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ABSTRACT

Many dynamic applications are built upon large network in-
frastructures, such as social networks, communication net-
works, biological networks and the Web. Such applications
create data that can be naturally modeled as graph streams,
in which edges of the underlying graph are received and
updated sequentially in a form of a stream. It is often nec-
essary and important to summarize the behavior of graph
streams in order to enable effective query processing. How-
ever, the sheer size and dynamic nature of graph streams
present an enormous challenge to existing graph manage-
ment techniques. In this paper, we propose a new graph
sketch method, gSketch, which combines well studied syn-
opses for traditional data streams with a sketch partitioning
technique, to estimate and optimize the responses to basic
queries on graph streams. We consider two different sce-
narios for query estimation: (1) A graph stream sample is
available; (2) Both a graph stream sample and a query work-
load sample are available. Algorithms for different scenarios
are designed respectively by partitioning a global sketch to
a group of localized sketches in order to optimize the query
estimation accuracy. We perform extensive experimental
studies on both real and synthetic data sets and demon-
strate the power and robustness of gSketch in comparison
with the state-of-the-art global sketch method.

1. INTRODUCTION
Recent scientific and technological advances have resulted

in a proliferation of graph-structured data, such as E-R
schemas, chemical compounds, biological or social networks,
work flows and the Web. Accordingly, many data manage-
ment and mining applications have been extensively studied
in the graph domain [2, 4, 12]. However, much of the focus
of past research has been on a (or a set of) static graph(s)
of relatively modest size. In recent years, numerous network
applications have witnessed streams being defined over the
massive graph infrastructure [15, 19, 20, 16, 3], in which the
entire graph of interest is no longer available all the time,

but individual edges of the graph are received and updated
rapidly over time in a form of a stream. These newly emerg-
ing graphs are referred to as graph streams. Some notewor-
thy examples of graph streams correspond to the activities
overlaid on the Web graphs [28], social networks and commu-
nication networks. In these cases, the vertices of the graph
correspond to different web pages, actors, or IP addresses
and the edges represent the links or communication activi-
ties among them. Such graph streams may change rapidly
in the context of a massive domain of potential edges.

A key property of a graph stream is that it is dynamically
updated and the speed of incoming edges can be very high.
Therefore, the standard stream constraint of being able to
process every edge only once applies naturally in this sce-
nario. Besides its dynamic nature, an additional challenge
arises due to the massiveness of a graph stream. In theory,
the number of distinct edges of a graph stream is quadrati-
cally related to the number of vertices, and thus it becomes
prohibitive to manage such a huge number of edges explic-
itly. For example, in a social network containing 107 users,
the number of distinct edges is of the order of 1014. The
number of interactions, such as the instant messages being
sent among individuals at the moment, is even prohibitively
larger. Without an efficient storage of the underlying graph,
it becomes almost impossible to enable effective query pro-
cessing on graph streams.

In this paper, we consider some typical queries relevant to
graph streams:

• Edge Query: We estimate the frequency of particular
edges in a graph stream;

• Aggregate Subgraph Query: We determine the ag-
gregate frequency behavior of constituent edges of a
subgraph.

Despite being primitive, both edge query and aggregate sub-
graph query are nontrivial in graph streams, and they serve
as the building bricks of many advanced querying and min-
ing operations of graph streams [6, 20, 16]. Some applica-
tions of such queries are as follows:

1. In social networking applications, vertices represent
the participants of a social network, and edges cor-
respond to interactions among the participants. For
very large and frequently updated social networks, the
underlying graph streams have a rapid rate of incom-
ing edges. An edge query is to estimate the commu-
nication frequency between two specific friends, while
an aggregate subgraph query is to estimate the overall
communication frequencies within a community;
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2. In network intrusion applications, vertices of the graph
stream represent distinct IP addresses, and edges cor-
respond to network attacks between IP pairs. IP at-
tack packages involving different IP pairs are received
dynamically in a stream fashion. An edge query is
to estimate the attack frequency between a pair of IP
addresses, and an aggregate subgraph query is to es-
timate the overall attack frequencies of a subset of in-
terconnected IP addresses.

It is possible to design a straightforward solution by build-
ing a global synopsis structure corresponding to the entire
graph stream for query estimation. Note here any well stud-
ied sketch method [5, 23, 14, 11] can be leveraged, which,
however, is blind to the underlying structural behavior of
graph streams. In real applications, the frequencies of edges
are often extremely skewed over different regions of the un-
derlying graph. It is therefore inefficient to use a single
global sketch for the whole graph stream, which does not
consider such structure-related skewness to its advantage.

In this paper, we propose a new graph sketch method, gS-

ketch, for querying large graph streams. An important con-
tribution of gSketch is that it resolves the challenges of query
estimation by making use of typical local and global struc-
tural behavior of graph streams. We consider well known
properties of graph streams in real applications, such as the
global heterogeneity and local similarity, in conjunction with
coarse and easy to compute vertex-specific statistics, to cre-
ate an intelligent partitioning of the virtual global sketch
toward optimizing the overall query estimation accuracy. In
this way, incoming queries can be answered by the corre-
sponding partitioned local sketches, upon which the query
estimation accuracy can be improved. The motivation to
use the vertex-specific statistics of the graph stream during
sketch partitioning is twofold. First, the locality similarity
within the vicinity of vertices can be effectively encoded and
leveraged during sketch partitioning. Second, although the
number of potential edges may be too large to be charac-
terized, the number of vertices of a graph stream is often
much more modest [19], and the vertex-based statistics can
be easily quantified during query estimation. We consider
two practical scenarios for sketch partitioning: (1) a graph
stream sample is available, and (2) both a stream sample and
a query workload sample are available. Efficient sketch par-
titioning algorithms under different scenarios are designed
respectively and our experimental results on both real and
synthetic graph streams have demonstrated the effectiveness
and efficiency of gSketch. In both scenarios, gSketch achieves
up to an order of magnitude improvement in terms of the
query estimation accuracy, compared with the state-of-the-
art global sketch method.

The remainder of this paper is organized as follows. We
discuss related work in Section 2. In Section 3, we intro-
duce a general framework for querying graph streams. We
will have a broad discussion on how sketches can be used for
query estimation in graph streams, and the potential prob-
lems of a direct application of a global sketch structure. In
Section 4, we are focused on the issues and algorithms of
sketch partitioning under different scenarios, which are de-
termined by the availability of different sample data. Query
processing in the presence of a group of partitioned sketches
is detailed in Section 5. Section 6 contains our experimental
studies, and Section 7 concludes the paper.

2. RELATED WORK
The problem of querying and mining data streams has

been studied extensively [25, 1] in recent years. The earliest
work in the graph domain, however, was proposed in [21].
The subsequent work explored methods for counting the
number of triangles [6, 8], determining shortest paths [19],
estimating PageRank scores [16], mining dense structural
patterns [3], and characterizing the distinct degree counts
of the nodes in the multi-graph scenario [15]. An excellent
survey on mining and querying graph streams can be found
as well [24]. Surprisingly, none of the previous work has fo-
cused on the query estimation issue on large graph streams.

