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ABSTRACT

Today large sequencing centers are producing genomic data at the

rate of 10 terabytes a day and require complicated processing to

transform massive amounts of noisy raw data into biological infor-

mation. To address these needs, we develop a system for end-to-end

processing of genomic data, including alignment of short read se-

quences, variation discovery, and deep analysis. We also employ a

range of quality control mechanisms to improve data quality and

parallel processing techniques for performance. In the demo, we

will use real genomic data to show details of data transformation

through the workflow, the usefulness of end results (ready for use as

testable hypotheses), the effects of our quality control mechanisms

and improved algorithms, and finally performance improvement.

1. INTRODUCTION
Genomics has revolutionized almost every aspect of life sciences

in the past decade. At the same time, technological advancement

such as next-generation sequencing is transforming the field of

genomics into a new paradigm of data-intensive computing [1]. A

large sequencing center such as the Broad Institute of Harvard and

MIT can produce 10 terabytes of genomic data each day. The flood

of data needs to undergo complex processing that mines biological

information from vast sets of small sequence reads while handling

numerous errors inherent in the data. At present, the processing of a

single person’s genomic data takes 10-12 days of machine time at

state-of-the-art sequencing centers.

The genomic data characteristics and complex data processing

needs have severe implications on real-world deployments. First

and foremost, data quality is of paramount concern to diagnostic

labs such as the Genetic Diagnostic Laboratory at Children’s Hospi-

tal Boston (GDL-CHB). In the current practice, GDL-CHB sends

de-identified DNA samples to a certified commercial sequencing

company. The company then delivers the results (about 100-200GB)

containing both short read sequences and detected genomic variants

for each sample, with a turn-around-time of two months. Currently,

a major hurdle is to detect true genomic variations due to a high rate

of false positives (genomic variations reported by data processing

software but invalidated by laboratory work) in the processed data.

Alternatively, diagnostic labs, such as GDL-CHB, have to process

raw genomic data themselves, involving developing software to

align the genome, detect variants, and assess data quality.

Second, even large research institutes that have the ability to

fully process genomic data feel a pressing need to address daunting

performance and scalability challenges. In particular, the major

challenges are to significantly increase the amount of data processed

each day while reducing the latency in processing an urgent DNA

sample (e.g., to reduce the delay of 12 days for finding a treatment

strategy for a cancer patient or an acute infectious disease).

To address the above challenges, we design and develop a work-

flow system for massive genomic data processing and deep analysis.

Our system has the following key features:

1. End-to-End Processing: Our system provides end-to-end pro-

cessing of genomic data, including (i) alignment of read sequences

of a sample against a reference genome, (ii) variation discovery

based on an aligned genome and the reference genome, and (iii)

deep analysis based on patient information and detected genomic

variations, such as finding associations of genomic variants and

patient phenotypes. The scope of processing in our system stands in

contrast with existing systems that focus only on a particular task.

For instance, well-known systems such as BWA [8], Bowtie [7], and

Wham [10] are designed for alignment only. The Genome Analysis

Toolkit (GATK) [4] focuses on local re-alignment (to improve align-

ment quality) and simple variation detection. Our system provides a

much deeper processing pipeline and eventually outputs patterns of

statistical significance, such as the association of genomic variants

and patient phenotypes, which can be used as testable hypothesis

for immediate validation via lab work.

2. Error Tracking and Diagnosis: Our system is designed to have

data quality as a first-class concept, across input data, immediate

results from alignment and variation discovery, and the final output

of deep analysis. In particular, we extend the notion of “quality

scores” beyond that only for read sequences in existing systems, and

devise new ways to compute quality scores for all intermediate and

final results. We further have a range of quality control mechanisms

that prune low quality data (due to data issues) and reject poor

alignment and variation detection results (due to software issues).

3. Scalable Data Processing: Our workflow further explores

parallel processing to distribute massive input data sets and inter-

mediate data sets to multiple nodes. Our profiling results show that

the most expensive operations in the workflow include alignment,

quality score recalibration, and variation discovery. Our techniques

focus on these operations to improve overall system performance.

As part of a bigger initiative at Children’s Hospital Boston, our

workflow is an important initial step towards genetic diagnosis and

treatment of patients and ultimately the vision of “personalized

medicine.” By returning patterns of statistical significance that can

be used as testable hypotheses, our system can dramatically reduce

the time and human costs of today’s labor-intensive screening for

biological hypotheses. Our system will also help track and mitigate

errors in processed data, which have long plagued genome process-

ing systems. Finally, the improved performance of our system will

be important for analyzing urgent DNA samples to find treatment

strategies for cancers and acute infectious diseases.
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Figure 1: A workflow for genomic data processing and deep analysis.

