionally, a user misspells a word or forgets to add spaces

in between keywords when posting a question Q. For example, a
user might create the question, “Hondaaccord less than $2000” or
“honda accorr less than $2000”. To enhance the effectiveness and
user-friendliness of CQAds, such errors are detected and corrected
automatically using the trie of the domain to which Q belongs, in-
stead of returning irrelevant or no results to the user.

During the process of parsing a user’s question Q, CQAds scans
through each keyword K in Q by reading its letters one by one. If
an end of a branch in the trie is encountered and no more charac-
ters are left in K, CQAds treats K as a valid keyword; otherwise,
if there are more characters left in K, a space is inserted at the cur-
rent position of K, assuming that the user has forgotten to add a
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Table 1: Identifiers used by tries for tagging keywords

Keyword Identifier (ID)

A Type I attr. value ID := ‘ “Type I attr.” = keyword’

A Type II attr. value ID := ‘ “Type II attr.” = keyword’

A Type III attr. If ID == ‘’, then ID :=‘ “Type III attr. K” ’
value (keyword K) If ID ==‘group by’, then

ID := ‘group by “Type III attr. K” ’
If ID == ‘<’, ID := ‘ “Type III attr. K” <’
If ID == ‘>’, ID :=‘ “Type III attr. K” >’
If ID == ‘=’, ID := ‘ “Type III attr. K” =’

A Type III attr. If ID == ‘</>/=/ 6=/≥/≤’, then
value N ID := ‘ “Type III attr.” </>/=/ 6=/≥/≤N ’

Below, fewer, less, If ID == ‘Type III attr.’, then
lower, max, most, ID := ‘ “Type III attr.” <’
smaller, < Else ID := ‘<’

Above, greater, If ID == ‘ “Type III attr.” ’, then
higher, least, ID := ‘ “Type III attr.” >’
min, >, Else ID := ‘>’

Equal(s), = If ID == ‘Type III attr.’, then
ID := ‘Type III attr. =’

Else ID := ‘=’

Newest, latest, ID := ‘group by year DESC’

Oldest, earliest, ID := ‘group by year’

Cheapest, inexpen-
sive,

ID := ‘group by price’

Lowest ID := ‘group by’

Between, range, If ID == ‘Type III attr.’, then
within ID := ‘ “Type III attr.” between’

Else ID := ‘between’

Other keyword ID := ‘’

space. However, if K is not recognized by the trie (i.e., none of
the next letters in the trie matches the next letter in K), then K is
treated as a misspelled word W . CQAds compares W with the al-
ternative keywords recognized by the trie, starting from the current
node in the trie where W is encountered, using the “similar text”
function which calculates their similarity based on the number of
common characters and their corresponding positions in the strings.
Similar text returns the degree of similarity of two strings as a
percentage. CQAds replaces the misspelled keyword in Q by the
alternative one with the highest similarity percentage.

4.2.2 Processing incomplete questions

To fully automate CQAds and avoid employing the user’s feed-
back strategy to minimize the user’s workload, CQAds analyzes
incomplete questions and performs the “best guess” of the user’s
information need. If a numerical value V (in an incomplete user’s
question) is not associated with a keyword that identifies the en-
tity V quantifies, CQAds considers V as a potential value of each
numerical attribute in the ads domain D to which the user’s ques-
tion belonged. This is because among all the DB attributes in the
schema defined for D, the numerical attributes are the only ones
assigned numerical values and posted as a condition. CQAds ex-
cludes any record (answer) that does not include V in the valid
range of any of its Type III attributes (as defined in Section 4.3.2),
which is determined by the smallest (largest, respectively) value
under the pretended column of V in the DB table of D. For exam-
ple, in the car-ads domain, if V does not fall into the range of 1985
and 2011, V is treated as either Price or Mileage, which are as-
sumed to be the only other Type III attributes, and CQAds creates
a SQL subquery that unions both possible selection conditions.

EXAMPLE 3. Consider the questions Q, “Honda accord 2000”
and Q’, “Honda accord less than 4000”, in which important infor-
mation that determines the user’s information need is missing. In
the case of Q, CQAds interprets 2000 as Year, Price, or Mileage,
since 2000 is in the range of year, price, and mileage of cars. In the
case of Q’, however, 4000 is treated as Price or Mileage, but not
Year, since 4000 is not in the range of valid years for cars ✷

4.2.3 Shorthand notations

Users’ questions tend to vary in how they refer to data values.
Regarding a car with four doors, any of the expressions ‘4dr’, ‘4
dr’, ‘four door’, ‘4 doors’, ‘4-door’, or ‘4doors’ could be used.
We developed a simple, yet effective, perl script that automatically
detects the variance of “shorthand notation” of a data value. The
perl script is based on the fact that any shorthand notation N of a
data value V only includes characters from V , and the characters
in N should have the same order as characters in V . Hence, when
a user specifies a data value A in a question, a DB record R is
considered relevant with respect to A if (i) an exact match for A is
found in R, (ii) A is a detected shorthand notation of a data value in
R, or (iii) there exist a shorthand notation of A in R. Experiments
on 1,000 ads in various domains show that our Perl script achieves
a 98% accuracy in detecting shorthand notations.

