
CyLog/Crowd4U: A Declarative Platform for
Complex Data-centric Crowdsourcing

Atsuyuki Morishima
University of Tsukuba

mori@slis.tsukuba.ac.jp

Norihide Shinagawa
University of Tsukuba

siena@slis.tsukuba.ac.jp

Tomomi Mitsuishi
University of Tsukuba

tomomi@slis.tsukuba.ac.jp

Hideto Aoki
University of Tsukuba

s1221575@u.tsukuba.ac.jp

Shun Fukusumi
University of Tsukuba

s1220693@u.tsukuba.ac.jp

ABSTRACT
This demo presents a principled approach to the problems of
data-centric human/machine computations with Crowd4U,
a crowdsourcing platform equipped with a suite of tools for
rapid development of crowdsourcing applications. Using the
demo, we show that declarative database abstraction can
be used as a powerful tool to design, implement, and an-
alyze data-centric crowdsourcing applications. The power
of Crowd4U comes from CyLog, a database abstraction
that handles complex data-centric human/machine compu-
tations. CyLog is a Datalog-like language that incorporates
a principled feedback system for humans at the language
level so that the semantics of the computation not closed in
machines can be defined based on the game theory. We be-
lieve that the demo clearly shows that database abstraction
can be a promising basis for designing complex data-centric
applications requiring human/machine computations.

1. INTRODUCTION

In recent years, the significance of integration of data-
centric human/machine computations has increased because
of the following reasons. First, it has been found that ag-
gregating the power of machines and humans is a promising
approach for achieving some of the computationally difficult
goals. Secondly, in many of the currently-used data-centric
systems, computation is not necessarily closed in machines.

This demo presents a principled approach to the prob-
lems of data-centric human/machine computations with
Crowd4U, a crowdsourcing platform that is equipped with
a suite of tools for the rapid development of crowdsourcing
applications. Crowdsourced data processing has been one of
the hottest issues in database research today. Proposed sys-
tems include CrowdDB [4], Qurk [11], and Deco [12], which
focus on different aspects of data-centric human/machine
computations, and the common approach is to design small
extensions to SQL so that the crowd can participate in the
process of SQL queries. In [3], how Datalog-like codes can be
partly evaluated by the crowd in the backend is discussed. In

contrast, we argue that the declarative database abstraction
can be a promising basis for designing a wider range of data-
centric crowdsourcing systems. We show that the database
abstraction allows us not only (1) to naturally and con-
cisely describe complex data-centric human/machine com-
putations, but also (2) to analyze the behavior of the code
executed in the world that is not closed in the machine. This
makes Crowd4U different from existing crowdsourced data
processing systems and makes the demo unique compared
to those of other systems [4] [11]. For example, in one demo
scenario, the main contributor of data extraction is gradu-
ally changed from the crowd to the machine, and in another
scenario, the crowd participates in the process of identifying
manageable small tasks to solve a larger problem.

The power of Crowd4U comes from CyLog [9][10], which
is a Datalog-like language developed by the FusionCOMP
project. It has three extensions to handle human/machine
computations. First, it allows predicates to be open, which
means that the decision on whether a fact holds is crowd-
sourced when the fact cannot be derived in the database.
For example, to solicit the crowd to give keywords to label
a given image i, we can write the following rule:

Label(i, keyword)/open <- Image(i);

Here, the value of the attribute keyword, which does not
appear in the rule body, is to be crowdsourced. Second, it
has a built-in reward system at the language level to give
a well-defined semantics even if we have open predicates.
Finally, it allows us to dynamically add rules into the code.
The proposed set of extensions raises novel challenges and
opportunities. The highlights of the demo are as follows:
Database abstraction as a language for complex
data-centric crowdsourcing. The demo shows that
database abstraction can be a promising basis for designing
complex data-centric applications requiring human/machine
computations. We believe that the decision to adopt Data-
log as its basis was successful for several reasons. First, as
recent studies suggest [6], languages based on Datalog al-
low us to concisely describe data-centric applications. Sec-
ond, logic-based programming has an affinity towards event-
driven executions, which complex data-centric applications
often require. And finally, describing the code as a set of
rules brings the flexibility to the data-centric crowdsourc-
ing. For example, allowing the code to dynamically add and
delete rules naturally achieves the higher-order crowdsourc-

ing, in that the crowd not only contributes to data input,
but also participates in the program evolution.

