
Discovering and Exploring Relations on the Web

Ndapandula Nakashole, Gerhard Weikum, Fabian Suchanek
Max Planck Institute for Informatics, Saarbruecken, Germany

{nnakasho,weikum,suchanek}@mpiinf.mpg.de

ABSTRACT

We propose a demonstration of PATTY, a system for learning se-
mantic relationships from the Web. PATTY is a collection of re-
lations learned automatically from text. It aims to be to patterns
what WordNet is to words. The semantic types of PATTY relations
enable advanced search over subject-predicate-object data. With
the ongoing trends of enriching Web data (both text and tables)
with entity-relationship-oriented semantic annotations, we believe
a demo of the PATTY system will be of interest to the database
community.

1. INTRODUCTION AND OVERVIEW
Motivation. There is increasing interest in imposing entity-

relatio- nship-oriented (ER) views on Web contents. State-of-the-art
approaches can detect and disambiguate named entities in text or ta-
bles, and extract binary relations between entities based on patterns
in textual or semistructured contents. These advances have enabled
the automatic construction of large knowledge bases such as dbpe-

dia.org, freebase.com, trueknowledge.com, or yago-knowledge.org,
and they have greatly enhanced the “semantic awareness” of Web
and enterprise search as well as question answering (e.g., [2]).

Problem Statement. A fundamental obstacle in these endeavors
is that relationships between entities are expressed merely in latent
form on the Web, using different paraphrases and patterns. For
example, sources may use the verbal phrases “received” or “was
honored with” to say that a person won an award. Understanding
the semantic equivalence of phrases and mapping these diverse
phrases into canonicalized representations is the core challenge
in relational information extraction (IE). This problem arises in
seed-based distantly supervised IE, with explicitly specified target
relations, as well as in Open IE, where the relations themselves
are a priori unknown and need to be discovered in an unsupervised
manner. Comprehensively gathering and systematically organizing
patterns for an open set of relations is the problem addressed by our
system PATTY, presented in this demo paper.

Example. The fact that Natalie Portman has won the Oscar
should be recognized as an instance of the hasWonPrize relation
(with type signature person × award), but it occurs in very di-

verse forms: “Portman was honored with an Oscar”, “. . . received
. . . ”, “. . . thanked the academy for . . . ”, “Awards received: Academy
Award 2011” (in a Web table or list), “Prizes: Oscar for Best Ac-
tress”, etc. In addition, a paraphrase like “received” could also
denote different relations such as almaMater (“received her Ph.D.
degree from”), critizedBy (“not well received by”), or meets (“re-
ceived by the queen”). On the other hand, a sentence such as “Bon-
ham Carter was disappointed that her nomination for the Oscar was
not successful” may easily be incorrectly interpreted as denoting
a pattern for the hasWonPrize relation, whereas it actually indi-
cates a different relation nominatedForPrize. Ideally, the analysis of
patterns should reveal that hasWonPrize implies nominatedForPrize.

Prior Work. Pattern-based IE has a long history in natural lan-
guage processing (NLP) and Web mining. Recently, Web-scale
systems like NELL [1], Probase [9], Prospera [6], and ReVerb [3]
have developed sophisticated machineries for distilling so-called
lexico-syntactic patterns such as on verbal phrases or noun phrases
with prepositions. Such patterns generalize surface strings into com-
binations of words and word-category tags, so-called part-of-speech
(POS) tags or coarse-grained lexical categories such as location or
date. For example, “disappointed * PRP$ nomination” is a pattern
with a wildcard symbol * and a POS tag PRP$ standing for posses-
sive personal pronouns such as “his” or “her”. In addition, there
is considerable work on identifying relations and attributes from
Web tables [5] and [10] have addressed the mining of equivalent pat-
terns, in order to discover new relations, based on clustering. These
methods are not suitable for Web scale, as they involve building
large matrices or expensive inference on latent models. Moreover,
the issue of identifying subsumptions between patterns has been
disregarded. Among these prior works, only ReVerb and NELL
have made their patterns publicly available. However, the ReVerb
patterns for Open IE are fairly noisy and connect noun phrases
rather than entities. NELL is limited to a few hundred pre-specified
relations. None of the prior approaches knows the ontological types
of patterns, to reveal, e.g., that hasWonPrize holds between a person
and an award.