4.3 NonBoolean questions evaluation process
In evaluating the selection criteria specified in a non-Boolean

question, superlatives are considered after all the other search
criteria. This evaluation strategy yields the correct answers to the
corresponding question, since the results retrieved by evaluating
superlatives are DB records with the max/min attribute values on
which they are evaluated. Consider the question “(Find the) cheap-
est Honda”. If the cheapest Hondas are more expensive than the
cheapest Toyotas, evaluating ‘cheapest’ first retrieves only Toyotas,
upon which searching for ‘Honda’ yields no results, which is in-
correct. On the other hand, evaluating ‘Honda’ first, followed by
‘cheapest,’ yields the cheapest Hondas in the answer set.

Even though superlatives should be evaluated last, the order in
which other conditions are evaluated does not change the end re-
sults, since they are evaluated in a commutative AND order. How-
ever, in order to speed up the evaluation of (Boolean) ads questions
processed by CQAds, it is required that

1. Type I attribute values are evaluated first, since each of their
corresponding attributes is defined as the primary-indexed
field in its relation schema.

2. Type II attribute values, if there are any, are evaluated on the
set of records extracted in Step 1, since each Type II attribute
is defined as a secondary-indexed field.

3. Boundaries on Type III attributes and their values, if they
exist, are evaluated on the records retrieved in Step 2.

4. Superlatives, if they exist, are evaluated on the records cre-
ated in Step 3 which yield the answers to the given question.

4.3.1 Partial matching of selection conditions

Occasionally, the selection criteria specified in a question Q only
partially matches the corresponding values in a data record (i.e., an
ad) or retrieves only a few matched records. To enhance the qual-
ity and quantity of the retrieved results under this scenario, CQAds
relaxes the selection criteria specified in Q so that other closely re-
lated ads can be extracted. Thus, for a question with N (≥ 2) condi-
tions, CQAds removes each condition in turn, using the remaining
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N -1 conditions in creating multiple queries, and retrieves the re-
sults of each modified query. For example, if a user is seeking a
‘2-door car for less than $6000’, CQAds first retrieves cars that are
2-door under $6000, followed by any ads with ‘2-door’ and price
‘less than $6000’ individually. For questions with one condition C,
CQAds applies the similarity-matching strategy to retrieve records
that partially satisfy C, if needed (see details in Section 4.3.2).

Practically, multiple conditions can be removed simultaneously,
i.e., using up to N -2 or N -3 remaining conditions, etc. However,
the more combinations of conditions to be considered, the longer

the question processing time is required, and more importantly the
less likely the results satisfy the users’ requirements specified in
their questions. Furthermore, according to the Search Engine User
Behavior Study Report published by iProspect [9], 88% of Web
search engine users only view the first three pages of search results
(i.e., the first 30 results). Based on this statistical data, CQAds
retrieves up to 30 (in)exact matched records for each question.

4.3.2 Similarity measures of attribute values

In designing the N -1 partial-matching strategy for enriching the
quality and quantity of retrieved answers to an ads question Q, we
have defined the degree of similarity of an attribute value V in each
record and the corresponding value T in Q that is excluded from the
N -1 matching conditions for ranking partially-matched results.

Type I Values. To measure the degree of similarity between a
partially-matched Type I attribute value in an ads record and the
corresponding one expressed in Q belonged to an ads domain D,
we consult the T I-matrix for D. To construct the TI-matrix for
D, which includes the similarity values between any two distinct
Type I attribute values in D, CQAds relies on query logs obtained
from local ads search engines. Each query log includes a number
of query sessions, each of which captures a period of sustained user
activities on the corresponding ads search engine. Each log session
differs in length and includes (i) a user ID, (ii) the query text,
(iii) the date and time of each search, and (iv) optionally clicked
documents. A user ID, which is an anonymous identifier of the
user who performed the search, determines the boundary of each
session (as each user ID is unique and associated with one session).
The query text are the keywords in a user query, and multiple
queries can be created under the same session. The date and time
of search can be used to determine the relative importance of the
query results page based on the time the user spent on that page,
and clicked documents are retrieved documents that the user has
clicked on and are represented by their titles and ranked by the
corresponding ads search engine.

The similarity value of any two distinct Type I attribute values A
and B, denoted TI Sim, in the TI-matrix is computed in Equa-
tion 3 based on the following features that can be determined using
a query log:

(1) Number of times A is modified to B in the query log or vice
versa, denoted Mod(A, B).

(2) Average time between submissions of A and B in the same
session, denoted T ime(A, B).

(3) Average time spent on an ad containing B when A is searched
or vice versa, denoted Ad T ime(A, B).

(4) Ranking of an ad (as determined by the ads search engine that
provides the query log) containing B when A is searched for,
or vice versa, which is averaged over the entire query log,
denoted Rank(A, B). The higher B is ranked, the more

likely B is similar to A as determined by the corresponding
search engine that ranks B.

(5) Number of times a document containing B is clicked when
A is searched or vice versa, denoted Click(A, B).

To normalize each of our feature values, we divide the resulting
value of a feature F by the maximum possible value of F derived
from our query log so that each factor value is in the range of [0..1].

