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ABSTRACT

Master data management (MDM) integrates data from mul-
tiple structured data sources and builds a consolidated 360-
degree view of business entities such as customers and prod-
ucts. Today’s MDM systems are not prepared to integrate
information from unstructured data sources, such as news
reports, emails, call-center transcripts, and chat logs. How-
ever, those unstructured data sources may contain valuable
information about the same entities known to MDM from
the structured data sources. Integrating information from
unstructured data into MDM is challenging as textual ref-
erences to existing MDM entities are often incomplete and
imprecise and the additional entity information extracted
from text should not impact the trustworthiness of MDM
data.

In this paper, we present an architecture for making MDM
text-aware and showcase its implementation as IBM Info-
Sphere MDM Extension for Unstructured Text Correlation,
an add-on to IBM InfoSphere Master Data Management
Standard Edition. We highlight how MDM benefits from
additional evidence found in documents when doing entity
resolution and relationship discovery. We experimentally
demonstrate the feasibility of integrating information from
unstructured data sources into MDM.

1. INTRODUCTION
Master data management (MDM) systems provide a con-

solidated view of business entities such as customers or prod-
ucts by integrating data from various data sources. A pri-
mary function of MDM is to identify multiple records that
refer to the same “real-world entity”, a process called entity

resolution [1]. Entity resolution resolves that two records re-
fer to the same entity despite the fact that the two records
may not match perfectly. For example, two records that
refer to the same person entity may contain a slightly differ-
ent spelling for the person’s name. Other terms used to de-
scribe the concept of entity resolution are record linkage [7],

record matching [6], identity resolution [9], and duplicate de-

tection [5].
Today’s state-of-the-art MDM systems are limited to inte-

grating and resolving data from structured data sources (see
Figure 1). However, a large amount of entity information is
also contained in unstructured data sources such as emails,
ASR transcripts, comments, and chat logs. In fact, it is es-
timated that 80% of enterprise data is in unstructured form
and is growing more rapidly than the structured data [21]. A
global study on MDM published by PwC in November 2011
lists “converting unstructured data into MDM-compatible
information” as a key challenge for the MDM of the fu-
ture [16]. In this paper, we address this problem and show
how MDM systems can be enhanced to leverage unstruc-
tured data from various sources (see Figure 1).

Figure 1: Evolution of MDM systems

Taking into account information from unstructured data
sources has many benefits for MDM systems. In particu-
lar, we highlight entity resolution and relationship discovery

as two important applications that benefit from text-aware
MDM systems. We start by demonstrating how informa-
tion from unstructured sources can be exploited for entity
resolution.

For illustration, throughout the paper, we have picked
person as a representative entity type. A person entity
is defined by a set of atomic attributes (for example, na-
tionality) and composed attributes (for example, a person’s
name which may consist of first name, middle name, and
last name). To determine whether two person records refer
to the same person entity, MDM compares the correspond-
ing attribute values and computes an overall matching score
for the two records. If the matching score is above a certain
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threshold, MDM automatically merges the two records into
a single entity.

For various reasons two records that belong to the same
entity (that is, they actually refer to the same person) may
not match sufficiently for MDM to automatically merge them.
For example, one or both records may be incomplete or
some attribute values may be incorrect. If two such records
score sufficiently close to the threshold for automatic merg-
ing, MDM marks the two records for manual inspection.
During manual inspection, a data analyst needs to decide
whether the two records belong to the same person or not.
For this task, information extracted from unstructured data
may provide the missing evidence that enables the data an-
alyst to make a decision.

Figure 2: Entities in MDM

Manosh Patil and Sarah Lee from IBM met in New
York with Tom Smith from ABC to discuss XYZ. The
meeting took place on 21. Aug 2011.
Manosh from IBM in India is currently on a six month
assignment to the office in New York to help Sarah and
Tom with planning XYZ, a joint growth-market initiative
of IBM and ABC. Tom is scheduled to spend consider-
able time in India later this year to oversee the execution
of XYZ in India.
Please contact Manosh (mpatil3@in.ibm.com) or Tom
(tom.s@abc.com) for further information.

