
Playful Query Specification with DataPlay

Azza Abouzied
Yale University

azza@cs.yale.edu

Joseph M. Hellerstein
UC Berkeley

hellerstein@cs.berkeley.edu

Avi Silberschatz
Yale University

avi@cs.yale.edu

ABSTRACT

DataPlay is a query tool that encourages a trial-and-error
approach to query specification. DataPlay uses a graphi-
cal query language to make a particularly challenging query
specification task - quantification - easier. It constrains the
relational data model to enable the presentation of non-
answers, in addition to answers, to aid query interpretation.
Two novel features of DataPlay are suggesting semantic vari-
ations to a query and correcting queries by example. We in-
troduce DataPlay as a sophisticated query specification tool
and demonstrate its unique interaction models.

1. INTRODUCTION
Many database users find it difficult to specify complex

queries, despite decades of work on language and interface
design. Of all query tasks, users find non-trivial quantifica-
tion to be most difficult [6, 5]. Contemporary query specifi-
cation paradigms, such as query-by-example, visualization-
driven querying and faceted search offer help with specifying
simple query blocks, but they offer very little assistance for
precisely those query tasks that are most difficult—queries
that go beyond the existential quantifiers implicit in simple
select-from-where blocks.

The inherent intricacies of quantified queries necessitate
a trial-and-error, incremental form of query specification. A
query tool best supports this form of querying if it (i) en-
ables semantic modifications to a query through small refine-
ments and (ii) adequately presents the effects of these mod-
ifications. SQL, however, lacks syntactic locality; a simple
quantifier change from existential to universal has a global
impact on the query syntax. Thus, small semantic mod-
ifications require large changes to the query. Also, SQL
interfaces lack an observable complement; while SQL inter-
faces present users with tuples that satisfy a query or the
answers, they do not present users with tuples that do not
satisfy the query or the non-answers. Non-answers, more
than answers, help users understand the subtle effects of

quantifier changes. Thus, SQL’s presentation of the effects
of semantic modifications can be inadequate.

We built DataPlay, a query tool that embodies the prop-
erties of syntactic locality and observable complements, to
simplify query specification through the incremental fine-
tuning of a query. The core of the tool is a graphical query
language that visualizes all primary-foreign key relationships
between attributes using a single data tree. The language
reduces the task of query specification to that of correctly
placing quantified constraints along edges of this tree. All
features of a constraint are localized in its visual representa-
tion. DataPlay’s query and data models are carefully chosen
to guarantee that answers and non-answers for any query are
well-defined and easy to compute. In addition, DataPlay
supports the following novel features:

• Visual suggestions of semantic modifications to a
query. Such suggestions encourage an interactive,
trial-and-error form of query fine-tuning.

• A query correction tool: users mark answers with
‘want out’, ‘keep in’ labels and non-answers with
‘want in’ or ‘keep out’ labels and in turn DataPlay
generates all modifications to the current query that
satisfy the user’s revision of answers and non-answers.

We begin by illustrating how the lack of two key proper-
ties, syntactic locality and observable complements, makes
SQL query specification hard (Section 2). We describe how
DataPlay’s data and query models achieve these properties
(Section 3). We then describe how users specify queries with
DataPlay (Section 4). We conclude with a description of our
demonstration scenario (Section 5).

2. SQL’S FLAWS

2.1 Syntactic Locality
Consider the simple task of finding “A” students in a

school database. This task is somewhat underspecified, and
can be interpreted in a number of alternative ways; we will
consider two. Listing 1a shows an existentially-quantified
SQL query for finding students who got at least one A.
Listing 1b shows a universally-quantified query for finding
straight-A students—students who received no grades other
than “A”. One can imagine many other interpretations and
variations.