1918

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

TweetPecker Game"
Your"current"score:"100

Collecting"Research"Projects"at"""
U."Tsukuba

place

Tweet:"" CurrentList:(a)""

(b)""

(e)"

p

weather Enter"Project
Completed? CVyes

submit

Rule:"if"a"tweet""contains"
the value of il

submit

GroupedBy(project) submit

()

(c)""

(d)""

(f)""
(g)"

(h)the"value"of" isplace submit GroupedBy(project,"""""""""""""")" submit (h)"

Figure 1: Main Components of UIs for Scenarios

Introducing rational data sources as a means to deal
with the world not closed in machines. With open
predicates, human factors are incorporated in the program
executions. Since people might lie and they need motivation
to participate in the computation, it is difficult to predict
the execution results. One possible approach is to consider
humans as rational data sources, who provide data in a way
consistent with the expected rewards. The feedback system
incorporated in CyLog provides us with components that
are designed based on concepts taken from the game theory.
Incorporating a feedback system is essential, because then
we have a tool to define the semantics of the computation
not closed in machines. In CyLog the semantics are defined
using the equilibrium of the game (Section 3), which is the
state reached by rational workers. This makes CyLog unique
since other languages provide no hints on whether users will
behave in the expected manner. With the abstraction, tools
from the game theory can be used to predict behavior. The
game theory is known to be useful when discussing not just
real “games” but any system that involves incentive struc-
tures, such as networks, auctions, and GWAPs [7] [13]. Al-
though the game theory is not a magic wand, this demo will
show that this approach is a good starting point.

The remainder of this demo proposal is as follows. Section
2 shows example scenarios requiring complex data-centric
human/machine computations. Section 3 briefly sketches
the syntax and semantics of CyLog focusing on the three
extensions to Datalog. Section 4 explains the architecture
of our crowdsourcing platform CyLog/Crowd4U. Section 5
shows the demonstration details.

2. COMPLEX DATA-CENTRIC CROWD-

SOURCING

Data-centric crowdcsourcing is often more complex than
crowdsourced SQL query processing. This section shows two
interesting scenarios CyLog makes possible with appropri-
ate incentive design. The point is that the programs, which
are executed by both the machines and the crowd, are the-
oretically guaranteed to work well when the people behave
rationally.
Crowdsourced Rule Generation. In the first scenario,
we construct tables from a set of tweets. This is a typical
scenario that is encountered when constructing “aggregator
sites” to collect information on the Web. In our setting, the
data extraction process to construct tables is crowdsourced,
because we assume that it is not easy to have a single con-
tributor who constantly maintains the tables, nor to imme-
diately develop dedicated software. We design a crowdsourc-
ing application (named TweetPecker) as a GWAP [1].

TweetPecker is similar to the ESP game [1], which crowd-
sources labeling image files with keywords. The ESP game
shows each image to the crowd (players) on line, solicits
them to provide appropriate keywords for it, and rewards
them when the keywords match. Instead of image files,

