
Modelbased Integration of Past & Future in TimeTravel

Mohamed E. Khalefa1

∗
, Ulrike Fischer2, Torben Bach Pedersen3, Wolfgang Lehner4

1,3 Department of Computer Science, Aalborg University, 9220 Aalborg, Denmark
2,4 Database Technology Group, Dresden University of Technology, 01062 Dresden, Germany

1,3{mohamed, tbp}@cs.aau.dk, 2,4{ulrike.fischer, wolfgang.lehner}@tudresden.de

ABSTRACT

We demonstrate TimeTravel, an efficient DBMS system for
seamless integrated querying of past and (forecasted) future
values of time series, allowing the user to view past and
future values as one joint time series. This functionality is
important for advanced application domain like energy. The
main idea is to compactly represent time series as models.
By using models, the TimeTravel system answers queries
approximately on past and future data with error guaran-
tees (absolute error and confidence) one order of magnitude
faster than when accessing the time series directly. In addi-
tion, it efficiently supports exact historical queries by only
accessing relevant portions of the time series. This is unlike
existing approaches, which access the entire time series to
exactly answer the query.

To realize this system, we propose a novel hierarchical
model index structure. As real-world time series usually
exhibits seasonal behavior, models in this index incorporate
seasonality. To construct a hierarchical model index, the
user specifies seasonality period, error guarantees levels, and
a statistical forecast method. As time proceeds, the system
incrementally updates the index and utilizes it to answer
approximate and exact queries. TimeTravel is implemented
into PostgreSQL, thus achieving complete user transparency
at the query level. In the demo, we show the easy building
of a hierarchical model index for a real-world time series and
the effect of varying the error guarantees on the speed up of
approximate and exact queries.

1. INTRODUCTION
Time series can be encountered in many applications, in-

cluding financial (e.g., stock price [9]) and scientific database
(e.g., sensor data for weather information [7] or environmen-
tal data). Time series usually exhibit one or more seasonal
behaviors. For example, power consumption rises in win-
ter (e.g., heating) and during the afternoon and falls in the

∗Work partly done while visiting Dresden University of
Technology

summer and at night. Traditionally, a time series can be
decomposed into a trend component, a seasonal component,
and a local (i.e., stationary) component [8]. Statistical fore-
casting methods (e.g., ARIMA [3]) use these components to
accurately compute forecasted values. For our purpose, we
abstract a forecast method as a function which takes forecast
parameters and states (i.e., past values) and outputs future
values. Consider a motivating example from the energy do-
main: the power grid operator wants to investigate when
the power consumption exceeded (or will exceed) a certain
threshold (e.g., 90%) of the network over the previous and
upcoming months. An approximate answer with 1% error
and 95% confidence is adequate. A naive approach would
scan the data points over the previous month, optimize pa-
rameters for a forecast method, and predict the time series
for the next month. Finally, the query discards values that
are lower than the specified threshold. Our system performs
this more intelligently, as will be explain next.

We demonstrate TimeTravel, an efficient DBMS system
for seamless integrated querying of past and future time se-
ries values, supporting two types of queries: (a) approxi-
mate queries on past and future within user-specified error
bounds (i.e., absolute error and confidence), and (b) exact
historic queries. We use trend and seasonality to build mod-
els over the underlying time series. Here, past and future
data is treated similarly, allowing seamless integrated query-
ing. The main difference of future data compared to past
is that the (estimated) error is typically higher. To orga-
nize these models, we introduce a novel index structure, de-
noted as hierarchical model index. The upper levels in the
index are more “coarse-grained”, representing the underly-
ing time series with a higher error and a lower confidence and
fewer model segments compared to the lower levels which are
more accurate. For approximate historical queries (e.g., last
month in our motivating example), we use the highest-level
models to calculate an approximate answer. If the answer
violates the user requirements on error and confidence, we
consult relevant models at lower levels. We continue travers-
ing the hierarchical model index until either the error guar-
antee given by user is met or the underlying time series is
accessed. In addition, TimeTravel efficiently answers exact
queries by utilizing the index to find the relevant portions in
the time series. For example, considering MIN aggregation
queries, we only access the portion of the time series where
the minimum value might exist. For future queries (e.g.,
next month in our motivating example), we use the model
index to retrieve forecast states which is supplemented to
statistical forecast methods.We meet the user required error

1974

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

Query Processing &

Optimization

User Hints

Forecasting Module

Now

Time Series

Model

MSLevel 2

Level 3

MS

MS ΔModel MSLevel 1

Compression Module

Queries Approximate &

Exact Answers

Building Module

Maintenance Module

Offline Online

P1

P2

Figure 1: TimeTravel Overview

guarantees on future data by (a) controlling the error and
confidence of the retrieved forecast states and (b) optimizing
the forecast method parameters.