Figure 3: Document linking the entities

As an illustration, consider the MDM dataset in Figure 2.
It is possible that records 3 and 4 belong to the same entity,
but there is not enough evidence to automatically merge
them. These records remain unlinked in the MDM system.
Now consider the text document shown in Figure 3 men-
tioning some of the MDM entities of Figure 2 (highlighted
in bold). Based on existing master data information, four
new person records can be extracted from the document and
linked to existing entities as shown at the bottom of Figure 4.
(The details of this process are described in Section 4). In
the example, the extracted record 8 is linked to the existing
entity 3 whereas the extracted record 9 is linked to the ex-
isting entity 4. The information that the two records 8 and
9 were extracted from the same document may be enough
additional evidence for a user to decide that entities 3 and
4 pertain to the same person and should be merged into a
single entity.

The second application that benefits from text-aware MDM
is relationship discovery, which is the task of identifying re-
lationships between distinct entities. Traditionally, MDM
systems have focused on entity resolution and gathering all
information about an entity. However, in some applications,
it is also useful to identify relationships between different

Figure 4: Improved entity resolution

entities. For example, an enterprise might want to detect
various kinds of relationships between its customers, for ex-
ample, whether two customers belong to the same family or
household. Simple relationships can often be detected based
on a match on attribute values; examples include matching
the last names or matching the address attribute.

Other relationships may not be as obvious and depend on
the context for which the entities intersect. For example, in
a public-safety scenario, the government might like to track
certain suspicious entities and detect any relationships be-
tween them. Documents such as news reports, emails, or
other confidential reports often contain information about
multiple entities and capture that two entities interacted
with each other or are related to on another and the re-
lationship context. Text-aware MDM systems can extract
these types of relationships leading to richer master data. In
our example, the document shown in Figure 3 provides ev-
idence that a relationship exists between the MDM entities
1, 3, and 5. See Figure 5 for an illustration.

Figure 5: Improved relationship discovery

In this paper, we describe a system that can use the above
described evidence from unstructured information sources
to enhance master data management. EUTC (Extension
for Unstructured Text Correlation) bridges the gap between
structured and unstructured data and enables MDM sys-
tems to provide a real 360-degree view of each entity. To link
structured and unstructured data, EUTC automatically ex-
tracts references to existing entities from arbitrary text. The
extracted entity references allow MDM systems to improve
entity resolution and relationship discovery for existing mas-
ter data.

EUTC addresses three main challenges:

• Text is noisy by nature and entity references are of-
ten incomplete and uncertain. Thus, the system needs
to be tolerant to spelling variations, allow for fuzzy
matching of values, and be able to deal with incom-
plete references.
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• Multiple entities may be mentioned in the same doc-
ument and may be referenced even within the same
sentence. Thus, the system can not rely on techniques
that require each entity to be mentioned within its own
unit of text such as a sentence or paragraph.

• Different types of entities (for example, products or
persons) are described by different attributes. And
even the same type of entity may be described differ-
ently in different domains. For example, in a public-
safety scenario, a person’s description may include at-
tributes such as nationality, passport number, and place
of birth; whereas a human-resource scenario may in-
clude attributes such as email address, employee ID,
and salary. Thus, the system should not rely on tech-
niques that exploit domain-dependent data semantics.

EUTC addresses these three challenges and provides a
generic approach to extract entity-related information from
any type of document with respect to any type of MDM sys-
tem domain. It leverages the probabilistic matching func-
tionality provided by MDM systems to identify the matching
entities. A specific instance of EUTC has been implemented
as IBM InfoSphere MDM Extension for Unstructured Text
Correlation, an add-on to IBM Initiate Master Data Service
version 9.7 and IBM InfoSphere MDM Standard Edition ver-
sion 10. Wherever needed, we use this implementation for
explanation and experiments. However, EUTC as a concept
is not limited to a specific MDM system.

The remainder of the paper is organized as follows. In
Section 2, we describe the architecture of the system and
run through an example execution. In Section 3, we explain
how existing structured data in MDM systems is leveraged
for information extraction. Section 4 describes how EUTC
exploits the matching capability provided by MDM for its
entity construction. We evaluate the system experimentally
and present the quality and performance results in Section 5.
Finally, we present some related work in Section 6 and con-
clude the paper in Section 7.

2. SYSTEM OVERVIEW
In this section, we introduce some MDM terminology, de-

scribe the architecture of EUTC and its individual compo-
nents, and walk through an example of the execution of the
EUTC process.