On the other hand, sketch synopses, including but not
limited to AMS [5], Lossy Counting [23], CountMin [14] and
Bottom-k [11], have proven to be effective data structures in
the general stream scenario. Such sketches however may not
work well for the case of graph data. For example, they do
not consider the underlying correlations of the edge frequen-
cies in the graph stream. That is, only partial information
available in graph streams is leveraged in these sketch-based
structures. As a result, the sketching methods have to be re-
examined and designed specifically to accommodate the new
challenges and characteristics inherent in graph streams.

Although the sketch partitioning technique has been pro-
posed in the general data stream domain for join size estima-
tion [17], it is in the context of non-structural data. From an
algorithmic point of view, this method works with the AMS
method as a base, and attempts to minimize the variance
of attribute values within each partition. This is based on
how the error of join-size estimation is computed, in which
the weighted sum of the variances of join attributes needs
to be minimized. This approach is quite different from our
sketch partitioning method, gSketch, on graph streams. In
gSketch, we make use of the structural frequency behavior
of vertices in relation to the edges for sketch partitioning. In
other words, the structural nature of a graph stream makes
it quite different from the former sketch-partitioning prob-
lem, which has applied to the multi-dimensional data.

3. THE ALGORITHMIC FRAMEWORK
In this section, we will discuss an algorithmic framework

for query estimation in graphs streams. We first formu-
late the problem of query estimation for the case of graph
streams. A straightforward solution is then proposed to con-
struct a global sketch for the entire graph stream. The
main limitation of this global sketch method is that the
structural properties of graph streams are totally ignored
during query estimation. Such limitation also motivates us
to consider leveraging the underlying structural properties
of graph streams, thus resulting in our sketch-partitioning
based solution, gSketch.

3.1 Problem Definition
Given a graph stream, we assume its underlying graph G

can be defined as G = (V, E), where V is a vertex set of G.
For each vertex x ∈ V, there is a string l(x) attached to x as
the label of x. E is the edge set of G and every edge (x, y) ∈ E
is a directed edge1. The incoming graph stream contains el-
ements (x1, y1; t1), (x2, y2; t2), . . . (xi, yi; ti) . . . . . ., where the

1In the event of an undirected graph, lexicographic order-
ing on vertex labels can be used in order to determine the
direction of the edge. Ties are broken arbitrarily.
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Figure 1: A CountMin Sketch

edge (xi, yi) is encountered at the time-stamp ti. In some
applications, a frequency f(xi, yi, ti) is associated with the
edge (xi, yi) at ti. For example, in a telecommunication ap-
plication, the frequency f(xi, yi, ti) may denote the number
of seconds in a phone conversation from a person xi to an-
other person yi starting at the time-stamp ti. If not specified
explicitly, we assume f(xi, yi, ti) = 1 by default.

Hitherto, the graph stream as defined above has been fre-
quently encountered in a number of application domains
such as network intrusion detection, telecommunication, and
social networks. Some representative queries in such graph
streams can be formulated as follows:

• Edge Query: To estimate the overall frequency of
the edge (x, y): f̃(x, y) =

∑

ti∈T
f(x, y, ti), where T

can be the lifetime of the graph stream or a specific
time window of interest.

• Aggregate Subgraph Query: To estimate the ag-
gregate frequency of the constituent edges of a sub-
graph G = {(x1, y1), . . . , (xk, yk)}: f̃(G) = Γ(f̃(x1, y1),

. . . , f̃(xk, yk)), where Γ(·) is an aggregate function of
interest, such as MIN(·) or AVERAGE(·). For exam-
ple, when Γ(·) = SUM(·), it can summarize the to-
tal frequency of all the edges of the subgraph G, i.e.,
f̃(G) =

∑k
i=1 f̃(xi, yi).

Aggregate subgraph query is essentially a derivative of
edge query in the sense that it is performed on a bag of
edges belonging to a subgraph, so it can be naturally re-
solved by the use of the function Γ(·) on all query results of
the constituent edge queries. Therefore, we will mostly be
focused on edge query estimation. The generalization from
edge query towards aggregate subgraph query is straightfor-
ward and will be discussed further in Section 6.

3.2 A Global Sketch Solution
In this section, we will discuss a straightforward solution,

denoted as Global Sketch, for query estimation in graph
streams. Global Sketch is an intuitive application of any
sketch method [5, 23, 14, 11, 13] for summarizing the entire
graph stream, provided that the edges of the graph stream
can be represented and accommodated appropriately in the
traditional data stream scenario. Our discussion will fo-
cus on one specific sketch method, CountMin [14], while our
analysis below can be easily generalized toward other sketch
methods in an analogous way.

A CountMin sketch consists of a 2-dimensional array with
a width of w = ⌈e/ǫ⌉ and a depth of d = ⌈ln(1/δ)⌉, and thus
there exist w · d cells in total in the sketch. Here e is the
base of the natural logarithm. ǫ and δ are user-specified pa-
rameters, which imply that the error of answering a query

is within a factor of 1 + ǫ of the true value with proba-
bility at least 1 − δ. In the CountMin sketch, we select d
pairwise independent hash functions, h1, . . . , hd. Each hi

(1 ≤ i ≤ d) uniformly maps onto random integers in the
range [0, w − 1] and corresponds to one of d 1-dimensional
arrays with w cells each. These d hash functions are used to
update the frequency of an element from a data stream on
different mapping cells in the 2-dimensional data structure.
For example, consider a data stream with elements drawn
from a universe of domain values. When a new element et

is received at the time-stamp t, we apply each of the d hash
functions upon et to map onto a number in [0 . . . w−1]. The
value of each of d cells, hi(et), is incremented accordingly by
1. In order to estimate the frequency of the element during
query processing, we choose the set of d cells onto which the
d hash-functions map, and determine the minimum value
among all these d cells as the query estimation result. An
example of a CountMin sketch is illustrated in Figure 1.

Theoretically, if f is the true frequency value of the ele-
ment et, the estimated frequency, f̃ , can be lower bounded
by f , because we are dealing only with non-negative fre-
quencies, and value collisions during hashing can only cause
overestimation. A probabilistic upper-bound of f̃ can be de-
termined as well [14]. Given a data stream with N arrivals

till the time-stamp t, the estimate f̃ is at most f + e · N/w
with probability at least 1 − e−d, i.e., w.h.p.,

f ≤ f̃ ≤ f + e · N/w (1)

Note that the probability of the error-bound being violated
reduces exponentially with d. The CountMin sketch has
proven to be accurate for many practical scenarios in tradi-
tional data streams [14].

Analogously, the CountMin sketch can be directly applied
on graph streams for query estimation by treating each edge
as an element with a unique identifier. We note that the edge
(xi, yi) can be represented as a string l(xi)⊕ l(yi) where ⊕ is
the concatenation operator on the vertex labels of xi and yi.
This string can be hashed as the key of the edge (xi, yi) onto
the CountMin sketch to maintain the frequency of (xi, yi).