TweetPecker shows tweets to players, and solicits their help
to extract data values from the tweets for attributes to con-
struct tables. Fig. 1 (left) illustrates the main components
of TweetPecker’s user interface for a player, where a tweet
is shown to the player (Fig. 1 (a)). For example, if the
tweet shown is “We have good weather in NYC,” a worker
will input the word “NYC” for the place attribute of the
tweet using the HTML form (b). A difference from the ESP
game is that instead of directly giving a value, a player can
give an extraction rule (Fig. 1 (d)) that extracts values as
his proxy. An example of the rule is “if the tweet contains
good weather, the value of attribute weather is sunny.”
The value extracted by the rule is adopted when two other
players agree that the value is correct. Then, TweetPecker
rewards both of the players as well as the player who sup-
plied the rule. When the value extracted by the rule is not
adopted, the rule supplier receives a negative score. Interest-
ingly, we can design an incentive structure so that the main
contributor of the extraction tasks is gradually changed from
the crowd to machines, when the crowds bahave rationally.
Crowdsourced Problem Decomposition. In the second
scenario, we solicit the crowd to collect all data values that
satisfy a given condition and to decide whether or not the
task is completed. Covering all items is important in many
applications including Web-based services, such as reviews
for restaurants in particular areas. And it is often the case
that we need the power of the crowd to collect data items.
Fig. 1 (right) shows the simplified interface, with which we
collect all of the research projects conducted at a university.
The page shows the list of already-collected data values (e)
and the HTML form to accept new data (f), which are often
found on user interfaces of ordinary Web applications. In
addition, the worker clicks on the button (g) to tell that the
list is complete. In our scenario, we allow the crowd not only
to participate in the process of enumerating items, but also
to participate in the process of identifying smaller manage-
able tasks. For this purpose, we add another HTML form to
the interface to allow grouping (h). If a worker specifies that
the research projects can be grouped by the laboratory, our
problem is decomposed to the smaller tasks of collecting all
of the projects in each lab and a task of collecting all of the
labs, so that it becomes easier to know what is missing and
whether all of the items have been covered. In general, the
problem can be further decomposed by recursively grouping
the items. From our experience [2], problem decomposition
makes the enumeration process more efficient. If we ap-
propriately design the incentive structure, rational workers
identify and focus on small tasks instead of continuing to
perform the original task.

3. PROGRAMMING IN CYLOG/CROWD4U

CyLog’s three important extensions to Datalog are as fol-
lows: (1) It allows some predicates to be open, which allows
us to concisely write data-centric computations not closed in
machines. (2) It has components to define games, in which
the behaviors of workers are recorded in a special table and
aggregated to compute feedbacks to workers. This gives us
a principled framework with which we can define the se-
mantics of the code. (3) It has an explicit table to manage
CyLog rules, which allows us to dynamically add and delete
rules and makes higher-order crowdsourcing possible.

Crowd4U is a crowdsourcing platform deployed at Uni-
versity of Tsukuba and it provides a set of built-in functions

1919

which can be easily used by the code written in CyLog.
Open Predicates. Below is a fragment of a CyLog pro-
gram for the TweetPecker game.

1. WeatherTweet(t) <- Tweet(t, hashtag:"#weather");

2. WeatherI(t, place)/open <- WeatherTweet(t);

Line 1 can be interpreted as a Datalog rule with the closed
world assumption, i.e., the WeatherTweet table contains
those tuples corresponding to tweets with hashtag #weather.
“x:y” (e.g., hashtag:"#weather") means that y is a value
or variable for attribute x. If the variable name is the same
as the attribute name, the attribute name can be omitted.
In addition, attributes unused in the rule can be omitted.

Line 2 includes an open predicate and states that for each
tweet stored in WeatherTweet, the value of place is to be
crowdsourced. The predicate corresponds to the text input
field in Fig. 1 (b). Open predicates can have attributes that
do not appear in the rule body. Programmers can allow the
system to wait for the crowd to answer with HTML forms, or
can add rules to explicitly solicit inputs from workers. The
rule for the weather attribute (c) is similar and is omitted.

