
SkewTune in Action: Mitigating Skew in MapReduce
Applications

YongChul Kwon1, Magdalena Balazinska1, Bill Howe1, Jerome Rolia2

1 University of Washington, 2 HP Labs

{yongchul,magda,billhowe}@cs.washington.edu, jerry.rolia@hp.com

ABSTRACT

We demonstrate SkewTune, a system that automatically
mitigates skew in user-defined MapReduce programs and is
a drop-in replacement for Hadoop. The demonstration has
two parts. First, we demonstrate how SkewTune mitigates
skew in real MapReduce applications at runtime by running
a real application in a public cloud. Second, through an in-
teractive graphical interface, we demonstrate the details of
the skew mitigation process using both real and synthetic
workloads that represent various skew configurations.

1. INTRODUCTION
We observe that the increased demand for complex analyt-

ics has translated into an increased demand for user-defined
operations (UDOs) — relational algebra and its close deriva-
tives are not enough [15, 19]. But UDOs complicate the
algebraic reasoning and other simplifying assumptions re-
lied on by the database community to optimize execution.
Instead developers rely on “tricks” to achieve high perfor-
mance: ordering properties of intermediate results, custom
partitioning functions, extensions to support pipelining [4]
and iteration [3], and assumptions about the number of par-
titions. For example, the Hadoop-based sort algorithm that
won the terasort benchmark in 2008 required a custom par-
tition function to prescribe a global order on the data [18].
Moreover, when these UDOs are assembled into complex
workflows, the overall correctness and performance of the
application becomes sensitive to the characteristics of indi-
vidual operations.

MapReduce [5] has proven itself as a powerful and cost-
effective approach for writing UDOs and applying them to
massive-scale datasets [1]. MapReduce provides a simple
API for writing UDOs: a user only needs to specify a serial

0 100 200 300

Time (seconds)

T
a

sk
s

Shuffle

Sort

Exec

M

A

P

R

E

D

U

C

E

Figure 1: A timing chart of a MapReduce job run-
ning the PageRank algorithm from Cloud 9, Exec
represents the actual map and reduce operations.
The slowest map task (first one from the top) takes
more than twice as long to complete as the second
slowest map task, which is still five times slower
than the average. If all tasks took approximately
the same amount of time, the job would have com-
pleted in less than half the time.

map function and a serial reduce function. The implemen-
tation takes care of applying these functions in parallel to a
large dataset in a shared-nothing cluster.

While MapReduce is a popular data processing tool [1], it
still has several important limitations. In particular, skew is
a significant challenge in many applications executed on this
platform [10, 12, 16]. When skew arises, some partitions of
an operation take significantly longer to process their input
data than others, slowing down the entire computation.

Figure 1 illustrates the problem. We use PageRank [2] as
an example of a UDO1. As the figure shows, this UDO is ex-
pressed as a MapReduce job, which runs in two main phases:
the map phase and the reduce phase. In each phase, a sub-
set of the input data is processed by distributed tasks in a
cluster of computers. Each task corresponds to a partition
of the UDO. When a map task completes, the reduce tasks
are notified to pull newly available data. This transfer pro-
cess is referred to as a shuffle. All map tasks must complete
before the shuffle part of the reduce phase can complete, al-

1http://lintool.github.com/Cloud9/

1934

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.



lowing the reduce phase to begin. Load imbalance can occur
either during the map or reduce phases. We refer to such an
imbalanced situation as map-skew and reduce-skew respec-
tively. Skew can lead to significantly longer job execution
times and significantly lower cluster throughput. In the fig-
ure, each line represents one task. Time increases from left
to right. This job exhibits map-skew: a few map tasks take
5 to 10 times as long to complete as the average, causing the
job to take twice as long as an execution without outliers.

In previous work, we proposed an adaptive skew mit-
igation technique for MapReduce applications and imple-
mented it in a system that we called SkewTune [13]. Skew-
Tune can handle two common types of skew: (1) skew caused
by an uneven distribution of input data to operator parti-
tions (or tasks) and (2) skew caused by some input records
(or key-groups) taking much longer to process than others.
For these sources of skew, speculative execution, a popular
strategy in MapReduce-like systems [5, 9, 11] to mitigate
skew stemming from a non-uniform performance of physical
machines, is ineffective because the speculative tasks exe-
cute the same code on the same data and therefore do not
complete in any less time than the original tasks.

In this demonstration, we show SkewTune’s skew mitiga-
tion approach through a step-by-step interactive demonstra-
tion. We also demonstrate the prototype system running in
a cloud and how it helps a real application experiencing skew
at runtime.