Our Approach and Contribution. Our goal is to systematically
harvest textual patterns from text corpora, to group synonymous
patterns into pattern synsets, and to order these synsets into a sub-
sumption hierarchy. For this purpose, we make use of a generalized
notion of ontologically typed patterns. These patterns have a type
signature for the entities that they connect, as in “received”[person

× award]. We derive the type signatures through the use of a dictio-
nary of entity-class pairs, as, e.g., provided by knowledge bases like
YAGO, Freebase, or DBpedia. This approach gives us three advan-
tages over prior work: First, we can better group equivalent patterns
using the compatibility of their type signatures as an additional cue.
For example, actor × award and musician × award generalize into

1982

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.



person × award. Second, we can discriminate patterns that can de-
note different relations based on their type signatures. For example,
“covered” can refer to musician × song or to journalist × event on
a television program or in an article. Third, we can identify sub-
sumptions between relational patterns, based on the overlap between
their associated entity pairs. For example, “covered” is subsumed
by “performed” for the same type signature musician × song. Our
methods to this end are based on frequent sequence mining, suit-
ably extended to our setting and to Map-Reduce-based distributed
computation. We have run our methods on large data like the full
text of Wikipedia and the 500-million-pages Web corpus ClueWeb.
The resulting pattern collections contain about 350,000 relational
patterns with an average accuracy around 85% (estimated by exten-
sive sampling). The PATTY system and all this data is available at
http://www.mpi-inf.mpg.de/yago-naga/patty/.

Applications. PATTY is to relationships what WordNet is to
entity classes. It organizes a huge number of relational patterns
into sets of synonymous patterns, and into a subsumption hierarchy.
This structure has benefits in a variety of applications: First, it can
boost IE and knowledge-base population tasks by its rich and clean
repository of paraphrases for the relations. Second, it can improve
Open IE by associating type signatures with patterns. Third, it can
help discovering “Web witnesses” when assessing the truthfulness
of search results or statements in social media [4]. Last, it pro-
vides paraphrases for detecting relationships in keyword queries,
thus lifting keyword search to the ER level. This can help with
understanding questions and text snippets in natural-language QA.

Our demonstration allows the user to explore these possibilities
in three ways: (1) Using PATTY as a thesaurus to find paraphrases
for relations (2) using PATTY as a simple kind of QA system to
query the database without having to know the schema and (3)
exploring the relationships between entities, as expressed in the
textual sources.

2. THE PATTY SYSTEM
The PATTY system processes large text corpora (e.g., the full text

of Wikipedia, news archives, or Web crawls) to build a taxonomy of
textual patterns. It is backed by a knowledge base of semantically
typed entities. For the latter, we use either YAGO [8] or Freebase1:
YAGO has about 350,000 classes derived from Wikipedia categories
and integrated with WordNet classes; Freebase has a handcrafted
type system with 85 topical domains as top tier and about 2000
entity classes as a second tier. PATTY works in four stages: 1)
pattern extraction 2) pattern typing, 3) synset generation, and 4)
subsumption mining. We will now explain these stages. For the
details on stages 1-3, see [7], we focus here on the stage 4.

Pattern Extraction. A pattern is a surface string that occurs
between a pair of entities in a sentence. For example, the string
was governer of is a pattern that can appear between the entity
Bill Clinton and the entity Arkansas. We find such patterns by
identifying sentences noun phrases with a part-of-speech tagger.
We transform nounphrases to entities by means of a dictionary of
surface names that the input knowledge base provides. We represent
patterns as sequences of frequent n-grams by using frequent itemset
mining. We define the support set, SS(pk) of a pattern as the set
of entity pairs that occur with the pattern. For example, the pattern
〈was governor of 〉, has a support set containing entity pairs such as
(Bill Clinton, Arkansas), (Janet Napolitano, Arizona), etc.

Pattern Typing. From the type-agnostic patterns we generate
typed patterns by attaching a type signature to each pattern. A type
signature is a type pair of the form Type1 × Type2, where Type1

1http://freebase.com

and Type2 are the semantic types for the first and second entities,
respectively. We obtain the semantic types of the entities from
our knowledge base. For example, the entity Bill Clinton might
have types politician, president, person. Suppose the pattern 〈was

governor of 〉 frequently occurs with entities of type Politician for
the first entity and entities of type State for the second entity, then
we produce a typed pattern 〈was governor of 〉[Politician × State].

Synset Generation. We determine synonyms among typed pat-
terns in two ways. First, we identify syntactic synonyms by grouping
patterns which are syntactically similar, e.g., differing only in spe-
cific choices of pronouns or adjectives (e.g., 〈was the first female

governor of 〉 vs. 〈was the best governor of 〉). Second, we determine
semantic synonyms, as follows: for two patterns with nearly identi-
cal support sets, we infer that the patterns are synonyms. We group
synonymous typed patterns into synonym sets, pattern synsets.