With open predicates, the collection of all research
projects in the second scenario can be described as follows:

1. Project(p)/open;
2. Project:@closed/open;

Line 1 is the open predicate that accepts human inputs
to collect projects (the input field in Fig. 1 (f)). In Line 2,
Project: does not denote one tuple but the entire relation,
and @closed states that the relation is closed, i.e., it already
covers all of the projects. Therefore, Line 2 states whether
the Project relation covers all of the projects is open and
should be decided by humans (the button in Fig. 1 (g)).
Path Table and Game Aggregations. CyLog adopts
terms and concepts from the game theory to design the ap-
propriate behavior of rational data sources. For example,
TweetPecker rewards the workers who gave the same values
and adopts the agreed value for an attribute. Fig. 2 shows
a part of the payoff matrix for TweetPecker, in which each
cell shows not only the payoffs, but the output values. We
call such a game with output values a data game (only two
players and two terms are shown here). In CyLog, a general-
ized version of the game in Fig. 2 is called duplicate game.
Then, the semantics of open facts are defined by the equi-

librium of the game [14], i.e., the state reached by rational
players. Note that the game is a typical coordination game
[14] in the game theory, in which rational players choose
the same value. To compute the value and payoffs, CyLog
maintains a special table named Path table to record the
provenance (corresponding to a path in the game theory) to
show how players have behaved in the game instance (Fig.
3), and supports for aggregations of the table to compute the
value and payoffs. The design of game components gives us
a simple and flexible way to incorporate both extensive- and
normal-form games [14] in programs.

We extend the code fragment for the TweetPecker game:

1. WeatherTweet(t) <- Tweet(t, hashtag:"#weather");

2. TweetPecker(t) <- WeatherTweet(t);
3. game TweetPecker(t) [WeatherI], duplicate {
4. WeatherI(t, place)/open <- WeatherTweet(t);

5. }
6. Weather(t, place:p) <- TweetPecker(t, value:p);

We already explained the rules in Lines 1 and 4. Line
2 starts TweetPecker for each WeatherTweet. Lines 3 to 5

Player A/Player B Term X Term Y

Term X (1,1), Term X (0,0), NULL
Term Y (0,0), NULL (1,1), Term Y

Figure 2: Payoff Matrix for duplicate Game

Order Date Player Rel Action

1 10:10am Kate WeatherI NYC
2 10:11am Ann WeatherI NYC
3 10:12am Pam WeatherI Summit

Figure 3: Path Table

defines the TweetPecker game, whose instance is identified
by TweetPecker(t), for which Path table is constructed and
game aggregations are executed.

Line 3 states that the changes to the WeatherI table is
recorded in Path table (Fig. 3) and that the game aggrega-
tion duplicate is executed when the game ends. The pro-
grammers can define game aggregations in CyLog by herself
[10], or can call built-in aggregations provided by Crowd4U.
Line 6 adopts the values computed by TweetPecker(t), in
which value is an implicit attribute defined for each data
game. Payoffs are computed in a similar way and stored in
the pre-defined Payoff table (omitted).
Dynamic Rule Insertion and Deletion. CyLog rules are
managed in a special table, named the Rule table. There-
fore, the program can extend its own set of rules simply by
inserting tuples representing rules into the table. For exam-
ple, the second scenario solicits the crowd to give possible
grouping of research projects so that they can divide and
conquer the cover-all problem. A direct way to implement
this is to rewrite rules. When the HTML form in Fig.1
(h) accepts “Lab,” the original rules to directly solicit the
projects can be replaced with the following rules:

1. Project(p, lname)/open <- Lab(lname);
2. Project:@closed <- Lab:@closed,

forall Lab(lname) (Lab(lname, cover_all:true));

Line 1 collects the research projects for each lab. Line 2
states that the task is completed when all of the tasks for
collecting projects for the labs are completed. We also need
to add the rules to collect all of the labs in the same way as
we wrote the original set of two rules for collecting projects.