In our demonstration, we will present a working prototype system

using real genomic data sets and processing workloads. We will run

the workflow from alignment, to variation discovery, and finally to

association mining to find associations between genomic variations

and phenotypes. We will compare our association mining algorithm

against the state-of-the-art [5] to demonstrate the changes needed

for genomic data analysis. We will also compare our system with a

baseline implementation using existing software tools to show the

effectiveness of our quality control mechanisms. Finally, we will

perform parallel processing of expensive operations such as align-

ment and variation discovery, and show the improved performance.

2. SYSTEM OVERVIEW
Our system for genome data processing and analysis works in an

environment shown in Figure 1(a). Users of the system are hospitals

and research institutes. A user starts by sending DNA samples to a

third-party sequencing service and requests the produced genomic

data to be transferred to our system, as shown by the arrow (1) in

the figure. For each DNA sample, a sequencer produces raw images

and then converts the image data to short read sequences (or reads,

for brevity) of the genome. The read sequences are transferred to

our system by shipping hard disks, as shown by the arrow (2). The

data volume is usually hundreds of gigabytes per genome sample.

Once the data arrives at our system, the user can issue a request

to process the data, including alignment of read sequences and

detection of variations against a reference genome, as shown by the

shaded box labeled as “II. Data Processing”. The output of this

module, including a whole genome sequence and variations detected,

are stored in a database for further analysis. Afterwards the user

can upload additional patient information, and initiate extensive

analyses that combine genomic data and patient data. Such analyses

are handled by the module labeled as “III. Deep Analysis”, which

automatically discovers patterns of both statistical significance and

biological meanings.

Details of the workflow for data processing and deep analysis are

shown in Figure 1(b). For completeness, this workflow also includes

data acquisition and pre-analysis at the sequencing service.

1) Data acquisition: A human genome has approximately 3 bil-

lion bases and each base has a letter of ‘A’, ‘C’, ‘G’ or ‘T’. Most

current sequencing technologies capture image data for each base

being sequenced. Such raw data is then parsed into short read se-

quences of l bases (l depends on the sequencing machine), where

each base has a specific base call, a letter of ‘A’, ‘C’, ‘G’ or ‘T’,

and an assigned quality value (the likelihood that the base call is

correct). For each genome sample, a sequencer usually produces

10’s to 100’s millions of read sequences of 30-1000 bases each.

2) Pre-analysis: The pre-analysis step evaluates the quality of

each read sequence, removes poor quality reads, trims the poor

quality bases at the two ends of each read, and formats the data for

downstream processing (e.g., using the FASTQ format).

3) Alignment: Then the short read sequences are aligned against a

reference genome. Figure 2 shows an example where the sequenced

genome differs from the reference genome with two true mutations,

A → C and C → A. In this example, nine read sequences are

aligned against the reference genome with up to five mismatches

allowed per read—such mismatches must be allowed in order to

detect mutations, which occur in every person’s genome. The first

four reads differ from the reference genome on the two bases where

mutations occur among others, but the letters do not agree with

the true genome. Most likely these reads have been mis-aligned

to this fragment of the genome. The bottom five reads have the

correct letters for the two bases where mutations occur, but have

three additional mismatches, in relatively close positions, that differ

from the true genome. Such mismatches can either come from errors

in raw data or indicate that these reads should be aligned somewhere

else. As can be seen, proper alignment for variation detection is a

challenging problem, which we discuss more shortly.

4) Variation discovery: After alignment, the next step detects a

range of genomic variants against the reference genome, including

single nucleotide variants (SNPs), small insertions/deletions (IN-

DELs), and large structure variants such as copy number variants

(CNVs), inversions, and translocations. There is hardly any commer-

cial software that can detect all of these variants. In our system, we

support most forms of variants above using customized algorithms.

5) Validation: In the early phase of the workflow development,

we plug in an additional step to validate detected genomic variations

using other reliable, but labor-intensive methods. The validation re-

sults, e.g., false positives of the detected variations, provide feedback

for improving the alignment and variation detection algorithms.

6) Search and Integration: The reported genomic variations are

used to search existing knowledge bases to obtain associated infor-

mation and integrated with patient information such as phenotypes.
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Figure 2: Examples of poor alignments of read sequences.

7) Deep analysis: The last step produces high-level information

with biomedical meanings from all available data, e.g., for under-

standing associations between genomic variations (e.g., SNPs and

CNVs) and clinical phenotypes, causal relationships between those

variations and phenotypes, or functional pathways in response to

evolutionary, environmental, and physiological changes.