2. SKEWTUNE: OVERVIEW
SkewTune takes a Hadoop job as input. For the purpose

of skew mitigation, SkewTune considers the map and reduce
phases of the job as separate UDOs. In SkewTune, as in
Hadoop, a UDO pulls its input from the output of the pre-
vious UDO, where it is buffered locally. A UDO is assumed
to process its input one record at a time with no state pre-
served between individual input records. A key-value pair
(i.e., mapper input) and a key group (i.e., reducer input)
are each considered a special cases of records. Each UDO
is parallelized into tasks, and each task is assigned a slot in
the cluster. There is typically one slot per CPU core per
node. When a task completes, the slot becomes available.

SkewTune’s skew mitigation technique is designed for
MapReduce-type data processing engines. The three im-
portant characteristics of these engines with respect to skew
handling are the following: (1) A coordinator-worker archi-
tecture where the coordinator node makes scheduling deci-
sions and worker nodes run their assigned tasks. On comple-
tion of a task, the worker node requests a new task from the
coordinator. This architecture is commonly used today [5, 6,
9, 11]. (2) De-coupled execution: Operators do not impose
back-pressure on upstream operators. Instead, they execute
independently of each other. (3) Independent record pro-
cessing: The tasks are executing a UDO that processes each
input record (possibly nested) independently of each other.
Additionally, SkewTune requires (4) Per-task progress esti-
mation, tremain, which estimates the time remaining [17, 21]
for each task. Each worker periodically reports this estimate
to the coordinator. (5) Per-task statistics: each task keeps
track of a few basic statistics such as the total number of
(un)processed bytes and records.

Figure 2 illustrates the conceptual skew mitigation strat-
egy of SkewTune. Without SkewTune, the operator com-

SLOT 1

SLOT 2

SLOT 3

SLOT 4

Task T1

T2

T3

T4

Time

(a) Without SkewTune, the operator runtime is that of the
slowest task.

SLOT 1

SLOT 2

SLOT 3

SLOT 4

T2a

T2b

T2c

Time

T4a

T4b

T4c

T4d

t2 t3t1

(b) With SkewTune, the system detects available resources
as task T1 completes at t1. SkewTune identifies task T2 as
the straggler and re-partitions its unprocessed input data.
SkewTune repeats the process until all tasks complete.

Figure 2: Conceptual skew mitigation in SkewTune

pletion time is dominated by the slowest task (e.g., T2 in
Figure 2(a)). With SkewTune, as shown in Figure 2(b), the
system detects that T2 is experiencing skew at t1 when T1
completes. SkewTune labels T2 as the straggler and miti-
gates the skew by repartitioning T2’s remaining unprocessed
input data. Indeed, T2 is not killed but rather terminates
early as if all the data that it already processed was the only
data it was allocated to process. Instead of repartitioning
T2’s remaining input data across only slots 1 and 2, Skew-
Tune proactively repartitions the data to also exploit slot 3,
which is expected to become available when T3 completes.
SkewTune re-partitions the data such that all new parti-
tions complete at the same time. The resulting subtasks
T2a, T2b, and T2c are called mitigators and are scheduled
in the longest processing-time first manner. SkewTune re-
peats the detection-mitigation cycle until all tasks complete.
In particular, at time t2, SkewTune identifies T4 as the next
straggler and mitigates the skew by repartitioning T4’s re-
maining input data.

To summarize, SkewTune mitigates skew at runtime by
repeating the following three steps.

1. Detect: The coordinator observes the execution of
all tasks in a MapReduce phase and collects their time
remaining estimates. When a slot becomes idle, the
coordinator identifies the straggler, which is the task
with the longest time remaining estimate.

2. Scan: The coordinator stops the straggler task. The
unprocessed data is scanned either locally or in parallel
to collect information for repartitioning. The informa-
tion is sent to the coordinator.

3. Plan: The coordinator plans how to repartition the
remaining data of the straggler task using the informa-
tion from the scan and the time remaining estimates
of all running tasks. Once the mitigators are sched-
uled, the coordinator goes back to the Detect phase
and continues.

We refer the interested reader to our previous work for
more details about the SkewTune technique and prototype
implementation [13, 14].

1935



3. DEMONSTRATION
The demonstration has two key components. The first

component shows the prototype SkewTune implementation
in action on a real MapReduce application. The second
component is an interactive walk-through of the SkewTune
approach using both real and synthetic workloads that rep-
resent various skew scenarios. We describe both components
here.

3.1 SkewTune in the Cloud: Start
Before the demonstration begins, we deploy a four- to

eight-node Hadoop cluster running the SkewTune prototype
in a public cloud such as Amazon EC2.