The natural language specification of this query task high-
lights an important issue: quantification is often ambiguous,
and as we translate from a casual specification to an explicit

1938

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

-- a) Some A.
SELECT * FROM student s, takes t,
WHERE t.grade = ’A’ AND t.student_id = s.id;

-- b) All A
SELECT * FROM student s JOIN takes t WHERE NOT

EXISTS
(SELECT grade FROM takes WHERE grade != ’A’

AND student_id = s.id);

Listing 1: Quantified SQL queries

query syntax, we would like to “tweak” our query quanti-
fiers to fine-tune the desired interpretation. To facilitate
this form of query specification by incremental fine-tuning,
tweaks need to be almost effortless. With SQL, however, a
simple change of the quantifier from existential to univer-
sal appears to have a global impact on the query syntax
as demonstrated in Listings 1a and 1b. For this reason we
say that SQL often exhibits poor syntactic locality with re-
spect to changes in quantification: small changes to query
semantics can require large changes to query syntax.

2.2 Observable Complements
Let’s extend our example with A-student queries even fur-

ther. Consider the presentation of query results by a typical
SQL interface. Tables 1a and 1c are example results for the
at least one A query and the straight-A query.

Nina Simone BLUS101 A Bill Withers CLAS101 C

Nina Simone JAZZ101 A Louis Armstrong REGA101 B

Nina Simone SOUL101 A Bob Marley BLUS101 C

Bill Withers BLUS101 A Bob Marley RYTM101 C

Bill Withers RYTH101 A Bob Marley JAZZ101 C

Nina Simone BLUS101 A Bill Withers BLUS101 A

Nina Simone JAZZ101 A Bill Withers RYTH101 A

Nina Simone SOUL101 A Bill Withers CLAS101 C

Frank Sinatra CLAS101 A Louis Armstrong JAZZ101 A

Frank Sinatra MELD101 A Louis Armstrong REGA101 B
(c) (d)

E
x
is

te
n

ti
a

l

U
n

iv
e

rs
a

l

Answers Non-Answers

Answers Non-Answers

(a) (b)

Table 1: Answers and non-answers for each of the
queries in Listing 1

Without any additional information, it is impossible to
determine which query produced which of the sample results
in Tables 1a and 1c. SQL interfaces usually provide us with
the answers or the tuples that satisfy our query, but they
do not provide us with the answers’ complement: the non-

answers or tuples that do not satisfy our query. Answers
alone, however, rarely help us fully understand a query. It
is only when we see ‘Bill Withers’ in both the answers (Table
1a) and the non-answers (Table 1b), that we can deduce that
Table 1a is the result of the at least one A query. Similarly, it
is only when we see A’s in the non-answers (Table 1d), that
we can deduce that Table 1c is the result of the straight-A

query.
Without non-answers, a user looking for straight-A stu-

dents can mistakenly believe that an existentially-quantified
query is correct just by examining the answers. Therefore,
SQL interfaces that lack an observable complement hinder
query interpretation and ultimately correct query specifica-
tion. Unfortunately, this problem is not amenable to a quick

interface fix. Complements are not commonplace in SQL in-
terfaces because the pure relational query and data model
make it hard to define and compute complements. Consider
the following poorly constructed yet valid query:

SELECT * FROM student , takes WHERE

student.id = x AND takes.student_id = x;

With this query, it is difficult to infer the user’s perspec-
tive of the universe from which answers are extracted; the
universe from the user’s perspective is student ✶ takes but
since there are no joins in this query, one can infer the uni-
verse to be student× takes. An incorrect choice for the
universe results in incomprehensible non-answers.

3. DATA AND QUERY MODEL

3.1 Data Model
DataPlay constraints its data model to enable well-defined

and easy-to-understand complements. In particular, it uses
the nested universal relation - nested UR [2]. As the name
suggests, this model combines the properties of universal
relations [3] with nested data models such as JSON, XML
and nested relations [1, 4] to achieve two properties: (i) a
single relation represents all the data in the database and (ii)
all tuples in the relation are nested along a specific hierarchy.

Since, we have a closed world where a single relation rep-
resents the universe, answers are a subset of this universe
and non-answers are the set-complement of answers.