TI Sim(A,B)=Mod(A,B) + T ime(A,B) + Ad T ime(A,B)

+Rank(A,B) + Click(A,B) (3)

Type II Values. In establishing the similarity values among the
properties of various products in different ads of the same do-
main, we use the word-similarity matrix, denoted WS-matrix,
introduced in [11]. WS-matrix is a 54,625 × 54,625 symmet-
ric matrix, which contains the similarity values of pairs of non-
stop, stemmed words, i.e., words reduced to their grammatical root.
The similarity value between any two non-stop, stemmed words wi

and wj in WS-matrix is computed by using the (i) frequency of
co-occurrence and (ii) relative distance of wi and wj in a docu-
ment. WS-matrix was constructed using the documents in the
Wikipedia document collection (en.wikipedia.org /wiki/Wikipedia:
Databasedownload) that consists of 930,000 documents written by
more than 89,000 authors on various topics, which are diverse in
content and writing styles. The WS matrix has been adopted
successfully in solving various information retrieval problems [16].
The similarity between an attribute value T , such as ’white’, in a
question and an attribute value V , such as ’blue’, in a data record,
denoted Feat Sim(T, V ), is a similarity value in WS-matrix.

Type III Values. In establishing the similarity among numerical

attribute values in different ads domains, we apply Equation 4.

Num Sim(T, V ) = 1−
|T − V |

Attribute V alue Range
(4)

where Attribute V alue Range is the normalization factor of
Num Sim, which is different for each numerical-value attribute
in the DB, and the complement is applied so that the closer T and
V are, the higher their Num Sim value is.

The Attribute V alue Range of each Type III attribute A in
an ads domain is determined by using the statistical data extracted
from ebay.com. We obtain from ebay.com the 10 highest (lowest,
respectively) values for A and subtract the averaged minimum val-
ues of A from the averaged maximum values of A to establish the
attribute value range for A,

EXAMPLE 4. Consider question Q “Find all $10,000 cars”. A
car ad that includes a price of $11,000 is closer to the price speci-
fied in Q than another car ad which includes a price tag of $7,500,
since Num Sim($10,000, $7,500) = 1 - 2,500/10,000 = 0.75 ≤
Num Sim($10,000, $11,000) = 1 - 1,000/10,000 = 0.90, assum-
ing that 10,000 is the price range for cars determined by the 10 max-
imum (minimum, respectively) values extracted from ebay.com. ✷

The ranking similarity value, Rank Sim, between a user’s ques-
tion Q and a partially-matched record r in which T and V occur,
respectively is computed as follows:

Rank Sim(r, Q) = (N - 1) +






TI Sim(T, V ) if T and V are Type I attribute values
Feat Sim(T, V ) if T and V are Type II attribute values
Num Sim(T, V ) if T and V are Type III attribute values

(5)
where N is the number of attributes specified in Q. Num Sim
is in the range of [0..1], whereas TI Sim and Feat Sim are in
different numerical scales. Hence, TI Sim and Feat Sim are
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normalized by the maximum possible value in each of their cor-
responding matrices. The value N -1 is added to account for the
exact matches between the corresponding attribute values in Q and
r, each of which is assigned the value of 1.

EXAMPLE 5. Table 2 shows a portion of the partially-matched
answers to the question Q “Find Honda Accord blue less than
15,000 dollars” that CQAds retrieves and ranks using Equation 5.
Table 2 also includes the partially-matched attribute value, which
is highlighted, in each record, in addition to the similarity-measure
strategy adopted for computing the ranking. ✷

4.4 Boolean questions processing
Occasionally, an ads question includes Boolean operators: AND,

OR, NOT. We classify a user’s question into one of the two cate-
gories that involve Boolean operators: implicit Boolean questions
and explicit Boolean questions. Explicit Boolean questions are
questions which contain at least one AND or one OR, whereas im-

plicit Boolean questions contain neither, but include at least one
negated attribute value1 or two mutually-exclusive attribute val-
ues2. In our QA system, mutual exclusion applies only to Types I
and II attribute values, since compatible Type III attribute values are
combined (see details in Section 4.4.1). Analyzing implicit and ex-
plicit Boolean questions, which make up almost one-fifth of the ads
questions created by Facebook users in various surveys conducted
by us for verifying the effectiveness of CQAds, is not a trivial task,
since these Boolean questions are not necessarily well-formed and
may be ambiguous. As a result, their information needs may not be
precisely stated. In this section, we define a set of rules for inter-
preting the (potential) information needs in Boolean questions.

4.4.1 Evaluating implicit Boolean questions

Users of QA systems may include in their questions (i) negated
attribute values without explicitly specifying the Boolean opera-
tor NOT, e.g., “Any car except a blue one”, or (ii) attribute values
that cannot co-exist, e.g., “blue, red Toyota”, which are mutually-
exclusive values that describe the same property of a car without
any OR operator3 explicitly specified in between. To address these
non-trivial problems, CQAds applies the following set of combina-
tion rules in processing implicit Boolean selection criteria, which
are evaluated in a left-to-right manner, in an ad question:

(1) For each group of values that are valid domain values of a
Type III attribute, do

(a) If any value is negated, the negated quantifier is re-
placed by its complement.

(b) If two or more values are specified with the keywords
or their synonyms (as shown in Table 1) “less than”
(“more than”, respectively), “equal”, or any combina-
tion of the two, then the lower (higher, respectively) of
the two quantified values is retained and the other is
discarded.

(c) If one of the values is specified with a “less than”,
“equal”, “less than or equal to”, or their synonyms, and
another with a “greater than”, “equal”, “greater than or

1A negation is specified in a question Q if one of the following
keywords (or their stemmed versions) is detected in Q: not, no,
without, except, excluding, remove, nothing, and leave out.
2Mutually-exclusive attribute values are domain values of the same
attribute that cannot co-exist in an ads question.
3CQAds combines consecutive non-mutually-exclusive attribute
values in an implicit question using logical ANDs by default.

equal to”, or their synonyms, then the two quantified
values are combined with the keyword “between”, un-
less the two quantified values do not overlap. In the lat-
ter case, CQAds displays the message “search retrieved
no results” and terminates the question-evaluation pro-
cess. This process is repeated by combining any inter-
mediate results with a remaining value.