Subsumption Mining. At this stage, we mine subsumption (hy-
pernymy/hyponymy) relations between pattern synsets. Each synset
Pk has a set of entity pairs that support it, SS(Pk). We say that a
synset Pk is subsumed by another synset Pl , if SS(Pk) ⊆ SS(Pl).
However, requiring complete containment of Pk in Pl is too con-
straining as there is always noise in the data and the data is not
necessarily complete. Thus, we relax subsumptions to approximate

subsumptions by allowing that Pk contains in its support-set a few
entity-pairs that are not in Pl. We use a probabilistic variant of
Jaccard coefficients to quantify the degree of containment between
two support sets.

Mining taxonomic subsumptions from our synsets is not a trivial
endeavor, because a quadratic comparison of each and every synset
to every other synset would be prohibitively slow. Therefore, we
developed a Map-Reduce algorithm for this purpose. As input, our
algorithm requires a set of pattern synsets, each with their support
set. As output, we compute a DAG of pattern synset subsumptions.
We first invert the synset support data. Instead of providing, for a
synset, all entity-pairs that occur with it, we provide for an entity
pair all the synsets that it occurs with. This can be achieved by a
Map-Reduce algorithm that is similar to a standard text indexing
Map-Reduce algorithm.

From these data, we have to compute co-occurrence counts of
pattern synsets, i.e., the number of entity-pairs that the supports
of two patterns have in common. Our Map-Reduce algorithm for
this purpose is as follows: The mappers emit pairs of synsets that
co-occur for every synset they occur with. The reducers aggregate
co-occurrence information, to effectively output the sizes of the
set intersection of the possible subsumptions. From these, we can
compute approximate degrees of subsumption as described above.
This produces a weighted graph of subsumption relations between
the synsets.

The graph of subsumption relations might contain cycles, which
have to be eliminated. We ideally want to remove the minimal total
number of subsumptions whose removal results in a DAG. This
task is related to the minimum feedback-arc-set problem: given a
directed graph, we want to remove the smallest set of edges whose
removal makes the remaining graph acyclic. This is an NP-hard
problem. Therefore, we approximate its solution by a greedy algo-
rithm, starting with an empty DAG and adding edges as long as they
do not introduce cycles or redundancy. This finally yields a DAG of
pattern synsets – the PATTY taxonomy.

3. PATTY DEMONSTRATION
Implementation. PATTY is implemented in Java and makes use

of the Stanford NLP tool suite for linguistic processing, Hadoop as
the platform for large-scale text and data analysis, and MongoDB
for storing all resulting data in a key-value representation.

1983



Figure 1: PATTY paraphrases for the YAGO relation actedIn

PATTY has generated relation taxonomies from three different
corpora: (i) the New York Times archive (NYT) which includes about
1.8 Million newspaper articles from the years 1987 to 2007, (ii) the
English edition of Wikipedia (WKP) which contains about 3.8 Mil-
lion articles (version of June 21, 2011), and (iii) the ClueWeb09
crawl from lemurproject.org/clueweb09.php/ (Web) which
comprises about 500 Million English Web pages. The variant based
on Wikipedia is the richest and cleanest one. It consists of about
350,000 typed-pattern synsets organized in a hierarchy with 8,162
subsumptions. Sampling-based assessment indicates that about 85%
of the patterns are correct in the sense that they denote meaningful re-
lations with a proper type signature. Futhermore, the subsumptions
have a sampling-based accuracy of 83% and 75% for top-ranked
and random subsumptions respectively. The Web-based frontend is
running AJAX for asynchronous communication with the server.

Using PATTY as a Thesaurus. PATTY connects the world of
textual surface patterns to the world of predefined RDF relation-
ships. Users who are aware of RDF-based knowledge bases can
explore how RDF relations map to their textual representations. In
the demo, we provide paraphrases for DBpedia relations as well
as YAGO relations. For example, as shown in Figure 1, PATTY
knows over 300 ways in which the YAGO relation actedIn can be
expressed textually. We hope that this wealth of data can inspire new
applications in information extraction, QA, and text understanding.

But users do not need to be familiar with RDF in order to use
PATTY. PATTY contains a large number of relations and their differ-
ent surface forms, and this space can also be visually explored. For
example, users can find different ways to express the hasAcademi-

cAdvisor relation, simply by typing “worked under” into the search
box. PATTY also provides the text snippets where the mention was
found as a proof of provenance . These text snippets can be explored
to understand the context in which a pattern can have a certain mean-
ing. In addition, users can browse the different meanings of patterns,
as they occur with different types of entities.

PATTY provides not only relations and patterns, but also a sub-

sumption hierarchy of patterns, where more general patterns sub-
sume more specific pattterns. The PATTY subsumptions can be
explored by clicking nodes that are linked to the root of a pattern.
When a node is clicked, the server retrieves all patterns that imply
the activated pattern. Figure 3 is a screenshot of a small part of the
subsumptions.