However, such an approach, Global Sketch, has proven to
be ineffective in the graph stream domain. This is because
when N edges have been received in a CountMin sketch with
hash range w, the (absolute) query estimation error |f−f̃ | is
proportional to N/w, as shown in Equation (1). Therefore,
the relative estimation error of an edge query with frequency
f is proportional to N/(w ·f), which can be extremely large
for small values of f and large values of N . In practice,
the edge frequency distribution of a graph stream can be
quite uneven and those low frequency portions of the un-
derlying graph can be very relevant for querying, and may
show up repeatedly in the workload. Furthermore, the num-
ber of edges N can be extremely large for graph streams.
Therefore Global Sketch may generate inaccurate estimation
results. Due to the natural vulnerability and limitations of
Global Sketch, we need to design a more effective approach
specifically for massive graph streams.

3.3 Broad Intuition for a Better Solution
The graph streams such as those found on the Web and

various applications are typically not random. They often
exhibit both local and global structural properties which are
potentially useful in sketch construction and query estima-
tion. Some common properties are characterized as follows:
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• Global Heterogeneity and Skewness: The rela-
tive frequency distribution of different edges in a mas-
sive graph stream is nonuniform and often observed
extremely uneven [18, 27];

• Local Similarity: Within structurally localized re-
gions of the graph, relative frequencies of the edges
are often correlated with one another [18, 7, 10]. Al-
though this does not mean that the frequency behav-
ior is identical within a locality, the correlations of the
edge frequencies in a local region are considerable.

These empirical observations provide us with useful hints
for the design of a more effective graph sketch method, de-
noted as gSketch, for query estimation. The key idea of gS-

ketch is to partition a virtual global sketch corresponding to
the entire graph stream to a set of smaller localized sketches,
such that edges of different structural localities in the under-
lying graph can be mapped onto different partitioned local
sketches. Therefore edges with similar frequency correlation
can be updated and queried by the same local sketch during
stream maintenance and query estimation. In this way, the
estimation error of each local sketch is much lower compared
with the case when a single global sketch is used. This ulti-
mately helps improve the overall query estimation accuracy
of gSketch over that of Global Sketch. It is worth noting that
most often the data samples of a graph stream are readily
available. In some other cases, the query workload samples
may also be available. Therefore, it becomes possible for
us to fully leverage such sample information with encoded
structural properties of graph streams for effective sketch
partitioning.

4. SKETCH PARTITIONING
In this section, we will introduce our sketch partitioning

algorithms, which are performed as a pre-processing step
on the sample data before the actual sketch structures are
populated with the graph stream. Our goal of sketch parti-
tioning is to maintain the graph streams with sufficient fre-
quency uniformity within each partitioned sketch, such that
the query estimation can be optimized over the entire graph
stream. Each localized sketch in the partitioning is designed
for summarizing the edge frequencies associated with par-
ticular source vertices. Therefore, it becomes much easier to
maintain the sketch partitioning information in main mem-
ory, as the number of vertices is significantly smaller than
the number of edges in the underlying graph.

As discussed earlier, we consider two sampling scenarios:

1. In the first scenario, a sample of the original graph
stream is available. However, specific information about
query workloads is unavailable.

2. In the second scenario, a sample of the original graph
stream as well as a sample of the query workload is
available. In this case, the sketch partitioning can be
further optimized with the additional information of
query workloads.

Before discussing the specific algorithms, we will introduce
some notations and definitions. We denote the frequency of
edge (i, j) by f(i, j), where i, j ∈ V. This value is the one to
be estimated during query processing, and is therefore not
explicitly available. In fact, the edge frequency cannot even
be explicitly stored in the case of graph streams because the

number of potential edges can be exponentially large. The
relative frequency of a vertex i, denoted as fv(i), is defined
as the sum of the frequencies of the edges emanating from
i, i.e.,

fv(i) =
∑

j

f(i, j) (i, j) ∈ E (2)

The out degree of a vertex i, denoted as d(i), is defined as
follows:

d(i) =
∑

j

θ(i, j) (i, j) ∈ E (3)

where

θ(i, j) =

{

0 (i, j) is not in the graph stream
1 otherwise

4.1 Sketch Partitioning with Data Sample
In this section, we will discuss the process of sketch par-

titioning in the presence of a data sample only. In order
to construct the sketch partitions, we would like to group
together structural regions of the graph stream with simi-
lar frequency behavior, which ultimately helps optimize the
query estimation accuracy. However, since we are trying to
estimate the edge frequencies to begin with, this frequency
information for associating the edges with the correspond-
ing sketch partitions is unfortunately not available directly.
Therefore, it would seem that there is no practical way to
ensure the regions with similar frequencies are assigned to
the same partition. However, as discussed in Section 3.3,
it is possible to exploit the structural properties of graph
streams to efficiently approximate the frequency behavior
of the edges in different structural localities and create the
sketch partitioning accordingly. In order to make the analy-
sis clearer, we first make an oracle assumption that the fre-
quency f(i, j) of the edge (i, j) over the entire graph stream
is known in advance. Later, we will relax this assumption
by leveraging the structural characteristics of graph streams
for frequency estimation.

Let us assume that there is a total of r (r ≥ 1) parti-
tions of the global CountMin sketch and Si is the localized
sketch corresponding to the ith partition (1 ≤ i ≤ r). The
total space, which is essentially the available main mem-
ory, is allocated equally to each partition by evenly dividing
the width of the global CountMin sketch while keeping the
depth of each partitioned sketch to be the same as that of
the global CountMin sketch. In other words, the width of Si

is wi = w/r and the depth of Si is di = d, where w and d are
the width and depth of the global sketch, respectively. In
this way, we can ensure the same probabilistic guarantee of
frequency estimation, 1− ed, across all partitioned sketches,
as indicated in Equation (1). Let F (Si) be the sum of the
edge frequencies in the ith sketch, Si, and (m, n) is such an
edge that is associated with Si for frequency maintenance
and querying. Then, the expected frequency of (m, n), de-
noted by f̄(m, n), when hashed into a cell of Si because of
erroneous collisions, is determined by

f̄(m, n) = (F (Si) − f(m, n))/wi

Therefore, the expected relative error of the edge (m, n) is
given by

ē(m, n) = f̄(m, n)/f(m, n) = F (Si)/(f(m, n) · wi) − 1/wi
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for any particular row in the sketch Si. If the depth d of the
sketch Si is 1, the overall relative error, Ei, of the sketch Si

is

Ei =
∑

(m,n)∈Si

ē(m, n) =
∑

(m,n)∈Si

(

F (Si)/(f(m, n)·wi)−1/wi

)

(4)
Then the optimization problem of sketch partitioning can
be formulated as follows:

Problem 1. Partition the global sketch into r localized
sketches S1, . . . , Sr based on the edge set of the data sam-
ple, with the objective to minimize

∑r
i=1 Ei, where Ei is

formulated in Equation (4). ✷

Let us consider a simplification of this optimization prob-
lem in which we wish to construct r = 2 partitions. This
is a difficult problem since it can be recast as a 0-1 integer
program with a non-linear objective function [26]. There
can be an exponential number of solutions to the problem
and it is hard to determine the optimal one. We therefore
seek an alternative solution. Our idea is to sort the edges in
the global sketch in nondecreasing order of edge frequencies
and consider those partitions containing edges in contigu-
ously sorted order. The number of such partitions is equal
to the number of edges, since we can choose the partition
pivot at each possible position in the sorted order. However,
the optimal partition pivot is picked at which the objective
function in Equation (4) is minimized.