To build the hierarchical model index, the user specifies
hints for: (1) seasonality periods, (2) error guarantees lev-
els, and (3) the statistical forecast method (e.g., ARIMA).
We recursively divide the time series into non-overlapping
intervals and build a model on each interval until all error re-
quirements are satisfied. Over time, new values are added to
the time series, and we incrementally update the parameters
for the forecast method and the hierarchical model index.

2. TIMETRAVEL OVERVIEW
Our prototype system, TimeTravel, is implemented inside

the PostgreSQL database engine. The user specifies a num-
ber of time series and the system builds a separate model in-
dex for each. Figure 1 illustrates the main modules and data
structures of TimeTravel. Time series is stored as an array.
A time series can have an arbitrary number of seasonality
periods (e.g., the shown time series exhibits two seasonality
periods P1 and P2). The hierarchical model index is pre-
sented in the top center of Figure 1. Each model segment,
MS for short, at level l has zero or more children segments
at level l− 1. Each child segment improves its parent’s rep-
resentation of the underlying time series by building either
(a) a more detailed model over the time series, or (b) mod-
els of the error of the parent model. We denote the latter
models as ∆Models. For query optimization, we store statis-
tics about the index in the system catalog. Specifically, we
store the number of model segments, their average size, and
the maximum error and minimum confidence for each level.
These statistics are needed to estimate the expected cost for
the query. The main modules can be presented as follow:

Building Module. The purpose of this module is to take
user hints and time series as inputs, and output a compatible
hierarchical model index. We use heuristics to determine
the model parameters. This module is invoked offline and
presented in Section 3.

Compression Module. This module reduces the required
storage space for hierarchical model index by finding simi-
lar model segments, based on trend and seasonality compo-
nents, and combining them into fewer segments.

Query Processing Module. We extend the query proces-
sor and optimizer of PostgreSQL to support approximate
queries over future and past data and exact queries over the
past data. To answer historical queries, it traverses down
the model index. The Forecasting module is used to retrieve

the predicted the time series. The query processor supports
point, range, aggregate, and join queries, as discussed in
Section 4.

Forecasting Module. The forecasting module is responsible
for: (1) predicting the values of time series for a given future
interval, (2) estimating the error and the confidence of the
forecasted values, and (3) reestimating forecast method pa-
rameters. It uses the query processing module to retrieve the
forecast method states. The error of the forecasted data [3]
depends on (1) the forecast model and the length of forecast
data and, (2) the confidence interval of the retrieved states.
Further details are presented in [6].

Maintenance Module. The Maintenance module main-
tains hierarchical model index when new values are added
to the time series. For each level in the index, we update
the last segment (i.e., the rightmost segment in the figure)
with the added values. If the error and the confidence of
the updated segment violates the model error guarantee, we
construct a new segment over the interval of the last model
and added values, using the building module, and substitute
it for the old one.

3. THE HIERARCHICAL MODEL INDEX
We now describe how to construct a hierarchical model

index over the time series. Initially, we build one model seg-
ment over the entire time series. Based on the model error,
we divide the time series into non-overlapping sub-intervals
Ii (e.g., using approaches in [14, 12]). The user specifies
hints for the seasonal period hierarchy. For an hourly time
series, Figure 2 shows two possible hints for seasonality. The
first hint should be used if the shape of the time series is
similar per year, week and day. If the daily shape for week-
days differs from that of weekends, using the second hint
reduces the approximation error. To build model segment
m over interval l, we first decompose the portion of time se-
ries over this interval into trend t, seasonal s, and remainder

r components using the longest seasonal period p in the hi-
erarchy, such that the length of the interval is at least twice
p. Then, we process each component as described later. To
find the best model representation, we maximize a heuristic,
H, based on the computed sub-intervals and the size of the
model. Heuristic, H, is defined as (

∑
ei ∗ |Ii|)/s, where |Ii|

is the length of sub interval Ii, ei is the number of error
guarantees levels which complies with interval Ii, and s is
the model size.

Processing Trend Component We use linear Cheby-
shev regression method [10] to approximate the trend com-

1975

Year

Week

Day

Year

Work Day Weekend Day

Week

Figure 2: Possible Hints for Seasonal Hierarchy

ponent over the model interval. The Chebyshev regression
method is efficiently computable and minimizes the largest
deviation (i.e. error) from the original curve (i.e., time se-
ries) among the polynomials of the same order.

Processing Seasonality Component We use the hints
for seasonality given by the user to efficiently store the sea-
sonality component. Storing the value of each data point in
the seasonality component may be expensive (e.g., yearly
seasonality). We may approximate the seasonality com-
ponent using the user hints by recursively calculating the
trend and seasonality using smaller seasonality periods. To
find the best approximation for seasonality, we utilize the
heuristic described above.