CyLog introduces rule constructors to allow tuples to rep-
resent a set of rules. For the cover-all scenario, we can add
the new rules by (1) taking a group name from the open
predicate corresponding to Fig. 1 (h), (2) constructing the
rules using the name (i.e., the new rules for “Labs”), and (3)
inserting the tuples representing the rules into Rule table.
Codes for the Scenarios. With CyLog/Crowd4U, vari-
ous applications using complex data-centric human/machine
computations can be written in a concise way. We have al-
ready explained fragments of the codes for the two scenar-
ios. The code for TweetPecker consists of a few tens of rules
and contains the following rules in addition to the explained
ones: (1) Accept extraction rules from the crowd (this cor-
responds to Fig. 1 (d)), (2) extract data values using the
extraction rules, (3) when the output of a rule matches with
the value given by another worker, both she and the worker
who supplied the rule are rewarded, and (4) if a value is
adopted as an attribute value of a tweet, workers who gave
other values and the workers who gave rules to produce other
values for the same tweet all receive negative scores.

A game theoretical analysis [5] of our TweetPecker code
proves that rational people give correct rules. Our experi-
ment also revealed that the main contributor to data extrac-
tion was gradually changed from workers to the machine.

1920

Open FactLogic Game

Execution ControllerCyLog

Program"
Default"
Functions/

Open Fact

API

Logic

Processor

Game

Manager

Payoff Notification

(optional)Data

Other"
Programs"

Data

Program"Execution"in"the"Cybernetic"Dataspace

Figure 4: CyLog/Crowd4U Prototype

Similarly, the CyLog code for the cover-all problem con-
sists of a few tens of rules, some of which define the incentive
structure for workers to identify and focus on small tasks.

4. CYLOG/CROWD4U ARCHITECTURE

Crowd4U is a data-centric crowdsourcing platform, which
is designed to harness the power of people in academia. Cur-
rently, it is deployed at University of Tsukuba, and most of
the registered workers are students of the university. It is
being used for various applications including maintaining
academic calendars and covering all of the menu items in
the more than 20 restaurants at the university. We explain
the architecture of the prototype system (Fig. 4).
Query Processing for Data-centric Complex Crowd-
sourcing. To execute complex data-centric crowdsourc-
ing applications, Crowd4U supports the execution of Cy-
Log codes by both machines and people, interleaved with
the executions of programs in general-purpose languages. It
provides APIs to invoke events in order to indicate that a
new fact holds, which allows us to naturally combine CyLog
programs with other codes written in procedural languages.

The CyLog processor adopts a semi-naive event-driven
evaluation strategy in which the rules are evaluated in a bot-
tom up way; Crowd4U knows that a fact holds when there is
an event indicating that the fact holds. Rules are processed
as follows: when all of the facts in a rule body hold, we de-
termine whether the head of the rule holds. When the head
is not open, an event for the head fact is always invoked
by the logic processor. When the head is open, people are
responsible for invoking the event to indicate that the fact
holds. Crowd4U provides the default views to interact with
people and to call the API to invoke events.
Handling Rational Data Sources. According to the be-
havior of the users in the program execution, the game man-
ager gives them values that represent payoffs. Currently, the
payoff values in Crowd4U are not monetary, but are visible
to workers, showing the contribution of each worker in the
crowd. However, from our experience, non-monetary values
provide sufficient feedback to the workers, informing them of
the values of their contributions, and we have found that it
is very important to make their contributions visible. There-
fore, Crowd4U explicitly acknowledges the contributions of
workers in different ways.
Rapid Development Support. Crowd4U provides a suite
of built-in functions to support the programming. It has a
facility to easily defineWeb views that are associated to open
predicates and event invocations, making it easy to imple-
ment interactions with the crowd. Crowd4U also provides
functions to implement common game situations including
majority votes, duplicate (coordination) games, and other
data games with various types of incentive structures.