Unfortunately this solution is still not quite implementable,
since we do not know the edge frequencies to begin with.
Furthermore, the initial data sample is assumed to have
a fairly small size compared to the actual graph stream.
This means that the data sample cannot be reliably used to
estimate the frequency of every edge in the graph stream.
However, it can be effectively used to estimate the relative
frequencies of vertices, as defined in Equation (2). Based
on the property of local similarity of graph streams as de-
scribed in Section 3.3, we alternatively use the frequency
behavior of the vertices to perform the sketch partitioning.
We denote the estimated relative frequency of a vertex m by
f̃v(m), and the estimated out degree of m by d̃(m). Both es-
timated values are derived from the data sample. Then the
average frequency of the edges emanating from the vertex
m is determined by f̃v(m)/d̃(m). That is, we assume d̃(m)
edges emanate from the vertex m with an average frequency
of f̃v(m)/d̃(m). And the total estimated frequencies of the
edges in the partitioned sketch Si (1 ≤ i ≤ r), denoted as

F̃ (Si), can be expressed as

F̃ (Si) =
∑

m∈Si;m∈V

f̃v(m) (5)

As a result, analogous to Equation (4), the overall relative
error Ei of the partitioned sketch Si with the use of vertex
frequency-based statistics can be redefined as follows:

Ei =
∑

m∈Si

d̃(m) · F̃ (Si)

wi · f̃v(m)/d̃(m)
−

∑

m∈Si

d̃(m)/wi (6)

Note that d̃(m) in the numerator accounts for the fact that

there are O(d̃(m)) edges emanating from the vertex m. The
optimization problem of sketch partitioning is therefore trans-
formed to the following form:

Problem 2. Partition the global sketch into r localized
sketches S1, . . . , Sr based on the vertex set of the data sam-
ple, with the objective to minimize

∑r
i=1 Ei, where Ei is

formulated in Equation (6). ✷

As in the previous case, an approximate solution to this
problem is to first sort the vertices in the data sample in
order of average frequency, f̃v(m)/d̃(m), and then pick the
partition pivot at which the objective function, as formu-
lated in Problem 2, can be minimized.

By partitioning the global sketch based on the vertices,
rather than the edges, we essentially create a set of local-
ized sketches on different structural portions of the graph
stream. The advantages of this vertex-based sketch parti-
tioning approach are as follows. First of all, it intelligently
relaxes the oracle assumption of Problem 1, and success-
fully transforms this hard optimization problem to a more
tractable one, as described in Problem 2. Second, due to the
sparsity of the data sample, the query estimation accuracy
can be extremely low if the edge-based sketch partitioning
approach is adopted. Instead, the vertex-based partitioning
principle takes advantage of the local similarity property of
the graph stream, which leads to a much more reliable and
robust sketch partitioning method. Last but not least, the
vertex-based partitioning information is compact and easy
to compute [19]. This enables an efficient storage and main-
tenance of gSketch.

The analysis above suggests a natural way of construct-
ing sketch partitions in a top-down recursive fashion as in
decision trees. We call such a partitioning mechanism as a
partitioning tree. At the first step, we have an initial root
node S representing the virtual global CountMin sketch with
all the available space. The node is then split into two chil-
dren S1 and S2, and the space allocated to either branch
of S is the same. This is done by evenly partitioning the
width of the CountMin sketch corresponding to S between
two branches rooted with S1 and S2, respectively. In or-
der to optimize such a partitioning of S into S1 and S2,
we need to minimize the objective function as expressed in
Problem 2, which corresponds to the summation E below:

E = E1 + E2

=
∑

m∈S1

d̃(m) · F̃ (S1)

w1 · f̃v(m)/d̃(m)
+

∑

m∈S2

d̃(m) · F̃ (S2)

w1 · f̃v(m)/d̃(m)

−
∑

m∈S1∪S2

d̃(m)/w1

(7)

Note the sketch widths of S1 and S2 are equal, i.e. w1 = w2.
We therefore use w1 uniformly throughout the expression in
Equation (7). In order to further simplify the expression,
we define an alternative expression E′ as

E′ = E · w1 +
∑

m∈S1∪S2

d̃(m) (8)

It is obvious that E is optimized whenever E′ is optimized.
This is because w1 is positive, and

∑

m∈S1∪S2
d̃(m) is a con-

stant irrespective of how the partitioning of S into S1 and
S2 is performed. We simplify the value of E′ as follows:

E′ =
∑

m∈S1

d̃(m) · F̃ (S1)

f̃v(m)/d̃(m)
+

∑

m∈S2

d̃(m) · F̃ (S2)

f̃v(m)/d̃(m)
(9)

To this end, we evaluate the value of E′ over all possible par-
titions of S in sorted order of f̃v(m)/d̃(m). Note there are as
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many choices of the partition pivot as the number of vertices
in S, and we pick the one for which the value of E′ in Equa-
tion (9) is minimized. After S is partitioned into S1 and
S2, they themselves form the next pair of decision nodes for
further partitioning consideration in the partitioning tree.
For the internal nodes of the partitioning tree, we do not
explicitly construct the corresponding sketches. Instead, we
use them to maintain information for further sketch parti-
tioning. This partitioning process is performed recursively
until one of the following two termination criteria is met:

1. The width of a sketch S at a given level is less than a
particular threshold w0, i.e., S.width < w0;

2. The number of distinct edges being counted within a
sketch S is no greater than a constant factor C of the
sketch width, i.e.,

∑

m∈S d̃(m) ≤ C · S.width.

In the first case, we do not further partition the sketch but
build and materialize it explicitly, because the sketch of this
kind is considered small enough and further partitioning will
incur more collisions and therefore may hurt the final query
estimation accuracy. The second termination case is deter-
mined by the following theorem:

Theorem 1. For a given sketch S and a nonnegative con-
stant C (0 < C < 1), s.t.,

∑

m∈S d̃(m) ≤ C · S.width, the
probability of any collision in a particular cell of S can be
bounded above by C.

Proof. We denote the hash function of a specific row of
S as h(·). Given two distinct edges i and j, the probability
of collision between i and j in a particular cell of S can be
determined as

Pr(h(i) = h(j)) ≤ 1/S.width

There are
∑

m∈S d̃(m) distinct edges associated with the
sketch S. By pairwise independence of the collision proba-
bility of distinct edges, we note the probability of any colli-
sion with the edge i is

∑

j

Pr(h(i) = h(j)) ≤

∑

m∈S d̃(m)

S.width
≤ C

Therefore, the probability of any collision in a particular cell
of S is no greater than C.