Processing Error Component As regression and sea-
sonality model does not perfectly fit the input time series,
errors exists. Error is computed as x-(t̂+ŝ), where x is time
series over interval I, and t̂ and ŝ are the stored model val-
ues for the trend and seasonality components, respectively.
We split the error values into at most k intervals on the
time dimensions, where k a system parameter representing
the maximum fan-out in the model index. For each inter-
val, we can either (1) apply a data clipping techniques (e.g.,
[4]), (2) store upper and lower error bounds, or (3) fitting
a model (i.e., ∆Model) to the error. We choose the repre-
sentation that maximizes the heuristic describedabove.

4. QUERY PROCESSING
In this section, we describe query processing and opti-

mization for point, range, aggregate, and join queries over
past or future data for approximate and exact queries. The
underlying time series is stored as an array indexed by the
time attribute.

To completely incorporate the model index into PostgreSQL,
we extend the query optimizer to estimate the expected cost
of queries using the proposed model index. Specifically, we
add to the system catalog statistical information for average
model size, number of model segments, the span of the sea-
sonality component, and the maximum error and minimum
confidence for each level in the model index. Moreover, we
store the number of data points of the time series that fits
in one page. By using this information, the query optimizer
estimates the cost of executing a query using the model in-
dex or directly using the stored time series, and creates the
query plan accordingly. As mentioned in [11], the dominant
cost of forecast queries is re-estimating the forecast model
parameters. Unfortunately, the burden of this cost cannot
be avoided. However, we only reestimate the parameters if
necessary[6], and the cost is amortized over the query work-
load. For simplicity, we do not include it in our cost model.

The general idea of query processing is to construct an
approximation for the time series using the models and the
error guarantee. Each value is represented as an uncertain

range [v + l, v + u], where v is the value from the model,
and l and u are the lower and upper bound of the error,
respectively. The approximation can be arbitrarily improved
by traversing down the index. An important optimization is
that we use the model parameters, span of seasonality, and
error to find the relevant portion of the time series.

Point Queries. As the underlying time series is stored as
an array, we need at least one page access to find the value of
the time series for any point in the past, with 0% error and
100% confidence, while for forecast queries, we access the
forecast model parameters and states (i.e., historic values).
We estimate the cost of finding the values of the historic data
either using the time series or using the index structure.

Range Queries. We use the system catalog statistics
to estimate the cost of a range query. We accomplish this
by computing an upper bound on the number of model seg-
ments in the requested range at each level in the model
index. While the cost of directly using the time series is r

b
,

where b is the number of data points per page, and r is the
query range. To compute any future data point for forecast
queries, we need to retrieve the relevant forecast states, i.e.,
to answer a range query Q in the future, we need to com-
pute range queries over the past to get all states. To this
end, we can estimate the expected cost for forecast range
queries by either using the model index or accessing the un-
derlying time series directly. Processing a range query Q
can be presented as follows: we traverse down the model
index, discarding model segments that do not overlap with
the specified range r until we reach level l that matches the
user requirements of error and confidence.

Aggregate Queries. The query processing and cost es-
timation for an aggregate query depends on the type of ag-
gregate function used. For MIN/MAX aggregates, we use
the approximated representation of the time series to iden-
tify possible intervals (i.e., ranges) within the query range
where the minimum (maximum) may exist, discarding most
of the range of the query. For SUM/AVG aggregates, a nice
property of linear regression is that the total sum of the
errors equals zero. Hence, while traversing the hierarchical
model index, we discard an interval l from further process-
ing, if we encounter a model segment m over interval l that
fully overlaps with the range of the query.

Join Queries. For simplicity, we limit our discussion to
equi-join queries. Joining the time series x and y over the
time attribute can be performed as follows: we progressively
traverse the indexes for time series x and y. If the error of
the combined results exceeds the query requirements, we
increase the accuracy of join results by traversing down the
index with the maximum error. For joining time series on a
value attribute, we build an approximate representation for
each time series using the model index. For each potential
intersection (i.e., join output), we eliminate false positives
by traversing down the corresponding model index.

5. RELATED WORK
MauveDB [5] proposed querying models using a relational

framework for sensor data. FunctionDB [14] supports re-
gression functions to represent the data. Queries on these
function are processed using an algebraic solver. Pluse [1]
is a continuous stream query ‘processor that can fit one-
dimensional functions. It finds the query results by com-
puting the algebraic solution to systems of equations. It
back-propagates the query result to validate the error on

1976

Figure 3: Model Fit & Errors for Levels 1 & 2

the input. In comparison, in TimeTravel, we directly asso-
ciate the model with error and hence can bound the error
of the answers. To answer approximate queries Shatkay [12]
proposed an algorithm to fit a curve using a set of lines
or Bezier curve while bounding the error. All of these ap-
proaches uses only regression functions. Ignoring seasonal-
ity significantly increases the number of needed regression
functions. MauevDB and functionDB do not give any er-
ror guarantee, nor support forecast queries. In comparison,
TimeTravel supports more powerful functions, seasonality,
and error guarantees.