In the following, we discuss several key technical issues.

2.1 Error Tracking and Diagnosis
Today’s genomic data processing systems are plagued with false

positives of processed data: many detected genomic variations are re-

ported to be false based on validation using safer but labor-intensive

methods. Such errors severely affect subsequent biomedical anal-

yses. The reasons for such errors are two-fold: (1) Data errors:

Genomic data is inherently noisy. Due to the limitations of sequenc-

ing technology, errors occur in raw data at the rate of roughly 1 out

of 100 bases. While sequencers usually create 30-50 reads of each

base, the huge amount of noisy data still challenges software for

alignment and variation detection. (2) Software errors: Genome

processing software has to deal with both noisy data and intrinsic

mutations in human genomes. When reads are aligned against a ref-

erence genome, it is hard to distinguish the mismatches due to data

errors and those due to mutations. When such confusion propagates

to variation detection, many false positives occur in output.

Quality scores of input and processed data: Our system is

designed to have data quality as a first-class concept through all

processing steps. We extend the notion of quality score beyond that

for read sequences only in existing systems. More specifically, we

devise techniques to assign quality scores to all forms of data in the

workflow, including input data, intermediate data, and final output:

(1) Input data, the read sequences of a sample, is provided by the

sequencer with a quality score for each base in a read. For example,

the quality score of the ‘A’ letter in the read ‘ACCGTT’ is 10. This

score, called “Phred quality score,” is a property logarithmically

related to the probability that the base-calling ‘A’ is an error.

(2) Propagating quality scores of the bases of a read to the align-

ments of the read is largely an unsolved problem. In our system,

when a read is aligned to a position on the reference genome with

m mismatches, we consider all possibilities of combining data er-

rors and real mutations: Among the m mismatches, m1 of them

arise from data errors with the probabilities indicated by the qual-

ity scores of these m1 mismatched bases, and the rest of m − m1

mismatches are due to mutations, with the probability of having

m − m1 mutations in this part of the genome characterized by a

Poisson distribution. We enumerate m1 from 1 to m, compute prob-

abilities of all these cases, and choose the case with the highest

probability as the best explanation of this alignment. If a read has

multiple alignments, we produce a probability for each of them.

(3) Propagating quality scores through variation detection algo-

rithms is an even harder problem and requires fundamental research

on this topic. We adopt a recent framework, called GASVPro [3],

which combines the probabilities of alignment errors with the possi-

bility that the number of reads per base deviates from an expected

number. GASVPro, however, does not specify how to generate

probabilities of alignment errors; our proposed technique above can

be plugged into the this framework to produce such probabilities.

Furthermore, GASVPro only considers two types of structural vari-

ation, deletion and inversion. Our system extends it to support other

types such as translocation.

(4) Finally, our system further pushes quality scores through the

Deep Analysis module to the final output. Take association rule

mining for example. Each mined rule has structural variants in the

head of the rule and phenotypes in the body of the rule. When

structural variants are annotated with quality scores (probabilities

for being wrong), techniques such as [2] can be used to deal with

association rule mining in the probabilistic setting.

Quality control mechanisms: The quality scores that we de-

velop allow us to employ a range of quality control mechanisms.

Besides the obvious use of these scores to prune low quality data,

they also allow us to mitigate various software errors. For instance,

if a read has multiple possible alignments, existing software makes

rather ad-hoc choices of one alignment or a few alignments. Our

system can choose the top one or top few alignments based on qual-

ity scores. If a read r has two top alignments at locations u1 and u2

with similar scores, we can examine the set of reads mapped to each

of u1 and u2 with their quality scores, derive the consensus for each

location, and choose between u1 and u2 the more likely alignment

of the read r based on its similarity with the consensus. Other quality

control mechanisms are omitted due to space constraints.

2.2 Algorithm Development
We first developed a baseline workflow using existing software

including BWA [8] for alignment, GATK [4] for SNP and INDEL

calling, and association mining for genomic variations and patient

phenotypes [5]. We then improved many algorithms used in the

workflow for more functionality and improved results:

Alignment and variation discovery: Existing algorithms for

alignment and variation discovery have some severe limitations.

One is to use m mismatches for both SNP and INDEL calling. As

the need for detecting large INDELs grows, using a small m value
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prevents the software from detecting them. In our system, we allow

a larger value of m for mismatches in INDEL detection. However,

the additional mismatches allowed will cause many false positives

in alignment. Hence, the quality control mechanisms described

above are used aggressively to prune erroneous alignments. Another

limitation of existing software is that only one alignment of a read

is considered for variation detection. As our quality control mecha-

nisms have pruned many bad alignments, we pay the overhead of

considering multiple alignments of a small set of reads in order to

return genomic variations of higher quality.