5. DEMONSTRATION DETAILS
This demo will show the whole workflow on the Crowd4U

prototype, from formulating CyLog codes to showing the re-
sults. We not only execute the code for the demo scenarios
with the workers on Crowd4U, but also encourage the audi-
ence to join the scenarios as workers. When we have multi-
ple visitors, we also encourage them to play data games with
different incentive structures. The experience helps the au-
dience to get a sense of how essential the incentive structure
is for designing data-centric human/machine computations.

We employ mainly the scenarios shown in Section 2. We
demonstrate that appropriate incentive structures make the
code work well, and that different game designs lead to dif-
ferent results. In the data extraction scenario, we plan to
use the hash tag for VLDB2012 (e.g., #vldb2012) to collect
tweets. We then construct tables on Crowd4U, and demon-
strate that the main contributor of the data extraction is
gradually changed from the workers to the machine. In the
second scenario, we show the power of the crowdsourced pro-
gram decomposition, by demonstrating that workers identify
and focus on small manageable tasks to collect the URIs of
research labs related to VLDB2012. We also show that the
codes for the scenarios are intuitive and concise. If they
want, we explain the proofs to show the codes work well
with rational data sources.

Moreover, we will have the audience to try other codes,
some of which are given in an ad-hoc style. We try to visu-
ally show the inside of the prototype system, allowing the
audience to see how the programs are compiled and inter-
preted, and how the user interfaces are generated.

6. ACKNOWLEDGEMENTS
The authors are grateful to Prof. Sugimoto, Prof. Kita-

gawa, Prof. Sakaguchi and Prof. Nagamori for their help-
ful comments. This research was partially supported by
PRESTO from the Japan Science and Technology Agency.

7. REFERENCES
[1] L. von Ahn, L. Dabbish: Designing Games with a Purpose.

CACM 51(8): 58-67, 2008.
[2] H. Aoki, A. Morishima, N. Shinagawa. Cover-all Operation for

Data Crowdsourcing. DEIM Forum 2012, 2012.
[3] A. G. Parameswaran, N. Polyzotis: Answering Queries using

Humans, Algorithms and Databases. CIDR 2011: 160-166,
2011.

[4] A. Feng, M. J. Franklin, D. Kossmann, T. Kraska, S. Madden,
S. Ramesh, A. Wang, R. Xin: CrowdDB: Query Processing
with the VLDB Crowd. PVLDB 4(12): 1387-1390, 2011.

[5] S. Fukusumi, A. Morishima, N. Shinagawa. Data Extraction
from Microblogs with a GWAP. DEIM Forum 2012, 2012.

[6] J. M. Hellerstein. The Declarative Imperative: Experiences
and Conjectures in Distributed Logic. SIGMOD Record, 39(1),
5-19, 2010.

[7] S. Jain, D. C. Parkes: The Role of Game Theory in Human
Computation Systems. KDD Workshop on Human
Computation 2009: 58-61, 2009.

[8] M. Keulen, A. Keijzer: Qualitative Effects of Knowledge Rules
and User Feedback in Probabilistic Data Integration. VLDB J.
18(5): 1191-1217, 2009.

[9] A. Morishima. A Database Abstraction for Data-centric Social
Applications. KJDB2010, 2010.

[10] A. Morishima, N. Shinagawa, S. Mochizuki: The Power of
Integrated Abstraction for Data-Centric Human/Machine
Computations. VLDS 2011 held at VLDB2011: 5-8, 2011.

[11] A. Marcus, E. Wu, D. Karger, S. Madden, R. C. Miller:
Demonstration of Qurk: A Query Processor for
Humanoperators. SIGMOD 2011: 1315-1318, 2011.

[12] A. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis, J.
Widom. Deco: Declarative Crowdsourcing. Technical Report.
Stanford, 2011.

[13] Y. Shoham: Computer Science and Game Theory. CACM
51(8): 74-79, 2008.

[14] F. Vega-Redondo. Economics and Theory of Games,
Cambridge University Press, 2003.

1921