2.1 MDM Terminology and Concepts
We use IBM Initiate Master Data Service (MDS) for il-

lustrations and for the experimental evaluation. Thus, the
MDM terminology introduced here is influenced by the ter-
minology used in the context of MDS.

Amember is defined as a set of attributes that represents a
type of individual (for example, a person or an organization)
or a type of thing (for example, a car or a machine part).
For illustration, we use the member type Person, which is
defined by a set of demographic attributes. Figure 6 shows
the snapshot of a sample MDS data model for the person
member type.

A member record is the set of all attribute values that a
single source system asserts to be true about a person. For
example, each row in Figure 2 is a member record.

An entity is defined as “something that exists as a par-
ticular and discrete unit”. In terms of data management,

Figure 6: Attributes of person member

an entity is the logical link between two or more member
records. An entity is sometimes also called a linkage set.
For example, in Figure 5, two member records are grouped
into entities 3 and 8, respectively.

Attribute Matching or Scoring is the process of comparing
individual attributes using one or more appropriate compar-
ison functions. For example, to match two person names,
a phonetic comparison based on Soundex and a syntactic
comparison based on edit distance may be used. The com-
bined output of all comparison functions for matching two
attribute values is called matching score.
Record Matching or Scoring is the process of combining

the individual attribute-level scores to arrive at the likeli-
hood that two records belong to the same entity. MDS ap-
plies a likelihood function to determine the probability that
different values of an attribute match and how much weight
a given attribute should contribute to the overall score be-
tween two records. This process of comparing two member
records is also referred to as probabilistic matching. For de-
tails on MDS matching we refer the interested reader to the
IBM white paper on data matching [8].

Entity resolution is the process of merging two (or more)
member records into a single entity. This happens auto-
matically if the records’ matching score exceeds the auto-

link threshold or manually if the score exceeds the review

threshold and a user determines that the records belong to
the same entity.

A relationship is a link between two distinct entities. For
example, in Figure 5 entities 6, 7, and 8 are directly linked by
the fact that they all appear in the same document; entities
1, 3, and 5 are indirectly linked by the fact that they are all
linked to entities extracted from the same document.

2.2 EUTC Architecture and Components

2.2.1 Architecture

Figure 7 shows the basic architecture of EUTC. EUTC in-
teracts both with structured and unstructured data sources.
Structured data is provided by an MDM system. While
EUTC works in principle with any MDM system (or for
that matter any source of structured entity data), an MDM
system that encompasses sophisticated methods for match-
ing, can significantly improve EUTC’s performance. (We
discuss this aspect in Section 2.2.5.)
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Figure 7: Architecture of EUTC

Unstructured data can come from many different sources.
Content management systems such as EMC’s Documentum1

or IBM’s FileNet P82 may invoke EUTC whenever a new
document is uploaded to the document management system.
However, unstructured text may also reside in the file sys-
tem or be stored along with structured data as a CLOB in a
database. In such cases, a separate event handler is needed
to monitor the unstructured data and invoke EUTC when-
ever new text is available. When EUTC is first installed, it
can perform bulk-processing of all existing documents.

2.2.2 Preprocessing of Structured Data

In order for EUTC to identify references to existing enti-
ties in unstructured text, it needs to be aware of all the struc-
tured data. Thus, during configuration, EUTC extracts the
data model for all members of interest from MDM (Step
1a in Figure 7). In addition, it extracts, for each atomic at-
tribute, a dictionary with all distinct values for the attribute
(Step 1b in Figure 7). For example, for the member type
Person shown in Figure 6 the attribute ADDRESS may have
seven atomic attributes as shown in Figure 8, in which case
EUTC will create seven dictionaries. After configuration
and setup of EUTC, dictionaries are automatically updated
whenever new content in MDM creates a new dictionary
entry.

2.2.3 Extraction of Plain Text

EUTC accepts plain text documents as well as documents
in a majority of well known data formats such as PDF, MS
Word and HTML (Step 2 in Figure 7). It uses functional-
ity provided by Apache’s Tika project3 to extract the plain
text. The plain text is then passed to the annotation com-
ponent of EUTC. In addition to the plain text, meta data
may be passed on and eventually be stored in MDM. For

1http://www.emc.com/enterprise-content-
management/index.htm
2http://www-01.ibm.com/software/data/content-
management/filenet-p8-platform
3http://tika.apache.org

Figure 8: Definition of MDS attribute type AD-
DRESS

Figure 9: Part of EUTC configuration file

example, a URI may be associated with each document, al-
lowing users of MDM to retrieve the respective document.
Alternatively, the plain text of the document may be stored
in MDM. Storing the document text in MDM makes it easy
to re-process relevant documents when MDM data changes.
It would allow the users of MDM to view the document text
using traditional MDM applications that may not support
activation of a URI to fetch the original document. It also
supports cases where the original text cannot be made ac-
cessible by a URI.