When the demonstration starts, we first launch a new
Hadoop job in the SkewTune cluster. The goal is to show
how the prototype system mitigates the skew that arises in
the job at runtime. The application is setup such that the
job completes within 5 minutes, which is the duration of the
entire demonstration.

For the demonstration, we build a sorted inverted index
over a subset of English Wikipedia pages. To get the sorted
index, we assume that the user wrote a custom partitioner
such that each reduce task processes all the words starting
with the same character. There are thus always 27 reduce
tasks. The application naturally exhibits skew due to an
uneven distribution of the start characters across words in
the corpus.

3.2 SkewTune in Action
While the job is running in the background, we present

an overview of SkewTune’s skew mitigation approach with a
poster and an interactive demonstration especially focusing
on the key techniques (e.g., late skew detection, proactive
repartitioning, and the control flow of skew mitigation) [13].

The goal of the interactive demonstration is to show when
skew arises in a MapReduce application and how SkewTune
mitigates that skew at runtime step-by-step. The demon-
stration is a simulation based on real execution traces and
real data. We summarize the real data with statistics that
include record sizes in bytes and per-record processing times
for map tasks. The statistics include the size in bytes and
the processing time for each key-group and each value for
reduce tasks. We also prepare the following synthetic work-
loads so that we can interactively control the ordering and
the size of the input data as well as the task processing time
and, by doing so, explore various skew problems.

• A few reduce tasks are assigned too much data.

• A few map() or reduce() function invocations are sig-
nificantly more expensive than others either due to
input data sizes or specific data values.

For both workloads, we will allow interactive changes to var-
ious parameters such as processing time per record, size of
each record, the number of records per reduce, processing
rate per node so that a skew can be dynamically introduced
during the demonstration.

The demonstration simulates the execution of a given
workload and the audience sees the details of each step in
the skew mitigation process. We briefly describe each of
SkewTunes’s skew mitigation steps and indicate what the
audience will see during this part of the demonstration.

• Detect: The coordinator (i.e., JobTracker in Hadoop)
monitors and collects time remaining estimates for all

running tasks. When a slot becomes idle (i.e., run-
ning out of tasks to schedule), the coordinator chooses
the straggler as the task with the longest time remain-
ing estimate. The demonstration will show the run-
ning tasks with their estimates derived from execution
traces and will highlight the chosen straggler task once
SkewTune identifies it.

• Scan: The coordinator sends a message to the strag-
gler task. The task stops and scans its remaining in-
put data to collect information for repartitioning that
data. The scan is performed either locally or in parallel
depending on the estimated cost. The demonstration
will show how the scan proceeds and the information
that is collected.

• Plan: The coordinator plans how to repartition the
straggler’s remaining input data based on (a) the infor-
mation collected during the scan and (b) the current
time-remaining estimates of all running tasks. The
demonstration will show the key steps of this planning
phase and the resulting assignment of input data to
each mitigator task.

• Repeat: The mitigator tasks are scheduled, the
demonstration goes back to the Detection phase, and
the above steps repeat until the job terminates.

The interactive demonstration runs as a discrete event
simulation. It will thus run faster than the wall clock and
will also have the capability to pause. We will thus be
able to run the demonstration multiple times using various
workloads, comparing with the executions without Skew-
Tune, and pause the system at any time to answer questions
and discuss any system details of interest to the audience.
We will also allow interactive changes to various parame-
ters such as processing time per record, processing rate per
node so that the audience can see how such dynamically
introduced skew gets mitigated away by the system.

3.3 SkewTune in the Cloud: Wrap-up
By the time the interactive demonstration ends, the job

running in the cloud will complete. We will show how the
prototype SkewTune system mitigated the skew at runtime
by showing the Hadoop job tracker web interface and a
task scheduling timing chart as shown in Figure 1. We will
then conclude the demonstration by answering any follow-up
questions.

4. RELATED WORK
Handling load imbalance has also been studied previously

in the context of MapReduce applications. In earlier work,
we proposed SkewReduce, a system that statically optimizes
the data partitioning according to user-defined cost func-
tions [12]. The approach effectively addresses potential data
skew problems, but it relies on domain knowledge from users
and is limited to specific types of applications. Ibrahim et al.

and Gufler et al. studied data skew in the reduce phase [7,
10]. Both approaches schedule reduce keys to the reduce
tasks based on cost models. Also, the reduce key scheduling
does not preserve the order as in the original reduce out-
put. SkewTune not only addresses skew in both the map
and reduce phases but also minimizes the side-effect of skew
mitigation by preserving input order.