Schema-Agnostic Search. Internally, PATTY stores all extracted
patterns with their support sets. This allows users to search for facts
in the database. For this purpose, our demo provides a search
interface where the user can enter Subject-Predicate-Object triples.
Different from existing systems, the user does not have to know the
schema of the database (i.e., the relations of the fact triples). It is
fully sufficient to enter natural language keywords. For example, to
find the costars of Brad Pitt, the user can type “costarred with” in
place of the relation. PATTY will then search not only for the exact
words “costarred with” but also automatically use the paraphrases
“appeared with”, “cast opposite”, and “starred alongside”, see Figure
2 . This way the query only needs to be issued once and the user
does not need to do multiple paraphrases as is the case for keyword
search engines. For each result, PATTY can show the textual sources
from which it was derived.

The type signatures of the patterns can be used to narrow down the
search results according to different semantic types. For example,
when searching for a popular subject like Barack Obama or Albert
Einstein, the result may span multiple pages. If the user is interested
in only one particular aspect of the entity, then the domain of the
subject can be semantically restricted. For example, to see what
PATTY knows about Albert Einstein in his role as a scientist,the
user can restrict the domain of the relation to scientist. Such a query
returns Einstein’s teaching positions, his co-authors, information
about his theories, etc.; but it does not return information about his
wives or political activities.

These schema-agnostic queries can be combined to simple join
queries. This works by filling out multiple triples and linking them
with variables, similar to the way SPARQL operates. Different from

1984



Figure 2: Searching for costars of Brad Pitt

SPARQL, our system does not require the user to know the relation
name or the entity names. For example, to find visionaries affiliated
with MIT, it is sufficient to type ?x vision ?y, ?x ?z MIT. This will
search for people ?x who have a vision ?y and who stand in some
relationship ?z with an entity with name MIT.

Explaining Relatedness. PATTY can also be used to discover
relationships between entities [4]. For example, if the user wishes to
know how Tom Cruise and Nicole Kidman are related, it is sufficient
to type “Nicole Kidman” into the subject box and “Tom Cruise” into
the object box. PATTY will then retrieve all semantic relationships
between the two, together with the patterns in which this relationship
is expressed. For each result, users can click on the source button
discover provenance.

This principle can be extended to full conjunctive queries. For
example, to find the entity that links Natalie Portman and Mila
Kunis, the user can type Natalie Portman ?r ?x, Mila Kunis ?s ?x.
This will find all entities ?x that link the two actresses, as well as an
explanation of how this entity establishes the link. In the example,
PATTY finds a ballet movie for ?x, and says that both actresses
appeared in this movie. As this example shows, PATTY has created
an internal, semantic representation of the input text documents,
which allow her to answer semi-structured queries. In addition to
generating semantic patterns, in a sense, PATTY has summarized the
input text documents. Users can exploit and query these summaries.

4. REFERENCES
[1] A. Carlson, J. Betteridge, R.C. Wang, E.R. Hruschka, T.M.

Mitchell: Coupled Semi-supervised Learning for Information
Extraction, WSDM, pp. 101-110, 2010

[2] S. Ceri, M. Brambilla (Eds.): Search Computing: Challenges
and Directions, Springer, 2009

[3] A. Fader, S. Soderland, O. Etzioni: Identifying Relations for
Open Information Extraction, EMNLP, pp. 1535 - 1545, 2011

[4] L. Fang, A. Das Sarma, C. Yu, P. Bohannon: REX: Explaining
Relationships between Entity Pairs. PVLDB 5(3), pp.
241-252, 2011

[5] T. Mohamed, E.R. Hruschka, T.M. Mitchell: Discovering
Relations between Noun Categories, EMNLP, pp. 1447-1455,

Figure 3: A part of the PATTY taxonomy

2011
[6] N. Nakashole, M. Theobald, G. Weikum: Scalable Knowledge

Harvesting with High Precision and High Recall, WSDM, pp.
227-236, 2011

[7] N. Nakashole, G. Weikum, F. Suchanek: PATTY: A
Taxonomy of Relational Patterns with Semantic Types,
EMNLP, pp.1135 -1145. 2012

[8] F.M. Suchanek, G. Kasneci, G. Weikum: Yago: a Core of
Semantic Knowledge, WWW, pp. 697-706, 2007

[9] W. Wu, H. Li, H. Wang, K. Zhu: Probase: A Probabilistic
Taxonomy for Text Understanding, SIGMOD, pp. 481- 492,
2012

[10] L. Yao, A. Haghighi, S. Riedel, A. McCallum: Structured
Relation Discovery using Generative Models. EMNLP, pp.
1456 -1466, 2011

1985