Student

id name

age
dept

takesgrade

course

mark

name id

prerequisites

id

name
age

dept

grade
mark

id

name

id

student

takes

course

prerequisites

(a) (b)

Figure 1: (a) ER-diagram of a school database; (b)
The nested-UR schema with student as pivot.

We visually represent nested universal relations using data

trees. We can transform most relational schema into a nested
UR. Figure 1 illustrates such a transformation. At the root
of the nested UR is a pivot relation around which all other
relations are nested. In Figure 1, every student has a set
of takes tuples. The tuples are materialized by taking the
join of a student’s primary-key with the takes’ student
foreign-key.

Similarly every takes tuple has a set of course tuples,
which are materialized by joining the takes relation with
the course relation. Thus, an entire database is converted
into a single UR with a hierarchical structure determined by
the choice of the pivot relation.

1939

Hovering over a constraint

allows users to view

alternate positions (dashed

line) to move the predicate

to. Users can toggle the

quantifier (from existential

to universal) as well.

Users can specify constraints

by writing them in the

command bar or brushing

visualizations

Nested data model shows all

courses taken by a student.

Users can see answers

and non-answers

A query log keeps track of all tweaks users

made to the query

Figure 2: DataPlay’s query specification interface

Depending on what users are looking for, they can choose
different relations as pivots. For example, if we are inter-
ested in finding A-students, we pivot the database around
student. If, however, we are interested in courses with A-
students, we pivot the database around course.

3.2 Query Model
DataPlay uses a graphical query language: constraint-

nodes are superimposed on the data tree’s edges to form
a Query Tree, or a QT. A constraint can only exist on the
edges of the path from the pivot to the attribute(s) it eval-
uates.

Figure 3 illustrates two QTs: one for finding students with
at least one A and one for finding straight-A students. Since
the nesting hierarchy for a query is predetermined, users do
not need to specify how to group tuples for quantification.
More importantly, modifying the quantifier type is localized
to simply changing the symbol from ∃ to ∀ on the constraint
node; the structure of the QT is preserved.

grade

grade = A

takes

student

grade

grade = A

takes

student

Figure 3: (a) Students with some A’s (b) Straight-
A’s

4. QUERYING WITH DATAPLAY
Querying with DataPlay involves four steps: (1) Pivoting,

(2) Specifying constraints, (3) Fine-tuning and (4) Auto-
correcting. Users will typically iterate over steps two and
three and will occasionally auto-correct a query.

We explain how a user, Jane, will perform each of these
steps through an example query task.

Suppose Jane wants to find students who
a) are in the CS department and
b) received A’s in all Systems courses. We don’t care about
their grades in other courses.

4.1 Pivoting
Jane connects to the school database, DataPlay visualizes

the relationships between the relations (or tables) of the
database. She, then, selects one relation, as a pivot, for
restructuring the database: all relations are joined to the
pivot and resulting join-tuples are grouped by the pivot’s
primary-key into a nested universal relation (nested-UR).
DataPlay visualizes the schema of the generated nested-UR
in a data tree and presents a few rows from this relation to
help Jane understand the effect of selecting different pivots.

Since Jane is searching for students, she pivots the
database around the student relation.

4.2 Specifying Constraints
Constraints are simple propositions such as:

student.dept = CS

student.takes.grade = A ∨ student.takes.grade = B

DataPlay allows users to specify constraints by di-
rectly writing them into a command-bar or by brushing
data-visualizations.

Jane starts by specifying the department constraint. As
soon as she writes ‘dep’ into the command-bar, an auto-

1940

(1) Users correct queries by

marking whether answer/non-

answers tuples should be non-

answers or non-answers.

(2) DataPlay searches for

modifications to the query that

bring about the change in

results.

Figure 4: DataPlay’s query correction tool

suggest feature returns a list of attribute-names that con-
tain ‘dep’, Jane picks student.dept. DataPlay recognizes
that it can visualize departments and changes the label of
its execute button to ‘Visualize’. Clicking ‘Visualize’ causes
a suggestion-box with different visualizations of department
data to appear. Jane selects a pie chart of students per de-
partment and brushes the CS-pie. In response, DataPlay (i)
generates a constraint-node with the propositional formula
student.dept = CS, (ii) adds it on the query tree edge from
the student node to the dept leaf, (iii) executes the query
and (iv) updates the answers and non-answers.