Intuitively, if the number of distinct edges within a sketch
S is small enough (bounded up by a constant factor of the
width of S), the probability of collisions within S will be
small, and therefore S can be directly used as a high quality
localized sketch for query estimation without further par-
titioning. In practice, we further set the width of such
sketches to the modest value of

∑

m∈S d̃(m). It helps save
extra space which can be allocated to other sketches, and
improve the final query estimation accuracy. We note that
even though the sketch partitioning is performed at every
internal node of the partitioning tree, the sketches are phys-
ically constructed only at the leaves of the tree.

The sketch partitioning algorithm (with data sample only)
is illustrated in Figure 2. We now give a detailed complex-
ity analysis of the algorithm. In the partitioning tree, every
internal node is split into two nodes for further inspection
(Lines 6 − 7). In the worst case, the partitioning tree can
be a complete binary tree with a height of log(w/w0), and

Algorithm Sketch-Partitioning (Data Sample: D)
begin
1. Create a root node S of the partitioning tree as an

active node;
2. S.width = w = ⌈e/ǫ⌉;
3. S.depth = d = ⌈ln 1

δ
⌉;

4. Create an active list L containing S only;
5. while (L 6= ∅)

begin
6. Partition an active node S ∈ L based on D into

S1 and S2 by minimizing E′ in Equation (9);
7. S1.width = S2.width = S.width/2;
8. L = L\{S};
9. if (S1.width ≥ w0) and (

∑

m∈S1
d̃(m) > C · S1.width)

10. then L = L
⋃

S1;
11. else Construct the localized sketch S1;
12. if (S2.width ≥ w0) and (

∑

m∈S2
d̃(m) > C · S2.width)

13. then L = L
⋃

S2;
14. else Construct the localized sketch S2;

end
end

Figure 2: Sketch Partitioning with Data Samples

the number of internal nodes in the partitioning tree can be
at most 2log(w/w0) − 1, i.e., (w/w0 − 1), which is also the
number of active nodes to be processed in L (Line 5). For
each internal node of the partitioning tree, we need to sort
corresponding vertices and select the pivot at which the ob-
jective function can be minimized. The complexity of such
operations is at most O(|D|log|D|). Therefore, the overall
complexity of the algorithm is O((w/w0 − 1)|D|log|D|).

4.2 Sketch Partitioning with Data and Work
load Samples

In this section, we further assume that a query workload
sample is available in addition to the data sample, and dis-
cuss how it can be exploited for more effective partition-
ing. In this scenario, it is possible to estimate the relative
weights of different edge queries in the presence of the query
workload sample. More specifically, the relative weights of
vertices are estimated from the query workload sample and
then incorporated into the sketch partitioning process. The
relative weight of a vertex n is the relative frequency of edges
emanating from n to be used in the querying process, and
can be derived from the query workload sample. Let w̃(n)
be the relative weight of the vertex n in the query workloads.
In this scenario, the vertex based relative error, Ei, of the
ith partitioned sketch, Si, can be formulated as follows:

Ei =
∑

n∈Si

w̃(n) · F̃ (Si)

wi · f̃v(n)/d̃(n)
−

∑

n∈Si

w̃(n)/wi (10)

This condition is similar to that formulated in Equation (6)
for the data sample scenario. The difference is the term
w̃(n) in the numerator, which has been introduced in order
to account for queries emanating from the vertex n.

During sketch partitioning, a given node S in the parti-
tioning tree is split into two nodes S1 and S2, such that the
overall relative error is minimized. The objective function
in this scenario can be formulated as follows:

E′ =
∑

n∈S1

w̃(n) · F̃ (S1)

f̃v(n)/d̃(n)
+

∑

n∈S2

w̃(n) · F̃ (S2)

f̃v(n)/d̃(n)
(11)
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Algorithm Sketch-Partitioning (Data Sample: D;
Workload Sample: W )

begin
1. Create a root node S of the partitioning tree as an

active node;
2. S.width = w = ⌈e/ǫ⌉;
3. S.depth = d = ⌈ln 1

δ
⌉;

4. Create an active list L containing S only;
5. while (L 6= ∅)

begin
6. Partition an active node S ∈ L based on D and W

into S1 and S2 by minimizing E′ in Equation (11);
7. S1.width = S2.width = S.width/2;
8. L = L\{S};
9. if (S1.width ≥ w0) and (

∑

m∈S1
d̃(m) > C · S1.width)

10. then L = L
⋃

S1;
11. else Construct the localized sketch S1;
12. if (S2.width ≥ w0) and (

∑

m∈S2
d̃(m) > C · S2.width)

13. then L = L
⋃

S2;
14. else Construct the localized sketch S2;

end
end

Figure 3: Sketch Partitioning with Data and Work-
load Samples

We sort the vertices in order of f̃v(n)/w̃(n) and perform
the sketch partitioning at the pivot with which the objec-
tive function E′ in Equation (11) is minimized. The sketch
partitioning algorithm for this scenario is shown in Figure 3.
The major difference here is that we make use of both the
data sample and the workload sample for sketch partitioning
and the objective function is determined by Equation (11).
Similarly, the worst-case time complexity of the algorithm
in this scenario is O((w/w0 − 1)|D|log|D|).

5. QUERY PROCESSING
Sketch partitioning is a pre-processing step to determine

the association of vertices in the data sample to different
partitioned localized sketches. More specifically, we main-
tain a hash structure H : V → Si, 1 ≤ i ≤ r. For an
edge (m, n) in the graph stream, it can be hashed onto the
localized sketch H(m) = Si for frequency update and query-
ing. Although this hash structure H is an extra overhead
that needs to be stored along with the sketches, the cost
is marginal compared to the immense advantages of sketch
partitioning. Furthermore, we do not need to explicitly store
the hierarchical structure of the partitioning tree. Only the
partitioned sketches represented by the leaf nodes in the
partitioning tree need to be physically stored for querying
purposes.

After the off-line sketch partitioning phase, the result-
ing partitioned sketches are then populated with the mas-
sive graph stream in an online fashion and start supporting
the query processing and estimation simultaneously. As the
graph stream arrives, we use the hash structure H to asso-
ciate incoming edges to the corresponding localized sketches,
and update the edge frequencies in the corresponding sketch.
During the querying phase, we analogously first determine
the relevant partitioned sketch to which an edge query is as-
sociated. Once the sketch is identified by H, the edge query
can then be answered specifically by that sketch.