(2) Evaluate each sequence of consecutive, (non-)negated Type II,
denoted T2, such that

(a) Negated attribute values in T2 are ANDed together,
whereas non-negated ones are ORed if they are mutu-
ally exclusive; otherwise, they are ANDed together.

(b) Each subexpression created in Rule 2a is ANDed with
the closest (negated) Type I attribute value A, if A ex-
ists. A is associated with only one subexpression.

(3) Repeat Step 2 for Type III attribute values or combined Type
III attribute values generated in Step 1.

(4) If there are more than one subexpression created in Step 2
or 3 that includes a (negated) Type I attribute value, these
subexpressions are ORed together.

Rule 2a (3a, respectively) identifies which and how Type II (Type
III, respectively) attribute values in a question should be combined,
whereas Rule 2b (3b, respectively) dictates how the newly created
subexpressions can be combined with a Type I attribute value, if it
exists. We treat a Type I attribute value as a main searching criteria
of a question and each sequence of Type II/Type III attribute values
are “right-associated” with a Type I attribute value A, since they
are treated as “descriptive properties” of A, if A exists.

EXAMPLE 6. Given the implicit Boolean question Q1, “Any
car priced below $7000 and not less than $2000”, CQAds applies
Rule 1a to transform “not less than $2000” to “more than or equal
to $2000”. Thereafter, “below $7000” and “more than or equal to
$2000” are combined as “between $2000 AND less than $7000”
using Rule 1c.

Consider another question Q2, “I want a Toyota Corolla or a sil-
ver not manual not 2-dr Honda Accord”. Applying Rule 2a on “not
manual” and “not 2-dr”, which are consecutive, negated Type II at-
tribute values, yields the subexpression “NOT manual AND NOT
2-dr”. The subexpression is ANDed with “silver”, another consec-
utive Type II attribute value. Using Rule 2b, “silver AND NOT
manual AND NOT 2-dr” is “right-associated”, i.e., ANDed, with
“Honda AND Accord”. Using Rule 4, the subexpressions “silver
AND NOT manual AND NOT 2-dr AND Honda AND Accord”
and “Toyota AND Corolla” are combined with an OR, since each
subexpression contains a (mutually exclusive) value of the same
Type I attribute, i.e., Make (Model, respectively). Both Q1 and Q2

are questions created by Facebook users (see Section 5.4). ✷

4.4.2 Evaluating explicit Boolean questions

In the car-ads and domain-specific question Facebook surveys
(see Section 5.1) in which the users were asked to submit sample
questions, we found that out of 650 submitted questions, only 34
(5.2%) were explicit Boolean questions. Moreover, as claimed by
Ross and Wolfram [19], only between 3 to 5% of web searches in-
clude Boolean operators, which matches the percentage of explicit
Boolean questions created by Facebook users who participated in
our surveys. Furthermore, interpreting the exact information need
expressed in an arbitrary Boolean question/query without an ex-
plicit order specified for evaluating its subexpressions is a very dif-
ficult, if not impossible, task (see discussions in [14]). For these
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Table 2: Top-5 ranked, partial-matched answers to question Q, “Find Honda Accord blue less than 15,000 dollars”, in Example 5

Ranking Make Model Price Features Rank Sim Similarity Measure Used

1 Chevy Malibu 5899 blue, anti-lock brake, power steering 3.73 T I Sim on Make and Model

2 Toyota Camry 8561 4 cylinder, automatic, blue, . . . 3.43 T I Sim on Make and Model

3 Ford Focus 6795 blue, cd player, radio, power door locks, . . . 2.91 T I Sim on Make and Model

4 Honda Accord 16536 4 cylinder, blue, 2 wheel drive, cassette player, . . . 2.63 Num Sim on Price

5 Honda Accord 6600 GPS system, gold, auto-off headlights, . . . 2.31 Feat Sim on Color

reasons, we did not develop a new set of evaluation rules for pro-
cessing any explicit Boolean ads question Q. Instead, CQAds ex-
cludes all the Boolean ANDs and ORs from Q and evaluates Q
as an implicit Boolean or non-Boolean question, depending on the
question. In special cases, when Q consists of a sequence of at-
tribute values of any types separated by only ORs (ANDs, respec-
tively), Q is evaluated as is (without ANDs, respectively).

Even though CQAds treats explicit Boolean questions as either
implicit or non-Boolean questions, we have observed that the per-
formance of CQAds in not significantly affected based on the em-
pirical study presented in Section 5.4. CQAds achieves 90% ac-
curacy in correctly interpreting the information needs expressed in
explicit Boolean questions by applying the evaluation rules of im-
plicit Boolean questions on them.

4.5 Question execution
In this phase of the question-answering process, CQAds con-

catenates the search criterion (i.e., generated sub-queries) to create
an SQL query statement. The SQL statement may have one or
more select criterion (sub-queries) created from the corresponding
user’s question Q. The created statement logically AND all the
sub-queries, if the keywords ‘not’ and ‘OR’ (or their synonyms)
are not included in Q; otherwise, the sub-queries are concatenated
using the previously defined Boolean rules (in Section 4.4.1).