In the follow-up work, Gufler et al. proposed the TopClus-
ter approach to construct a histogram of all reduce keys to

1936



identify skewed reduce keys [8]. The TopCluster approach
is similar to reconciling the result of parallel scan in Skew-
Tune [14]. TopCluster eagerly monitors, detects, and miti-
gates reduce skew while SkewTune lazily detects and miti-
gates skew. Also, in SkewTune, the planning is done using
exact information if possible.

Vernica et al. proposed an adaptive MapReduce system
using situation-aware mappers [20]. The situation-aware
mappers continuously monitor the execution of mappers and
adaptively resplit the map input data. Also, with an adap-
tive combiner and partitioner, the system also tries to bal-
ance the reduce input. However, the situation-aware map-
pers can not handle computational skew at the reducers,
where some key-groups take longer to process than others.

Overall, the above eager approaches are complementary
to SkewTune. SkewTune can handle anything left by each
of the above systems in a transparent manner.

Acknowledgments

We thank the anonymous reviewers for their helpful com-
ments on early drafts of this paper. This work is supported
in part by the National Science Foundation CAREER grant
IIS-0845397, the UW eScience Institute, and an HP Labs
Innovation Research Award.

5. REFERENCES
[1] Apache Hadoop Project. Powered by Hadoop.

http://wiki.apache.org/hadoop/PoweredBy/, 2011.

[2] S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. In Proc. of the 7th WWW Conf., pages
107–117, 1998.

[3] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop:
Efficient iterative data processing on large clusters. Proc.
VLDB Endow., 3(1):285–296, 2010.

[4] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. MapReduce online. In Proc. of the
7th NSDI Symp., pages 21–21, 2010.

[5] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In Proc. of the 6th OSDI Symp.,
pages 10–10, 2004.

[6] D. J. DeWitt, E. Paulson, E. Robinson, J. Naughton,
J. Royalty, S. Shankar, and A. Krioukov. Clustera: an

integrated computation and data management system. Proc.
VLDB Endow., 1(1):28–41, 2008.

[7] B. Gufler, N. Augsten, A. Reiser, and A. Kemper. Handling
data skew in MapReduce. In The First International
Conference on Cloud Computing and Services Science, pages
574–583, 2011.

[8] B. Gufler, N. Augsten, A. Reiser, and A. Kemper. Load
balancing in mapreduce based on scalable cardinality estimates.
In Proc. of the 28th ICDE Conf., pages 522–533, 2012.

[9] Hadoop. http://hadoop.apache.org/.

[10] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi. LEEN:
Locality/fairness-aware key partitioning for mapreduce in the
cloud. In Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference
on, pages 17–24, 2010.

[11] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed data-parallel programs from sequential building
blocks. In Proc. of the 7th EuroSys Conf., pages 59–72, 2007.

[12] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skew-resistant
parallel processing of feature-extracting scientific user-defined
functions. In Proc. of the First SOCC Conf., pages 75–86,
2010.

[13] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. SkewTune:
Mitigating skew in MapReduce applications. In Proc. of the
SIGMOD Conf., pages 25–36, 2012.

[14] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. SkewTune:
Mitigating skew in MapReduce applications. Technical Report
UW-CSE-12-03-03, University of Washington, March 2012.

[15] Y. Kwon, D. Nunley, J. P. Gardner, M. Balazinska, B. Howe,
and S. Loebman. Scalable clustering algorithm for N-body
simulations in a shared-nothing cluster. In Proc. of the 22nd
Scientific and Statistical Database Management Conference
(SSDBM), pages 132–150, 2010.

[16] J. Lin. The curse of zipf and limits to parallelization: A look at
the stragglers problem in MapReduce. In 7th Workshop on
Large-Scale Distributed Systems for Information Retrieval
(LSDS-IR), pages 57–62, 2009.

[17] K. Morton, A. Friesen, M. Balazinska, and D. Grossman.
Estimating the progress of MapReduce pipelines. In Proc. of
the 26th ICDE Conf., pages 681–684, Mar. 2010.

[18] O. O’Malley. Apache Hadoop wins terabyte sort benchmark.
http://developer.yahoo.com/blogs/hadoop/posts/2008/07/
apache_hadoop_wins_terabyte_sort_benchmark/.

[19] The Mahout Team. Apache Mahout project.
http://mahout.apache.org/.

[20] R. Vernica, A. Balmin, K. S. Beyer, and V. Ercegovac.
Adaptive MapReduce using situation-aware mappers. In Proc.
of the 15th EDBT Conf., pages 420–431, 2012.

[21] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving MapReduce performance in heterogeneous
environments. In Proc. of the 8th OSDI Symp., pages 29–42,
2008.

1937