2.2.4 Information Extraction

By default each attribute is associated with a dictionary
and EUTC uses fuzzy matching to extract terms in the text
that match a dictionary entry (Step 3a in Figure 7). Figure
9 shows part of the EUTC configuration file where a dictio-
nary has been automatically associated with the attribute
CITIZENSHIP. Section 3 discusses the details of how those
dictionaries are used to find all matching terms within the
text.

Obviously, dictionary-based annotation may not be ap-
propriate for all attribute types. For such cases, EUTC
uses rule-based information extraction (Step 3b in Figure
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7). For example, there are so many variations of writing
a date that using a dictionary to annotate all instances of
dates is not appropriate. Thus, EUTC automatically de-
tects whether an attribute is of type date and associates the
appropriate rule-based annotator with the date attribute.
Figure 9 shows part of the EUTC configuration file where a
rule-based annotator is associated with the attribute Date
of Birth (DOB).

Note that, so far all information extraction is completely
domain-independent and does not require any customiza-
tion. This is in stark contrast to existing solutions where
months of effort may be spent to develop appropriate anno-
tators for each domain and setting. However, if specialized
annotators have already been developed, they can be easily
plugged into the EUTC configuration. EUTC’s informa-
tion extraction component is built on top of Apache’s Un-
structured Information Management Architecture (UIMA)
framework4 and allows easy integration of UIMA-compliant
custom annotators.

2.2.5 Record Construction

EUTC needs to determine which entities in the MDM
system might be referenced within the document using the
information it extracted from the document in the form
of attribute-value pair annotations. A naive approach is
to enumerate all possible combinations of annotations and
query MDM for exact matches. If a combination yields a
single match with MDM, the corresponding annotations are
likely to be a reference to the matched entity. However, this
approach neither scales nor does it account for the uncer-
tainty associated with information extracted from text.

A key observation is that, given a set of attribute-value
pairs, finding an entity that matches it is a primary function-
ality provided by MDM. Thus, rather than implementing
the matching ourselves, we exploit the sophisticated match-
ing capabilities provide by MDM systems. In this paper, we
specifically describe how probabilistic matching (for exam-
ple, as provided by MDS) is used to infer which entities are
likely matches to the set of all annotations extracted from
the document. Section 4.1 discusses the details.

Based on the results retrieved from MDM, EUTC cre-
ates member records by computing the overlap between the
values of a returned MDS record and the values in the an-
notation set. See Section 4.2 for details. For each member
record EUTC creates, it keeps track of which existing MDM
entity it matched and with which score. The records are
then provided to MDM. Section 4.3 discusses how MDM
consumes the extracted records.

Figure 10: Attribute view of MDS entity 1574

4http://uima.apache.org

2.3 Example EUTC Execution
We show an example from a public-safety scenario where

the MDM system contains a large amount of potential sus-
pects collected from multiple data sources. Each person in
MDM is described by the attributes listed in Figure 6. A
common task for an analyst is to gather all available in-
formation about a suspect and examine any connections to
other suspects.

Assume that the analyst is interested in a person called
Miran Mada. She may use the IBM Initiate Inspector5 ap-
plication to find out everything MDS knows about her sus-
pect. Figure 10 shows the attribute view for the MDS entity
associated with Miran Mada (to which MDS assigned the
identifier 1574). When exploring the relationship view, the
analyst finds out that there are no known relationships with
other entities.

Now consider the document shown in Figure 11, whose
made-up content is representative for documents we ob-
served in the public-safety scenario. This document estab-
lishes a relationship between the suspect and another entity
called Maranda Group of Companies.