EXAMPLE 7. Given the question Q, “Do you have automatic
blue cars?”, CQAds creates the following SQL query statement4:

SELECT * from Car Ads WHERE Car ID IN
(SELECT Car ID from Car Ads C
WHERE C.Transmission = ‘Automatic’) AND Car ID IN

(SELECT Car ID from Car Ads C
WHERE C.Color = ‘blue’) ✷

The SQL query statement is then exported to the MySQL database
engine, which is chosen for CQAds, to be processed and the results
are presented to the user as answers to Q. Each answer retrieved
is based on either exact or ranked, partial match. The answers are
displayed on an HTML interface in a tabular manner.

Besides retrieving exact and/or partially-matched answers to a
user’s question Q, a major design issue of CQAds is the efficiency

of processing Q. We have implemented a primary MySQL sub-

string index [7] of length 3 on all the attributes of different ads do-
mains in a MySQL DBS. Substring indexes are shorter than their
corresponding entire column values, require less disk storage, and
hold more keys in the cache memory for searching.

4.6 Adding a new ads domain
As the majority of the processing steps in creating a new ads do-

main A are fully-automated it requires approximately 2 1

2
hours of

4If no exact matches are found for Q, then “AND” (in bold) in the
SQL query is replaced by “OR’ to retrieve partial answers based on
the “N-1” strategy.

manual labor to add A to CQAds, for the remaining semi-automated
steps detailed in Sections 4.1 and 4.2. Approximately 2 hours of
manual labor are spent on verifying the correctness in which at-
tribute values in ads (employed for constructing domain-specific
tables) are annotated.

5. EXPERIMENTAL RESULTS
In this section, we describe the process through which we ob-

tained the test data and discuss the evaluation metrics used for as-
sessing the performance of CQAds. Hereafter, we report the ex-
periments conducted on CQAds and analyze their results. To the
best of our knowledge there is no publicly available QA system on
ads that evaluates (Boolean) questions and considers partial answer
matching, which can be compared against CQAds.

5.1 Test data
Since there is no benchmark dataset available for evaluating the

performance of an ads QA system, to obtain a representative test
dataset for verifying the effectiveness of CQAds in retrieving exact-
and/or partially-matched answers to users’ questions, we have so-
licited ads questions on eight ads domains through the Internet
using Facebook. The eight ads domains we consider are Cars,
Motorcycles, Clothing, Computer Science Jobs, Furniture, Food
Coupons, Musical Instruments, and Jewellery. These domains are
diverse and representative of everyday living essentials, i.e., trans-
portation, clothing, jobs, housing, food, and entertainment.

Facebook, which is a free-access social network, was chosen for
conducting the surveys, since it reaches people from various age
groups and backgrounds who can objectively perform the required
evaluations. We prepared two surveys, the car-ads and domain-
specific question surveys. The car-ads survey includes 4 questions,
three requiring short answers and one in multiple choice format
(Question 4). The domain-specific question survey, which includes
only the first question in the car-ads survey, is repeated for each
of the remaining seven ads domains. The surveys were sent out
on June 1, 2009 to different Facebook users who were asked to for-
ward the surveys to others. By March 25, 2010, we received 650 re-
sponses (80 for the car-ads survey and 570 for the domain-specific
question survey). Figure 1 shows a response to the Facebook appli-
cation that includes the car-ads survey questions and their answers.

The answers to the first question from both surveys yield the set
of test questions used for our empirical study, whereas the an-
swers to the second question from the car-ads survey show that
91% of surveyed users who do not find exact matches for their
searches would likely remove (or modify) a feature from their orig-
inal search, which is our N -1 (partial) matching approach. Among
the answers to the fourth question, 93% percent of the users in-
dicate that they would rather search cars with similar features.
Last, but not least, the third question is included for verifying the
appropriateness of our choice of 30 as the ideal number of retrieved
answers to a user’s ad question, which is close to (the average) 26.
The last three questions on the car-ad survey were not duplicated
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Figure 1: A response to the car-ads Facebook survey.

Figure 2: Classification accuracy of the 650 ads questions.

in the domain-ad survey, since the answers to these questions are
expected to remain the same for the other ads domains.

5.2 Performance analysis on question classifi
cation

To evaluate the effectiveness of CQAds in classifying ads ques-
tions, we rely on the accuracy ratio as defined below.

Accuracy =
Correctly classified instances

Total number of instances
(6)

where Total number of instances is the total number of ques-
tions to classify, which is 650 in our case, and Correctly classified

instances is the number of questions correctly assigned to their cor-
responding domains by the Naive Bayes classifier.

Figure 2 shows the accuracy ratios of classifying the 650 ads
questions into each of the eight ads domains previously introduced,
as well as the average classification accuracy on the ads domains
achieved by CQAds, which are in the (upper) ninety percentile.
Ads in Cars-for-Sale and Motorcycles-for-Sale domains achieve
the lowest accuracy ratios (in the upper eighty percentile) among
the eight domains due to the existence of common keywords be-
tween the two domains.

5.3 Evaluation measures of retrieving exact
matched ads (answers)

To measure the performance of CQAds in retrieving answers that
exactly match the constraints specified in users’ questions, we con-
sidered the 650 responses to the first question in our two Facebook
surveys and evaluated them using CQAds. The evaluation met-
rics for measuring the correctness of retrieving exactly-matched
answers to an ads question are (i) precision (P ), which is the ra-
tio of the number of correct matches retrieved by CQAds over the
total number of records retrieved by SQL, (ii) recall (R), which
is the ratio of the number of correct matches retrieved by CQAds

Figure 3: A sampled question from the second Boolean Face-

book survey with its interpretations.

over the number of correct answers in the DB, and (iii) F-measure

= 2
1

P
+ 1

R

, where a correct match is a retrieved answer (up till the

30th), i.e., DB record, that satisfies all the search criteria specified
in a question.