A special case is the one in which a particular vertex oc-
curring in the graph stream does not occur in the original
data sample. For edges which contain such vertices, a fixed
portion of the original space is allocated as an outlier parti-
tion and a separate outlier sketch is constructed accordingly
to count the frequencies of these edges. For the purpose of
querying, those vertices which do not occur in any partition
are resolved by this special outlier sketch. It is important to
understand that the real graph streams are often consider-
ably skew in vertex presence in data samples. The vertices
involved in those edges with high frequency will typically
be present in the sample as well. Therefore, it leaves only a
small fraction of the overall frequency to be processed by the
outlier sketch. Recall that the estimation error of the sketch-
based methods is dependent upon the overall frequency of
the items added to the sketch. Since most of the high fre-
quency edges have already been skimmed off, the estimation
results from the outlier sketch can still be accurate. Thus,
even in the presence of new vertices in the graph stream, gS-

ketch can achieve satisfactory query estimation results be-
cause of the removal of most of the high-frequency edges
from the outlier sketch.

We note that the confidence intervals of the CountMin

sketch method apply within each localized partition of gS-

ketch. Since the number of edges assigned to each of the
partitions is known in advance of query processing, it is
possible to know the confidence of each particular query.
Therefore, the confidence intervals of different queries are
likely to be different depending upon the sketches that they
are assigned to. On the average, the confidence intervals of
different sketch partitions are likely to be similar to that of
the global sketch with the same amount of space. However
the exploitation of structural properties in gSketch leads to
much better experimental behavior. We will present these
experimental advantages in Section 6.

Users may sometimes be interested in dynamic queries
over specific windows in time. For example, a user may be
interested in the frequency behavior of edges in the past one
month, one year and so on. In such cases, it makes sense
to divide the time line into temporal intervals (or windows),
and store the sketch statistics separately for each window.
The partitioning in any particular window is performed by
using a sample, which is constructed by reservoir sampling
from the previous window in time. Queries over a specific
time-interval can be resolved approximately by extrapolat-
ing from the sketch time windows which overlap most closely
with the user-specified time window.

For the case of aggregate subgraph query, we first decom-
pose the query into a bag of constituent edges and then se-
quentially process each edge as a separate edge query against
the graph stream. Each such edge is first mapped to the
appropriate sketch, and then is estimated by that sketch.
After that, all estimated answers of the constituent edges
are summarized by the aggregate function, Γ(·), as the final
estimation result of the aggregate subgraph query.

6. EXPERIMENTAL RESULTS
In this section, we report our experimental findings on

query estimation in graph streams. We compare our gS-

ketch method with Global Sketch, which makes use of a global
sketch for the entire graph stream in order for query esti-
mation. Our experiments are evaluated in both scenarios
characterized by the availability of data samples and query
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workload samples. All our experiments are performed on an
Intel PC with a 3.4 GHz CPU and 3.2GB main memory,
running Window XP Professional SP3. All algorithms in-
cluding gSketch and Global Sketch are implemented in C++.

6.1 Data Sets
We choose two real data sets and one synthetic data set in

our experimental studies. Two of the data sets are publicly
available, while one real data set is extracted from a large
cooperate sensor network. The details of each data set are
elaborated as follows.

DBLP. The DBLP database2 contains scientific publi-
cations in the computer science domain, and we extract
all conference papers ranging from 1956 to March 15th,
2008 for our experimental studies. There are 595, 406 au-
thors and 602, 684 papers in total. We note that for a
given paper, the authors are listed in a particular order as
a1, a2, . . . , ak. An ordered author-pair (ai, aj) is then gen-
erated if 1 ≤ i < j ≤ k. There are 1, 954, 776 author-pairs
in total, which are considered as streams of the underlying
co-authorship graph, and are input to gSketch and Global

Sketch in a chronological order.
IP Attack Network. Our second real data set is IP at-

tack streaming data extracted from a corporate sensor net-
work. The data set was initially collected from January 1st,
2007 to June 11th, 2007 comprising IP attack packet data
from sensors. For each IP attack transaction, the attack
type, time-stamp, sensor information, source IP address,
target IP address and vulnerability status are recorded. We
extract the source IP address and the target IP address of
each IP attack packet to compose graph streams and se-
lect a time-frame from January 1st, 2007 to January 5th,
2007 as the time window of interest. This data set contains
3, 781, 471 edges in total.

GTGraph. The synthetic data set is generated by the
well-known graph generator GTGraph3. A large network G
with power-law degree distributions and small-world charac-
teristics is generated based on R-MAT model [9]. We choose
default values of parameters during network generation, as
suggested by the authors. The generated network contains
108 vertices and 109 edges, and the edges of G are used as
graph streams for experimental evaluation.

In order to verify the common characteristics of edge fre-
quencies exhibited in graph streams, we denote the global
variance of edge frequencies of the graph stream by σG. We
further define the average local variance of edge frequencies
on a vertex basis as σV . This is computed by determining
the statistical variance of edge frequencies for the edges inci-
dent on each source vertex and averaging over different ver-
tices. The variance ratio, σG/σV , for each of the three dif-
ferent data sets, DBLP, IP Attack Network, and GTGraph,
is 3.674, 10.107, and 4.156, respectively. It is evident that
the edge frequency variance on a vertex basis is consistently
much smaller than the edge frequency variance of the whole
graph stream. This also shows that there is significant skew
in the frequency properties of graph streams, a fact we have
considered in our sketch partitioning approach, gSketch.

6.2 Evaluation Methods
We evaluate different query estimation algorithms for both

edge query and aggregate subgraph query. Edge queries are

2http://www.informatik.uni-trier.de/˜ley/db/
3http://www.cc.gatech.edu/˜kamesh/GTgraph/index.htm

expressed as a set of edges drawn from the graph stream,
whereas aggregate subgraph queries are expressed as a set
of subgraphs whose aggregate frequency behavior is exam-
ined. Given an edge query set Qe = {q1, q2, . . . , qk}, where
qi is an edge in the graph stream, we consider two different
accuracy measures for query estimation:

1. Average Relative Error. Given q ∈ Qe, the relative
error, er(q), is defined as

er(q) =
f̃(q) − f(q)

f(q)
=

f̃(q)

f(q)
− 1 (12)

Here, f̃(q) and f(q) are the estimated frequency and
true frequency of q, respectively. The average relative
error of Qe is determined by averaging the relative
errors over all queries of Qe:

e(Qe) =

∑k
i=1 er(qi)

k
(13)

2. Number of “Effective Queries”. Average relative
error may become a biased measure if queries of Qe

have significantly different frequencies. For example,
if an edge with low frequency happens to collide with
another edge with very high frequency in the sketch,
this can lead to an extremely large value of average
relative error. That is, a small number of such queries
may dominate the overall average relative error of Qe

in query estimation. We therefore propose another
more robust measure, number of effective queries. The
estimation of a query, q, is said to be “effective”, if
er(q) ≤ G0, where G0 is a user-specified threshold.
The idea here is that the estimated relative error of
a query larger than G0 may deviate too much from
its true frequency, such that it is no longer considered
as an effective estimation. We denote the number of
effective queries estimated in Qe as g(Qe), and

g(Qe) = |{q|e(q) ≤ G0, q ∈ Qe}| (14)

In all our experiments, we set G0 = 5 by default, unless
otherwise specified.