Figure 11: Sample document for public-safety sce-
nario

Figure 12: Illustration of EUTC execution

5www.ibm.com/software/data/infosphere/inspector
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Figure 13: Relationships established by EUTC

Figure 12 illustrates the execution of EUTC over the sam-
ple document. The annotations received when executing
information extraction are shown in the left column of Fig-
ure 12. The annotations are also highlighted in the text
shown to the right. Note that, not all annotations pertain
to the two entities mentioned in the document (Miram Mada
and Maranda Group of Companies) and the first name of the
suspect entity is spelled differently in the document as in
MDS (Miram versus Miran). Nevertheless, EUTC correctly
identifies a reference to the suspect entity 1574 as well as to
another existing entity with the identifier 3652, as shown in
Figure 12 (right side, bottom). Based on this, EUTC inserts
two new member records into MDS. The analyst can now
explore the newly established relationship in the Inspector
application (see Figure 13).

3. EXPLOITING STRUCTURED DATA FOR

INFORMATION EXTRACTION
In this section, we describe our domain-independent ap-

proach to extract entity-related information from unstruc-
tured text documents.

3.1 Dictionarybased Matching
The basic idea behind EUTC is that any reference in a

document to an existing MDM entity contains information
known to MDM. For example, the occurrence of Bangalore
in a document is only relevant, if there is at least one entity
in MDM that is related to Bangalore (for example, a per-
son entity may live in Bangalore or may have been born in
Bangalore). We exploit this fact and create a dictionary for
each atomic MDM attribute. Each dictionary contains all
the distinct values for the attribute across all known MDM
entities. For example, for the MDM instance in Figure 2,
the FirstName dictionary is: {Manoj, Manish, Tom, Sara}.
Every mention of a dictionary entry in a text, is a potential
clue that an existing entity may be referenced. For example,
the occurrence of the first name Sara in a document, can be
evidence that the document talks about entity 5 in Figure 2.

By default, EUTC treats all attributes as strings and ap-
plies dictionary-based matching. As discussed in Section
2.2.4 some attributes are not amenable to dictionary-based

matching in which case EUTC applies rule-based informa-
tion extraction instead. The remainder of this section fo-
cuses on dictionary-based matching.

3.2 Approximate Matching
When identifying potential clues, EUTC needs to be ro-

bust to noise commonly associated with text data. For ex-
ample, we do not want to miss out on a reference to Sara Lee

(entity 5 in Figure 2) just because the person may be spelled
Sarah Lee in a document. Typical kinds of noise in text data
such as emails and web documents include spelling errors,
alternative transliterations of names of non-English origin,
abbreviations, vowel dropping, and non-standard words6.
In order to accommodate such noise during dictionary-

based matching we use edit distance [10] (aka Levenshtein
distance) to determine whether a dictionary entry is men-
tioned the a text. Despite many advances in approximate
string matching, Levenshtein distance remains a popular
metric for identifying approximate matches [13]. Note that,
for EUTC purposes, we do not care too much about false
matches as those are filtered out in later stages of EUTC.
However, we do care that potential matches with a dictio-
nary are detected in the text.

3.3 Efficient Matching
Computing the edit distance between every substring in

the text and every value in each dictionary is prohibitively
expensive. Thus, we include a common character-3-gram
constraint in our approximate matching semantics which can
be checked efficiently. We use 3grams(str) to denote the set
of all contiguous 3 character substrings of a string str; for ex-
ample, 3grams(“sample”) evaluates to {sam, amp,mpl, ple}.
We consider a string str1 an approximate match of the

string str2, if both of the following conditions are satisfied:

• 3grams(str1) ∩ 3grams(str2) 6= φ, that is, there is
at least one common character-3-gram between the
strings

• ed(str1, str2) ≤ min{dmax,
length(str1)

df
,
length(str2)

df
},

where dmax (by default set to 4) provides an upper
bound on the allowed edit distance and df (by default
set to 4) controls the allowed edit distance as a fraction
of the length of the shorter string.

The edit distance threshold is set to at most dmax to avoid
spurious matches between long strings. Our experiments
show that using the default values, a combination of the
above two conditions leads to fairly accurate extraction of
entity-related information.

To aid fast verification of the first condition, we create an
in-memory inverted index on character 3-grams for each at-
tribute dictionary. A subset of such an index for the First-

Name attribute values listed in Figure 2 is shown in Fig-
ure 14. We implement the index as a HashMap7 that maps
each character 3-gram to a list of all entries containing the
character 3-gram. We do not create any additional index
structure to aid edit-distance computation.