Jane goes on to add the course constraint:
student.takes.course.area = Systems

The command-bar’s execute label is now ‘Add Con-
straint’. As before, when Jane clicks it, DataPlay generates
a constraint node and adds it to the edge between the
student and takes nodes. Since each student takes a set of
courses, DataPlay associates an ’existential’ quantifier with
the constraint. Finally, Jane adds the grade constraint by
brushing an A-bar in a bar chart visualization of grades.

The default query assembled from the constraints finds
CS students who took at least one Systems course and got
at least one A in any course.

4.3 Semantic Finetuning
Syntactic locality implies that each constraint in a query

can only have a few localized changes applied to it. This
allows DataPlay to visually suggest to users semantic varia-
tions to a query by suggesting local changes to a constraint.

Jane wants students who received only A’s for all Systems
courses. She hovers over the course constraint and DataPlay
suggests (Figure 2):

a) toggling the quantifier from existential to universal

b) moving the course constraint underneath the grade
constraint such that we only evaluate grades for Sys-
tem’s courses

Jane moves the course constraint beneath the grade con-
straint. She then hovers over the grade constraint to see
the range of different tweaks she can apply it. She changes
the grade quantifier from existential to universal, now all
Systems courses have to have an A.

4.4 Query Correction
Instead of fine-tuning a query by directly manipulating

it, Jane can manipulate the results. Jane can mark an-
swer tuples, which should be non-answers, with ‘want out’
flags. Similarly she can mark non-answers, which should
be answers, with ‘want in’ flags. Jane, thus, revises the re-
sults to match the behavior of her intended query. DataPlay
searches queries in the neighborhood of the current incorrect
query to find one that satisfies her revisions.

This is feasible in DataPlay because (i) syntactic locality
guarantees a finite and well-defined search space of query
variations — we construct all possible semantic variations to
a query by applying local changes to constraints — and (ii)
observable complements enable us to present to users tuples
missing from their desired answer set, which they would not
have seen otherwise.

Figure 4 illustrates the correction interface. Here Jane
marks a student with some A’s in their Systems courses as
a non-answer and the tool suggests a universally-quantified
query instead.

5. DEMONSTRATION SCENARIO
The demonstration will consist of two stations. In the first

station, we will provide conference attendees with a narrated
walkthrough of DataPlay’s features. We will demonstrate
how to write queries that attendees request. We will also
provide details about technical aspects of the system, such
as the design of the query engine, the computation of com-
plements or the algorithms used for auto-correcting queries.
Attendees can also view a 5-7 minute video tutorial of Dat-
aPlay.

In the second station, attendees will be given the chance
to use DataPlay to query any of several preloaded databases.
Attendees can also participate in a game, where they com-
pete against each other in specifying a query task in either
DataPlay or a SQL interface.

6. REFERENCES
[1] S. Abiteboul and N. Bidoit. Non first normal form

relations to represent hierarchically organized data. In
PODS, pages 191–200, 1984.

[2] M. Levene. The nested universal relation database

model. Lecture notes in computer science.
Springer-Verlag, 1990.

[3] D. Maier, J. D. Ullman, and M. Y. Vardi. On the
foundations of the universal relation model. ACM
Trans. Database Syst., 9(2):283–308, 1984.

[4] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: a database management system for
semistructured data. SIGMOD Rec., 26(3):54–66, 1997.

[5] P. Reisner. Human factors studies of database query
languages: A survey and assessment. ACM Comput.

Surv., 13(1):13–31, 1981.

[6] P. Reisner, R. F. Boyce, and D. D. Chamberlin. Human
factors evaluation of two data base query languages:
square and sequel. In AFIPS, pages 447–452, 1975.

1941