In addition to edge queries, we also consider aggregate
subgraph queries. Given a subgraph query set Qg = {g1, g2,
. . . , gk}, the relative error of g = {e1, . . . , el} ∈ Qg is defined
as

er(g) =
Γ(f̃(e1), . . . , f̃(el))

Γ(f(e1), . . . , f(el))
− 1 (15)

In our experiments, we set Γ(·) = SUM(·), so that the ag-
gregate frequency behavior of a subgraph is summarized by
adding up all the frequencies of the constituent edges of
this graph. We define the query estimation measures (aver-
age relative error, e(Qg), and number of “effective” queries,
g(Qg)) for aggregate subgraph query in an analogous way
as to edge query. As will be shown in the following sections,
the query estimation results of aggregate subgraph query
are similar to those of edge query. We therefore present the
results of both kinds of queries in the DBLP data set only.
For the other two data sets, we present the query estimation
results only for edge queries. Besides query estimation accu-
racy, another important evaluation metric is the efficiency
of sketch construction and query processing. The sketch
construction time is therefore denoted as Tc, and the query
processing time is denoted as Tp.
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Figure 4: Average Relative Error of Edge Queries
Qe w.r.t. Memory Size (Bytes)

6.3 Query Estimation with Data Samples
We first consider the scenario in which only the data

sample is available for query estimation in different graph
streams.

In the DBLP data set, a data sample with a size of 100, 000
edges is generated by reservoir sampling [29] from the under-
lying co-authorship graph. The edge query set Qe comprises
10, 000 edge queries, which are generated by uniform sam-
pling. The subgraph query set Qg comprises 10, 000 graphs,
each of which is generated by first uniformly sampling ver-
tices as seeds from the underlying co-authorship graph and
then exploring the seeds’ neighborhood by BFS traversal to
include more vertices. At any given node during BFS traver-
sal, the next edge to be explored is picked at random and
each such subgraph contains 10 edges in total.

In the IP Attack Network data set, we select the IP pair
streams from the first day (January 1st, 2007) as the data
sample, which contains 445, 422 edges. The query set Qe is
generated from the original graph stream by uniform sam-
pling and |Qe| = 10, 000.

For the synthetic GTGraph data set, we select 5, 000, 000
edges, i.e., 5% of the whole graph stream, as the data sample
by reservoir sampling. The edge query set, Qe, is selected
from the graph stream as well by uniform sampling and
|Qe| = 10, 000.

We first examine the query estimation accuracy of dif-
ferent algorithms w.r.t. the first evaluation metric, average
relative error. The first set of results for the edge query sets,
Qe, is illustrated in Figure 4 across different data sets. It
is evident that gSketch is consistently more accurate than
Global Sketch at various memory footprints. This means
the exploitation of underlying structural properties of graph
streams is very helpful in boosting query estimation accu-
racy. When the available memory space is limited (less
than 2M bytes in the DBLP and the IP Attack Network
cases), the difference of query estimation accuracy of the
two algorithms is very large. For example, in the DBLP
data set, gSketch can achieve 2 − 8 times better estimation
results than Global Sketch. In the more interesting space-
constrained scenarios, this difference in estimation accuracy
becomes very significant, and it suggests that gSketch can
be used in extremely space-constrained devices, such as sen-
sors, for effective query estimation. This also suggests that
the accuracy difference of two methods will still exist when
the size of the underlying graph increases, as shown in the
GTGraph case (Figure 4(c)). When the graph stream be-
comes large with 109 edges, gSketch still outperforms Global

Sketch even when the available memory becomes large up to
2G bytes. This is an important result, because most typical
graph stream applications such as social networks continue
to become more and more massive over time. When the
available memory becomes large, the difference of estima-
tion accuracy between gSketch and Global Sketch reduces,
because theoretically both methods can estimate the queries
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Figure 5: Number of Effective Queries for Edge
Queries Qe w.r.t. Memory Size (Bytes)

accurately if given infinitely large memory. However, gS-

ketch still outperforms Global Sketch in such cases.
We then evaluate the query estimation accuracy in terms

of the number of effective queries estimated in the edge
query set Qe. The estimation results across different data
sets are illustrated in Figure 5 (log-scaled). Again gSketch

outperforms Global Sketch by as much as one or two or-
ders of magnitude. Interestingly, in the synthetic GTGraph
data set, Global Sketch simply fails to estimate any edge
queries “effectively” when the available space is less than
512M bytes. However, gSketch can achieve much better es-
timation results. It suggests that when the graph stream
becomes massive and the underlying graph exhibits signif-
icant global heterogeneity and local similarity properties,
Global Sketch is no longer a feasible solution, while gSketch

continues to retain its effectiveness.
Next, we evaluate the estimation accuracy of aggregate

subgraph queries in the DBLP graph stream. As illustrated
in Figures 6, gSketch consistently outperforms Global Sketch

in terms of both average relative error and number of effec-
tive queries estimated. The experimental results also verify
that gSketch is much more effective than Global Sketch for es-
timating both edge queries and aggregate subgraph queries.

6.4 Query Estimation with Data and Work
load Samples

In this scenario, we evaluate the query estimation ac-
curacy of different algorithms when both the data sample
and the query workload sample are available from graph
streams. We generate the query workload samples from dif-
ferent graph streams as follows. For the DBLP data set,
we generate a query workload sample with 400, 000 edges
by sampling (without replacement) the graph stream which
follows the Zipf distribution. The Zipf-based sampling is pa-
rameterized by a skewness factor α. The larger the value of
α, the more skewed the query workload sample. It is worth
mentioning that a vertex m that exists in the data sample
may not necessarily appear in the query workload sample.
For such a case, we use the Laplace smoothing [22] to avoid
w̃(m), the estimated relative weight of m, to be zero. Edge
and subgraph queries are generated in a similar way by Zipf-
based sampling and the sizes of both the edge query set and
the subgraph query set are 10, 000. In the IP Attack Net-
work, we construct a query workload sample with 800, 000
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edges by Zipf sampling. and the edge query set is generated
with |Qe| = 10, 000. For the synthetic GTGraph data set,
we generate the query workload sample by Zipf sampling
from the original graph, which contains 5, 000, 000 edges,
and the edge query set is generated with |Qe| = 10, 000.

In our first experiment, we fix α = 1.5 for Zipf sampling
during the generation of workload samples and queries. We
then examine the query estimation accuracy in the presence
of both data and query workload samples. The average rel-
ative error and number of effective queries for edge queries
on all data sets are reported in Figure 7 and Figure 8, re-
spectively. In this scenario, gSketch still outperforms Global

Sketch consistently at various memory footprints across dif-
ferent data sets. More interestingly, the estimation accuracy
is higher than that for the case when the data samples are
available only (as shown in Figure 4 and Figure 5) because of
the involvement of the query workload samples. This accu-
racy gain is observed under both evaluation metrics, because
we are leveraging a greater amount of querying information
in sketch partitioning. It may sometimes happen that fre-
quently occurring edges in the query workload sample may
not be present as frequently in the data sample. Such edges
can be estimated far more accurately in this scenario and
further contribute to the improved accuracy.