6http://en.wikipedia.org/wiki/Noisy text analytics
7http://docs.oracle.com/javase/6/docs/api/java/util/
HashMap.html
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Figure 14: Inverted 3-gram index for FirstName

Alg. 1 Approximate Matching Overview

Input. Document D
Input. Set of Inverted Indexes {I1, I2, . . . , Im}
Output. Set of matches as 3-tuples, [matched, I, entry],
each tuple indicating that the string matched in the document
D was matched with the entry entry in the inverted index I

1. R = φ
2. Split D into component tokens {w1, . . . , wn}
3. ∀w ∈ {w1, . . . , wn}
4. ∀I ∈ {I1, I2, . . . , Im}
5. mw

I = φ
6. ∀t ∈ 3grams(w)
7. mw

I = mw
I ∪ entries(I, t)

8. ∀m ∈ mw
I

9. ∀k from (#tokens(m) + 2) to 0
10. c = [w, . . . , wk]

11. if(ed(m, c) ≤ min{dmax,
|m|
df

,
|c|)
df

})

12. R = R∪ {[c, I,m]}
13. break
14. Return R

3.4 Information Extraction using Approximate
Matching

We now describe the complete algorithm for annotating a
text with all approximately matching entries in the MDM
attribute dictionaries. An overview of the algorithm appears
in Algorithm 1. The algorithm takes an inverted index Ii,
for each attribute i and the document D as input. It iden-
tifies every occurrence of an approximate match with a dic-
tionary entry and adds it to the result set in the form of a
3-tuple [matched, I, entry] where the string matched in the
text was matched with the string entry in the attribute dic-
tionary index by I. Note that, dictionary entries (that is,
values of an attribute) may not always be single tokens. For
example, the value New Y ork in Figure 2 for the attribute
City consists of two tokens; the company name IBM could
have been written as International Business Machines Cor-

poration.
The algorithm starts with an empty result set R. It first

tokenizes the input document into tokens {w1, w2, . . . , wn}
(Line 2). For every token and index pair (w, I), we identify
all entries in I that share at least one 3-gram with w. In lines
6-7 all such entries are collected in mw

I . For all entries that
satisfy the 3-gram criterion, we proceed to identify those
that also satisfy the edit-distance criterion. As mentioned
above, entries in mw

I may consist of multiple tokens. Since
an entry is likely to match with a token sequence in the
text of similar length, we start by comparing the entry to
the string comprising of #tokens(m) + 2 starting with the
token w to check for the edit distance criterion (Line 9).
We progressively shrink the sequence of tokens by dropping

a token at the end of the sequence, until we find a match
or we run out of tokens to drop; at any point, if the edit-
distance criterion is met, we stop the search and add the
appropriate 3-tuple to the result (Line 12).

Consider the text “. . . NewYork press has reported . . .”

where New York is incorrectly spelled without the whites-
pace in between. When considering w = “NewYork”, the
algorithm identifies the city dictionary entry “New York”

as a candidate match due to the common 3-gram “New”.
Since #tokens(“New Y ork”) = 2, it considers up to 4 to-
kens starting from NewYork to compare with. The edit-
distance criterion is obviously not satisfied for the pairs
[“New York”,“NewYork press has reported”], [“New York”,

“NewYork press has”] and [“New York”, “NewYork press”].
Only after dropping one more token, the edit-distance cri-
terion is satisfied for the pair [“New York”, “NewYork”]
(with an edit-distance of 1) and the match is added to R.
This showcases how successively dropping tokens makes the
matching technique tolerant to missing whitespace. Analo-
gously, starting the matching at a length of (#tokens(m) +
2) instead of #tokens(m) makes the matching tolerant to
spurious whitespace characters.

3.5 Matching Composed Attributes
Until now, we have only considered atomic attributes.

However, attributes are often hierarchical in nature (see for
example, the attributes Name and Address in Figure 2).
For example, Name is composed of two attributes First-

Name and LastName. For the text “. . . Sarah Lee . . .”,
the matching algorithm returns a set with [“Sarah”, First-
Name, “Sara”] and [“Lee”, LastName, “Lee”].8 We now
want to combine the atomic attribute matches into a sin-
gle composed-attribute match for Name denoted by [“Sarah
Lee”, Name, “Sara Lee”].