The averaged precision, recall, and F -measure for the 650
test questions, yield 93.8% precision, 92.7% recall, and an F-
measure of 93.2%. We have observed that most of the test ques-
tions yield 100% for precision and recall, whereas a few yield
0%, i.e., answers are either correct or incorrect.

5.4 Evaluating the interpretations of implicit
and explicit Boolean questions

As stated in Section 5.1, since there is no baseline measure or es-
tablished dataset for evaluating the performance of a QA system on
ads (needless to say on Boolean questions), we conducted another
two Facebook surveys, a Boolean-question survey and a Boolean
survey, to analyze the accuracy of the interpretations generated by
CQAds on the intended information needs specified in Boolean
ads questions. The Boolean-question Facebook survey requests the
users to submit questions containing (i) at least one Boolean AND
or OR, (ii) two mutually-exclusive elements, (iii) a negation, or
(iv) any combination of (i), (ii), and (iii). The survey was posted
between September 1, 2009 and December 2009, and we received
182 responses, i.e., Facebook-user-created Boolean questions. (All
the Boolean questions created by Facebook users can be found un-
der students.cs.byu.edu/̃ rmq3/QAresults.) Out of these responses,
89 solicited questions are implicit and 93 explicit. We used the sub-
mitted questions from the Boolean-question survey for conducting
the Boolean survey which verifies the accuracy of CQAds in inter-
preting the questions using the rules presented in Section 4.4.1.

To construct the second survey, the Boolean survey, we chose 10
questions out of the 182 responses to the Boolean-question survey,
which are unique in terms of their information needs, the choices
of Boolean/Negation operators, and the individual function of each
operator in the question. Out of the 10 sampled questions, seven
are explicit questions and three are implicit. For each of these ques-
tions, we included in the Boolean survey (i) the interpretation of the
question generated by CQAds, (ii) two other manually-created in-
terpretations, and (iii) an option that allows the user to enter his/her
own interpretation, assuming that the user disagrees with any given
interpretations. Figure 3 shows one of the 10 sampled questions
and its interpretations, i.e., the corresponding Boolean expressions.

The Boolean survey was posted on December 2009, and up till
March 25, 2010, we received 90 responses. (All the responses can
be retrieved under students.cs.byu.edu/̃ rmq3/QAresults.) To assess
the accuracy of the interpretations generated by CQAds, we cal-
culated the fraction of the number of responses on each sampled
question that choose the CQAds’ interpretation divided by the to-
tal number of responses for the sampled question. Figure 4 shows

225



Figure 4: Boolean question interpretation accuracy achieved

by CQAds obtained using the second Boolean Facebook survey.

the accuracy obtained for each question, in which Q2, Q3, and Q4

are the three implicit questions. CQAds achieves an average of
90.2% accuracy rate, which demonstrates that CQAds, although
not based on user’s feedback, is reliable in transforming the infor-
mation need specified in a(n) (ambiguous) Boolean question. Fur-
thermore, CQAds achieves an average of 90.3% accuracy on inter-
preting implicit questions and 90.1% on explicit questions, which
shows that in the absence of a set of evaluation rules for handling
explicit Boolean questions, CQAds achieves a high accuracy rate
by evaluating them as implicit Boolean questions.

As shown in Figure 4, the interpretations of Q3, Q8, and Q10

performed by CQAds are not well-received by some users. Both
Q3, “Show me Black Silver cars”, and Q8, “Focus, Corolla, or
Civic. Show only black and grey cars”, include two consecutive
mutually-exclusive attribute values that are not ORed. CQAds
changes the AND to OR, since logically ANDing two mutually-
exclusive attribute values would yield no results. However, 22% of
the Facebook users who participated in the Boolean survey believe
that Q3 (and Q8, respectively) asks for car ads that include both
attribute values. CQAds interprets Q8 as “(Focus OR Corolla OR
Civic) AND (Black OR grey)”, whereas, 22% of the users interpret
Q8 as “(Focus OR Corolla OR Civic) AND (Black with grey)”. A
similar interpretation applies to Q3 in which “Black Silver cars” is
specified. As for Q10, “Black Mustang with gps, exclude 2 wheel
drive, or a yellow corvette without a gps”, CQAds interprets it as
“(not 2-wheel drive Black Mustang with gps) OR (yellow corvette
without gps)”, whereas 29% of the users believe “exclude” should
be applied to “yellow corvette” as well.

Since Boolean operators are the same from one ads domain to the
other, evaluating the interpretations of Boolean questions created
by CQAds on the car-ads domain are the same for CQAds on other
ads domains as well.

5.5 Evaluating the partiallymatched answers
ranking strategy

In this section, we present the evaluation on our ranking strat-
egy which orders partially-matched answers to users’ questions and
compare it with other representative ranking approaches. Again,
since there is no benchmark data available for evaluating the par-
tially matched answers to users’ questions on ads, we have used
individual appraisers to assess the ranking strategy of CQAds and
compare it with other state-of-the-art ranking approaches.