We then evaluate the query estimation accuracy by vary-
ing the value of the skewness factor, α, to generate a set of
query workloads. The available memory here is fixed with
2M bytes for the DBLP data set and the IP Attack Net-
work data set, and 1G bytes for the GTgraph data sets,
throughout this experiment. The average relative error of
query estimation accuracy is illustrated in Figure 10 across
different data sets. It is evident that with the increase of
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Figure 11: Number of Effective Queries for Edge
Queries Qe w.r.t. Zipf Sampling Skewness α

α, gSketch can achieve better estimation accuracy with a
decreasing trend of average relative errors, because larger
values of α lead to more skewness in the query workload.
Such skewness are accounted for in the sketch partitioning
process and help improve the final query estimation results.
On the contrary, Global Sketch is unable to use such query
workload information, and therefore there is no such accu-
racy improvement. The number of effective queries for the
different methods is illustrated in Figure 11 across different
data sets. Similar to the previous case in which average
relative error is adopted as the evaluation metric, gSketch

achieves better estimation accuracy with an increasing trend
of the number of effective queries estimated, when α varies
from 1.2 to 2.0. This accuracy improvement results from
a better usage of the workload samples during the sketch
partitioning.

Similar experimental evaluations are performed for aggre-
gate subgraph queries on the DBLP data set. In Figure 9,
the query estimation accuracy is reported with the sam-
pling factor α = 1.5. In Figure 12, α varies from 1.2 to 2.0
and the query estimation accuracy is reported if the avail-
able memory is 2M bytes. Analogous to edge queries, ag-
gregate subgraph queries can be more effectively estimated
with the use of query workload information in gSketch. On
the other hand, Global Sketch performs even worse due to
the frequency heterogeneity of the constituent edges in sub-
graph queries.

6.5 Efficiency Results
Besides query estimation accuracy, the time used for sketch

construction, Tc, and the time used for query processing, Tp,
are evaluated as well. Figure 13 illustrates Tc for gSketch
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Figure 13: Sketch Construction Time Tc (Seconds)
w.r.t. Memory Size (Bytes)

across different data sets for the two different scenarios. For
the scenario in which both data and query workload sample
are available, Tc is slightly larger than that when only the
data sample is available. In both scenarios, however, Tc is
within tens of seconds even for the largest graph stream,
GTGraph, which contains 109 edges. Therefore, gSketch

can be rapidly constructed and effectively deployed from a
practical point of view.

We further examine the query processing time, Tp, for
both gSketch and Global Sketch across different data sets, as
shown in Figure 14. For the DBLP data set, we measure the
query processing time for both edge queries and aggregate
subgraph queries. For the other two data sets, we present
the query processing time only for edge queries. First of
all, Tp for gSketch is insensitive to the allocated memory, as
long as the sketch structure can be built and allocated suc-
cessfully in the sketch construction phase. It is evident that
each edge query can be estimated within 0.2 seconds for all
different data sets, while the response time for an aggregate
subgraph query is within 0.8 seconds for the DBLP data
set. Therefore, gSketch can be used in real time on differ-
ent graphs streams. Compared with Global Sketch, gSketch

takes additional time to determine the relevant sketch par-
tition a query belongs to. However, such time is negligible
and does not hurt the practicality of gSketch. On the other
hand, the enormous advantages of the sketch-partitioning
philosophy definitely outweigh such cost.

6.6 Effect of New Vertices
To this end, we assume the underlying graph model of

a graph stream is static. While in reality, such a graph is
dynamically changing with new vertices and corresponding
edges created all the time, thus forming an ever-growing
massive network. As these newly added vertices are not in
the sample data, their corresponding edges will be uniformly
assigned to the outlier sketch for query estimation. A key
question is how these vertices affect the query estimation
process. We will demonstrate that gSketch is robust to the
presence of such new vertices upon the underlying graph.

In order to illustrate this point, we present the estimation
accuracy only for the edge queries answered by the outlier
sketch, and compare it to the accuracy of all the edge queries
answered by gSketch. Table 1 illustrates such query estima-
tion accuracy in terms of average relative error on the GT-
Graph data set (For other data sets and scenarios, we have
similar results). It is evident that the outlier sketch does not
significantly degrade our query estimation accuracy. The
main reason is the outlier sketch has already been skimmed
of the high frequency edges, which could potentially cause
collisions for estimation inaccuracy. The estimation error in
the outlier sketch is therefore not significantly higher than
other partitioned sketches. This also suggests that to the
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presence of new vertices and edges on the underlying graph,
gSketch is still a robust solution to estimating queries on the
graph stream.

6.7 Discussion on Experimental Studies
After extensive studies of gSketch and Global Sketch in

different experimental settings on various data sets, the fol-
lowing conclusions can be made:

1. When space is considered a critical factor, gSketch con-
sistently achieves better query estimation accuracy on
large graph streams in terms of both average relative
error and number of effective queries estimated. Fur-
thermore, the importance of the space limitation in-
creases with the domain size of the underlying graph.

2. By exploiting both data sample and query workload
sample, gSketch can achieve better query estimation
accuracy than that achieved with only the data sam-
ple.

3. When both data samples and query workload samples
are available, gSketch will benefit if the samples are
skewed. The more skewed the query workload sam-
ple, the better query estimation accuracy gSketch may
achieve.

4. For gSketch, the time spent for sketch partitioning and
construction is marginal. Furthermore, query process-
ing can be performed very fast and the time is rela-
tively invariant to the allocated space.

5. To the presence of new vertices and their correspond-
ing edges on the underlying graph of a graph stream,
gSketch is still a robust solution for query estimation,
as long as the estimation error of the outlier sketch is
not significantly higher than that of gSketch.

7. CONCLUSIONS
The problem of querying graph streams is very challeng-

ing because of the high stream speed and the massive uni-
verse of distinct edges. In this paper, we designed an ef-
fective sketch-partitioning algorithm, gSketch, for query es-
timation over massive graph streams. We made use of the
special structural properties of graph streams to help devise
a sketch partitioning solution in order to improve the query
estimation accuracy. We tested our approach on a number
of real and synthetic data sets and illustrated the advantages
of our sketch partitioning algorithm, gSketch, over a global
sketching scheme, Global Sketch. gSketch has proven to be
significantly more effective, and sometimes provides query
estimation accuracy better than Global Sketch by an order
of magnitude.
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Memory Size
128M 256M 512M 1G 2G

Average gSketch 58.5968 20.381 8.0068 3.9345 0.7257
relative error Outlier sketch 58.5971 20.392 8.0081 3.9557 0.7837

Table 1: Avg. Relative Error of gSketch and Outlier Sketch in GTGraph Data Set

In future work, we will study methods for resolving more
complex queries such as those involving the computation of
complex functions of edge frequencies in a subgraph query.
We will also examine the use of sketch-based methods for
resolving structural queries. Finally, we will investigate how
such sketch-based methods can be potentially designed for
dynamic analysis, which may not require any samples for
constructing the underlying synopsis.
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