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ABSTRACT

How do contagions spread in population networks? Which
group should we market to, for maximizing product pene-
tration? Will a given YouTube video go viral? Who are the
best people to vaccinate? What happens when two prod-
ucts compete? The objective of this tutorial is to provide
an intuitive and concise overview of most important the-
oretical results and algorithms to help us understand and
manipulate such propagation-style processes on large net-
works. The tutorial contains three parts: (a) Theoretical
results on the behavior of fundamental models; (b) Scalable
Algorithms for changing the behavior of these processes e.g.,
for immunization, marketing etc.; and (c) Empirical Studies
of diffusion on blogs and on-line websites like Twitter.

The problems we focus on are central in surprisingly di-
verse areas: from computer science and engineering, epi-
demiology and public health, product marketing to infor-
mation dissemination. Our emphasis is on intuition behind
each topic, and guidelines for the practitioner.

1. INTRODUCTION
Graphs are ubiquitous and large-scale, from social net-

works, computer networks, mobile call networks, the World
Wide Web, to protein interaction networks, and many more.
In addition, propagation processes over them can give rise
to astonishing macroscopic behavior, leading to challenging
and exciting research problems in surprisingly diverse areas:
from computer science and engineering, epidemiology and
public health, product marketing to information dissemina-
tion. How do contagions spread in population networks?
Which group should we market to, for maximizing prod-
uct penetration? How stable is a predator-prey ecosystem,
given intricate food webs? How do rumors spread on Twit-
ter/Facebook? Questions such as how blackouts can spread
on a nationwide scale, and how social systems evolve on
the basis of individual interactions are all also related to
propagation/cascade-like phenomena on networks.

The objective of this tutorial is to provide an intuitive
and concise overview of most important theoretical results
and algorithms to help us understand and manipulate such
propagation-style processes on large networks. The target
audience is data mining and data management researchers,
who wish to learn more about models and tools for dealing
with cascade-like processes on large datasets. There is spe-
cial focus on the cross-disciplinary aspect of the concepts
and tools involved. For maximum benefit, the expected pre-
requisite is an undergraduate degree in Computer Sc. or
a related field. However, the tutorial’s emphasis is on the
intuition behind the material.

2. TUTORIAL OUTLINE
The tutorial contains three parts:

1. Theoretical results on the behavior of fundamental mod-
els abstracting such processes

2. Scalable Algorithms for changing the behavior of these
processes e.g., for immunization, marketing etc.

3. Large-scale empirical studies of diffusion on blogs and
on-line websites like Twitter

2.1 Theory
In this part, the we start by explaining the most common

propagation models including the so-called SIS (Susceptible-
Infected-Susceptible) “flu-like” model [1, 12], the IC (Inde-
pendent Cascade) model [8], the so-called ‘Bass’ model [2]
for product-adoption and so on [11, 7]. The goal is also to
learn about fundamental properties of such processes in a va-
riety of settings. Chakrabarti et al. [4] and Ganesh et al. [9]
found that, for the flu-like SIS model, the epidemic threshold
for any arbitrary graph depends on the leading eigenvalue
of the adjacency matrix of the graph. Prakash et. al. [23]
further discovered that the leading eigenvalue and a model-
dependent constant are the only parameters that determine
the epidemic threshold for almost all virus propagation mod-
els. Prakash et. al. gave the epidemic threshold for arbi-
trarily varying dynamic networks [24, 27]. We will also cover
recent work on understanding models involving competition
between multiple contagions (‘iPhone vs Android’) [20, 21,
22, 3]. We will also demonstrate how many such processes
are similar and have the same core problems.

2.2 Algorithms
In this part, the aim is to leverage and utilize the un-

derstanding gained in Part 1, to actually manage such pro-
cesses for our benefit - like algorithms for finding best people
to immunize [5, 26, 24], finding the best people to market
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to [13, 17, 10], algorithms to reverse-engineer epidemics like
by finding the culprits [25, 14] etc. We also demonstrate
how such optimization problems are closely related to the
fundamental properties discussed before.

2.3 Empirical Studies
The goal in this part is to present large-scale studies on

real-datasets and different scenarios, which will help one un-
derstand how to track the flow of pieces of information dif-
fusing among the users (i.e. information cascades) [18, 15],
how popularity of any ‘meme’ or contagion changes over
time [6, 16, 28], how to use such patterns to improve mod-
els [19] etc. Due to an unprecedented availability of large
datasets, the focus is more in the social media domain here.
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