Association mining: Unlike traditional association mining for

transaction data, the genome-wide association study presents several

main differences: First, as genomic variations are rare in nature, the

extremely low support for such variations makes existing algorithms

highly inefficient or unable to complete. Second, the interestingness

metric for association rules is usually confidence, which produces

too many trivial and repetitive rules in the genomic domain and hides

truly interesting ones. Third, large structural variants such as CNVs

are never fully aligned across different patients. Hence, they cannot

be used as a fixed vocabulary of items as in existing algorithms.

Instead, they should be divided into small fragments and mined

for association by considering proximity of these fragments. Our

algorithm extends a recent one [9] to support a new interestingness

metric, extremely low support, and proximity-aware mining.

2.3 Parallel Processing for Performance
We further consider MapReduce style parallel processing for

improved performance. We profiled our workflow to identify the

cost associated with each step. We found that alignment, quality

score recalibration, and some variation discovery algorithms are

expensive operations. Therefore, we develop ways to parallelize

them using the open-source Hadoop system. In the interest of

space, we highlight a few below: (1) Alignment: Mapping reads

to the reference genome is a computationally expensive step. The

problem, however, is embarrassingly parallel as each sequence can

be aligned independently of each other. We can run instances of the

alignment program on different nodes using Hadoop. (2) Quality

score recalibration: The quality scores returned by the sequencer

often differ from the actual error rates present in the data because

they can be affected by many covariates such as the machine cycle,

the position of a base within a read, neighboring bases etc. To

account for these factors, the quality scores in input data can be

recalibrated (improved) based on the empirical error rates in groups

of data, where the groups are defined by all possible values of user-

defined covariates. We consider two methods to parallelize this step:

we can either sort all the reads based on their mapped locations

and then in parallel on multiple nodes, iterate over the set of reads

overlapping with each location in the reference genome; or we can

iterate over the unsorted reads and for each read probe the reference

genome to update the empirical error rate.

Our design of parallel processing techniques addresses key issues

regarding how to design multiple rounds of MapReduce jobs in a

deep workflow of genomic processing, e.g., how to choose keys of

MapReduce jobs, how to minimize the number of rounds of jobs,

and how to choose between hash based and sort-merge based imple-

mentations of MapReduce. In addition, we consider optimization of

the storage system to minimize intermediate data sizes.

3. RELATED WORK
We survey additional related work in this section. Crossbow [6]

is a parallel pipeline for alignment and SNP detection. However,

it currently does not support gapped alignment, hence of limited

use. Seal [11] has integrated the BWA aligner with the Hadoop

framework using Pydoop, an approach we adopt in our system.

GATK [4] supports the MapReduce interface but not distributed

parallelism. It can parallelize within a single multi-threading process

or by manually dividing a region into independent pieces based on

then chromosome and then running independent GATK instances.

4. DEMONSTRATION
In this demo, we will present a working prototype using real

genomic data and real processing and analytical workloads. We

have collected several terabytes of data, including (1) 10 trios (father,

mother, and child) with 30 whole genome sequences and 3TB data,

which is particularly useful for error tracking and diagnosis because

genotypes in the child need to be consistent with those observed

in the parents (otherwise, there is most likely an error); (2) 36

whole exome samples, each of which is 1% of a whole genome

representing functionally relevant data; and (3) structural variants

(CNVs) of four thousand patients with their phenotypes.

We will demonstrate the following features of our system: (1) A

workflow returning high-level biological information: We will run

the workflow from alignment, to variation discovery (including

SNPs, small INDELs, and large structural variants), and finally to

deep analysis. As an example of deep analysis, we find associations

between genomic variations (common or rare) and phenotypes such

as short, normal, or tall stature. We will show the data at each step

of processing, including the relevant attributes and how they are

transformed across steps, as well as how we compute novel quality

scores for intermediate data and final output. (2) Comparison of

association mining algorithms: We will compare our association

mining algorithm against the state of the art [5] to demonstrate the

changes needed for genomic data analysis. (3) Data quality: We will

also compare our system with quality control mechanisms with the

baseline workflow using existing software tools. We will show the

difference in quality of processed results. (4) Parallel processing:

We will run parallel processing of the most expensive components

of the workflow on a cluster of nodes using Hadoop. We will show

the resulting performance improvements.
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