To gather the individual appraiser’s ranking, we conducted an-
other survey on Facebook beginning in June 2009, called ranking

survey, which lasted till March 2010. In the survey, we provided 40
different randomly-selected questions from the first two Facebook
surveys, denoted Test Questions, on the eight different ads do-

mains (5 on each domain). For each question, we arranged in ran-
dom order the top-5 partially-matched answers retrieved by each
of the four ranking approaches5 (presented in Section 5.5.2) that
we compare CQAds against which yield 25 answers (5 answers x
5 ranking approaches) to each question. The appraisers were re-
quired to read a question Q and determine which given answers are
(un)related to Q. We requested Facebook users to evaluate only five
answers to each question from each ranking approach, since exam-
ining the relevance of answers to questions is a time-consuming
task. Overall, 886 responses to the survey were collected.

5.5.1 Evaluation metrics

To measure the effectiveness of the ranking strategy of CQAds
on partially-matched answers to questions (introduced in Sec-
tion 4.3.2), we apply two well-known information retrieval metrics,
the (overall) Precision at K and Mean Reciprocal Rank [5].

The P@K measures the overall user’s satisfaction with the top-
K ranked answers (generated by CQAds) to a particular question
in Test Questions.

P@K =

∑N

i=1

Number of Related Answersi
K

N
(7)

where K is the (pre-defined) number of answers to be considered,
N is the total number of questions in Test Questions, which is
40, i is the ith question in Test Questions, and Number of
Related Answersi is the average number of answers (out of K)
that are treated as related to the ith question by the appraisers who
evaluated question i. Note that in our study, we set K to be 1 and 5
to evaluate the relatedness of the answers positioned at the top and
overall in the ranking, respectively.

BesidesP@K, we further evaluate the ranking strategy of CQAds
using the Mean Reciprocal Rank (MRR) metric. MRR is the av-
eraged sum of the reciprocal of the ranking position of the first

related answer among the top-5 answers, if there is any, or 0, oth-
erwise for each question in Test Questions.

MRR =
1

N

N
∑

i=1

1

ri
(8)

where ri is the average (position in the) rank of the first related

answer to question i in Test Questions, if it exists; otherwise, ri
= ∞, and N and i are as defined in Equation 7.

P@K and MRR evaluate the ranking strategy of CQAds, such
that the higher relevant answers are positioned in the ranking list,
the higher their corresponding P@K and MRR scores are.

5.5.2 Ranking methods used for comparison purpose

To assess the effectiveness of CQAds in ranking partially-matched
answers to a user’s question, we compare its performance, in terms
of P@1, P@5, and MRR, with four other ranking approaches: (i)
Random [13], (ii) cosine similarity [12], (iii) AIMQ [15], and (iv)
FAQFinder [3].

Random ranking, which presents the partially-matched answers
to a question in a random order, provides a baseline to determine
how well a ranking approach can meet the user’s expectations in
terms of ordering the answers with various degrees of relevance
to a question. The cosine similarity approach, which is used in
the Vector Space Model, computes a similarity value between two
vectors (in our case, one vector representing a user’s question Q
and the other a partially-matched answer A to Q) by measuring the

5The random-ordered answers avoids imposing bias on the apprais-
ers regarding the positions in the ranking of the retrieved answers.
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angular distance between them. In our implementation, the cosine
similarity between Q and A is computed using binary weights such
that for each selection constraint C specified in Q, ‘1’ represents
the satisfaction of C by A, and ‘0’ otherwise. The higher the com-
puted cosine-similarity value of A is, the higher the ranking of A
with respect to Q is.

AIMQ relies on attribute-value pairs (denoted AV-pairs) to gen-
erate the associated supertuple of each attribute. A supertuple is
an inferred DB tuple that contains a set of attribute values, each
of which includes a summary of values in the corresponding table
column, and is used for calculating the similarity of categorical at-
tributes. AIMQ determines the similarity between Q and A using
Equation 9.

Sim(Q,A) =
∑n

i=1
Wimp(Ai) ×

{

V Sim(Q.Ai, A.Ai), if Domain(Ai) = Categorical

1− |Q.Ai−A.Ai|
Q.Ai

, if Domain(Ai) = Numerical

(9)
where n is the number of attributes in Q, Ai in an attribute (in
either Q or A), Wimp(Ai) is the importance weight of Ai, which
in our implementation of AIMQ is set to be 1

n
for each attribute,

Q.Ai (A.Ai, respectively) is the value of attribute Ai in Q (A,

respectively), 1 - |Q.Ai−A.Ai|
Q.Ai

generates the similarity between any

two numerical attributes Q.Ai and A.Ai in which |Q.Ai−A.Ai| is
the absolute difference between the two numerical attribute values
Q.Ai and A.Ai, and V Sim(Q.Ai, A.Ai), which is the similarity
between two categorical attributes Q.Ai and A.Ai, is computed
using Equation 10.

V Sim(Q.Ai, A.Ai) =
n
∑

i=1

J(C1.Ai, C2.Ai) (10)

where Ai and n are as defined in Equation 9, C1.Ai (C2.Ai, re-
spectively) is the supertuple of Q.Ai (A.Ai, respectively), and
J(C1.Ai, C2.Ai) is the Jaccard Coefficient computed as |C1.Ai ∩
C2.Ai|/|C1.Ai ∪ C2.Ai|, which is the proportion of attribute val-
ues in common between C1 and C2 for Ai and the distinct number
of attribute values in C1 and C2.