On the other hand, ISAX [13, 4] and data clipping [2]
approximate the time series by mapping each value in the
time series to a value in a much smaller domains (e.g., a
domain of two values in [2]). Unlike our approach, the error
of depends on the cardinality of the mapped domain and the
compression ratio.

6. DEMONSTRATION SCENARIO
TimeTravel is based on PostgreSQL and integrates the dif-

ferent modules described in this paper. Our demonstration
shows building the hierarchical model index for real-world
time series, and the effect of varying the error guarantees on
the speed up of approximate and exact queries. The user
specifies the seasonality hierarchy, error guarantees and the
statistical forecast method using a graphical user interface.

Time series We will use several real-world datasets to
demonstrate our system. We mainly use the UK household
power consumption time series and Australian tourist visi-
tors nights.

Scenarios The prototype is divided in three different as-
pects: (1) model index view, (2) model fit view, and (3)
query plan view. Using the model index view, we illustrate
building a hierarchical model index using the user hints. A

demo user can browse the resulting hierarchical model in-
dex. She may change the heuristic function used, or directly
update model parameters (e.g., intervals, regression line, or
seasonality). The user can interact with the compression
module by combining and separating model segments. For
the purpose of the demo, the demo user can submit different
query workloads. For any change in the hierarchical model
index, we estimate the response time for these query work-
load, as well as, the total storage space.

By using the model fit view, the demo user can investi-
gate how the model fits the time series using different levels
of the hierarchy by displaying the models versus the time
series and/or plotting the error component. Figure 3 shows
a screenshot of model fit and error using models at level 1
and 2. The time series used is two weeks from UK household
power consumption. The black line represents the original
time series, while the red dashed lines uses model segments
at level 2 which uses the seasonal hint (Figure 2(a)). The
blue dotted line shows the models at level 1, which splits
the week into workdays and weekend days (Figure 2(b)).
As time passes, we show how the expected future data gen-
erated from forecast method fits the actual data, and how
updates affect the model index.

Last, we will show the query plan for a set of approximate
and exact queries given by the user. For each query, we show
the tradeoff between query cost and the error guarantee.

7. REFERENCES
[1] Y. Ahmad, O. Papaemmanouil, U. Çetintemel, and J. Rogers.

Simultaneous equation systems for query processing on
continuous-time data streams. In ICDE, pages 666–675, 2008.

[2] A. J. Bagnall, C. A. Ratanamahatana, E. J. Keogh, S. Lonardi,
and G. J. Janacek. A bit level representation for time series
data mining with shape based similarity. DMKD, 13(1):11–40,
2006.

[3] G. E. P. Box and G. M. Jenkins. Time Series Analysis,
Forecasting, and Control. Holden-Day, 1976.

[4] A. Camerra, T. Palpanas, J. Shieh, and E. J. Keogh. isax 2.0.

[5] A. Deshpande and S. Madden. MauveDB: supporting
model-based user views in database systems. In SIGMOD,
pages 73–84, 2006.

[6] U. Fischer, F. Rosenthal, and W. Lehner. F2DB: the
flash-forward database system. In ICDE, pages 1245–1248,
2012.

[7] R. Kavasseri and K. Seetharaman. Day-ahead wind speed
forecasting using f-arima models. Renewable Energy,
34(5):1388–1393, 2009.

[8] M. Kendall and A. Stuart. The Advanced Theory of Statistics,
volume 3. Griffin, 1983.

[9] K. Kohara, T. Ishikawa, Y. Fukuhara, and Y. Nakamura. Stock
price prediction using prior knowledge and neural networks.
Intelligent Systems in Accounting, Finance & Management,
6(1):11–22, 1997.

[10] J. C. Mason and D. Handscomb. Chebyshev Polynomials.
Chapman & Hall, 2003.

[11] F. Rosenthal and W. Lehner. Effcient in-database maintenance
of arima models. In SSDBM, pages 537–545, 2011.

[12] H. Shatkay and S. B. Zdonik. Approximate queries and
representations for large data sequences. In ICDE, pages
536–545, 1996.

[13] J. Shieh and E. J. Keogh. iSAX: indexing and mining terabyte
sized time series. In KDD, pages 623–631, 2008.

[14] A. Thiagarajan and S. Madden. Querying continuous functions
in a database system. In SIGMOD, pages 791–804, 2008.

1977