In implementing FAQFinder, we (i) compute the weights for
the TF-IDF similarity measure based on all the ads records in our
DB, (ii) treat each ads data record in the DB as a document, and
(iii) treat each question submitted by the user as a FAQ and each
DB record to be ranked as in a FAQ file. (A detailed discussion on
FAQFinder can be found in Section 2.2.)

5.5.3 Comparison results of our ranking approach

We computed the P@1, P@5, and MRR values for each of
the ranking approaches R discussed in Section 5.5.2 using the total
886 responses provided by the Facebook users on ranked answers
to each one of the 40 sampled questions in Test Questions. The
P@1, P@5, and MRR results are shown in Figure 5.

As illustrated in Figure 5, CQAds outperforms the other rank-
ing approaches, which further verifies the effectiveness of the
strategy adopted by CQAds for ranking partially-matched answers.
A high P@1 score implies that the ranking strategy of CQAds is
highly effective in presenting first answers that users are interested
in. The higher P@5 score achieved by CQAds than other rank-
ing approaches demonstrates that, in general, answers relevant to a
question Q are positioned higher by CQAds in the list of partially-
matched answers retrieved in response to Q. Finally, the higher

MRR score achieved by CQAds than the other ranking approaches

Figure 5: Precision@K (K = 1, 5) and MRR scores on the

(top-5) answers achieved by CQAds and other ranking ap-

proaches for the 40 questions in Test Questions.

Figure 6: Average query processing time of CQAds and others.

indicates that CQAds users browse through less partially-matched
answers before locating the ones relevant to his/her question.

We observed that the corresponding P@1, P@5, and MRR val-
ues for FAQFinder are the lowest except the Random approach,
since FAQFinder uses a simple method that does not compare nu-
merical attributes. On individual domain level, we observed that
the lowest scores on P@1, P@5, and MRR for CQAds occur in
the CS jobs ads domain. For this domain, appraisers did not rank
the answers based on their similarity to the original question. For
example, a C++ software programmer job is closely related to a
C programmer job, but the appraisers ranked the answers based on
which result is more relevant to their own expertise and experience,
which is different from one user to another.

5.6 The efficiency of CQAds and other rank
ing approaches

The efficiency of CQAds and four other ranking approaches are
presented in Figure 6, which shows the average query processing
time for the 650 questions obtained from the car-ads and domain-
question Facebook surveys. CQAds outperforms all ranking ap-
proaches except the Random ranking strategy. This is due to the
fact that the Random approach does not perform any processing
or employ any similarity measures, but rather selects records ran-
domly, which is done fast. Unlike the compared ranking method-
ologies, CQAds retrieves exact matches first then partially-matched
answers, if needed. Hence, there is an additional time imposed on
CQAds for retrieving partially-matched answers. However, as il-
lustrated in Figure 6, the query processing time for CQAds is the
fastest compared to AIMQ, cosine similarity, and FAQFinder when
partially matched and exact answers are retrieved.
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6. CONCLUSIONS
We have introduced CQAds, a closed-domain question-

answering (QA) system for advertisements (ads for short), which
retrieves exact, as well as partially matched, answers to natural lan-
guage questions on ads. CQAds uses an elegant approach to de-
termine the evaluation order of selection criteria specified in a(n)
(Boolean) ads question Q. Whenever CQAds retrieves a few or
no exact-matched answers to Q, it extracts answers that partially
match the selection criteria specified in Q and ranks the answers
based on a similarity-matching approach which relies on word-
correlation factors as well as other domain-specific correlation ma-
trices. We have also introduced a simple, yet effective set of rules
for handling implicit/explicit Boolean questions, which enhance
the functionality of our QA system. Furthermore, we have pro-
posed a method for detecting shorthand notations and matching
them to their corresponding original attribute values.

CQAds is a contribution to the QA community, since it intro-
duces (i) the use of the trie structure to simply, yet effectively, de-
termine missing information in a user’s questions and correct any
spelling mistakes, (ii) a novel similarity formula for determining
the relevance of partially-matched records to a user’s question, (iii)
a fully automated approach to construct similarity matrices of cat-
egorical and numerical attributes independent of the domain of an
ads question, (iv) a novel set of rules for interpreting the users’ in-

tention in (implicit) Boolean questions, and (v) a new approach for
transforming users’ questions into SQL queries. More importantly,
CQAds provides a framework for answering questions on ads that
does not require any specific domain algorithm and thus can easily
be extended to answer questions on any ads domains, other than the
eight domains evaluated in this paper.

Based on the results of the conducted empirical studies, CQAds
achieves a 93.2% F-measure in retrieving answers that satisfy the
users’ information needs specified in ads questions. Moreover,
CQAds obtains a 90% accuracy rate in interpreting the evaluation
order of subexpressions in an ads question with implicit or explicit
Boolean operators. CQAds outperforms well-known ranking ap-
proaches, in terms of the P@K and MRR metrics, which veri-
fies that CQAds is reliable in ranking closely related answers that
partially-match the search criteria specified in an ads question.

Although the percentage of Boolean questions is significantly
lower than its counterpart, we plan to develop a set of well-defined
evaluation rules to properly handle explicit Boolean ads questions
as part of our future work. We also plan to study (i) the adap-
tation of CQAds to other domains, besides ads, (ii) automated
database schema generation, (iii) the use of transformation rules
to enhance the accuracy of matching records to questions, and (iv)
de-duplication of data to remove similar data records from a DB.
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