In general, consider a composed attribute A with p or-
dered atomic attributes [A1, A2, . . . ,Ap]. We consider a se-
quence of atomic attribute matches [m1,m2, . . . ,mq] (q ≤ p)
as a match for the composed attribute A if all the following
conditions hold:

• ∀i, 1 ≤ i < q, cont(mi,mi+1) where cont(mi,mi+1)
indicates whether the matches appear contiguous in
the text. We consider two strings to be contiguous
if no more than three arbitrary characters appear in
between.

• ∀i, 1 ≤ i < q, attribute(mi) < attribute(mi+1). That
is the atomic attributes associated with the matches
appear in the same order as the attributes associated
with the composed attribute.

• ∄m′ s.t. ∃i where [m1, . . . ,mi,m
′,mi+1, . . . ,mq] is a

match for A. This condition ensures that we only con-
sider the maximal match.

• q ≥ 1. This ensures that at least one component at-
tribute of A matches.

In short, a sequence of atomic attribute matches is re-
garded a match for a composed attribute if it contains some

of its component attributes in the same sequence, the matches
appear contiguously in the text, and no more matches may

8For convenience, we use the attribute name instead of the
index name in the second element of the tuple.
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be included. If non-maximal matches were also considered,
“Sarah”, “Lee”, “Sarah Lee” would all be considered as
matches for Name, leading to redundancy. Since we do not
enforce that all component attributes be covered, a com-
posed attribute Address that consists of atomic attributes
Line1, Line2, Line3 may have a match that contains a 2-
length contiguous sequence comprising of a match from Line1
followed by one from Line3.

Given all the matches for each Ai, exhaustively searching
for all possible matches of A leads to an exploration of an
exponential search space. Thus, we adopt a greedy strategy
and allow a match for a component attribute to figure only
once in a match for A. We start from each match of A1

as a single-element sequence and iterate over the other at-
tributes in order, adding matches from them to the sequence
as long as they are contiguous in the text. Each sequence
is reported as and when found and the component matches
are excluded from further consideration. When the matches
of A1 are exhausted, we proceed to A2 and so on until all
component attributes of A are covered. This greedy strat-
egy may potentially miss some valid matches for composed
attributes. However, our experiments show that such cases
rarely appear.

4. RECORD CONSTRUCTION
This section describes how EUTC exploits existing MDM

capabilities to find entity references in the text based on the
extracted annotations.

4.1 Querying MDS
Once all annotations have been collected as described in

Section 3, EUTC exploits MDS’s probabilistic matching to
retrieve relevant records from MDS. As briefly described in
Section 2.1 MDS uses probabilistic matching to determine
how likely two member records refer to the same entity. The
same probabilistic matching is used to answer queries to
MDS. A query specifies a set of values for some MDS at-
tributes. For example, it may ask for member records were
NAME1=“Tom”, NAME2=“Smith”, and NATIONALITY
= (“US” or “Canada”). Note that MDS matches a query
against member records (and not entities). However, the
user may choose to receive the results grouped by entities.

Results are returned ranked by matching score. For ex-
ample, MDS may return the records listed in Table 1, where
the first result record has a high matching score because
all three attribute values contribute to the overall score. If
multiple values are specified for the same attribute, MDS
picks the highest matching score it achieved for any of the
values (for example, for result record one and attribute NA-
TIONALITY, it would have picked the matching score for
“US”). The second record is assigned a lower score as only
two attributes contribute to the overall score because the
nationality of the MDS entity is unknown.

To decide how much a match for a certain attribute con-
tributes to the overall matching score, MDS employs weights.
For example, if a rare name matches, the match is scored
higher than if a common name such as “Tom Smith” matches.
MDS also uses negative weights to penalize non-matching
attribute values. For example, the third result record is as-
signed a very low score because this person’s nationality does
not match any of the nationalities specified in the query.

EUTC queries MDS with all the annotations extracted
from a document to retrieve all member records that match

Table 1: Ranked MDS Query Results
NAME1 NAME2 NATIONALITY ... Score

Tom Smith US ... high
Tom Smith unknown ... medium
Tom Smith Great Britain ... very low

the annotation set with a high enough score. However, as
EUTC may collect information about multiple entities in a
single query, it does not employ negative weights. In the
above query, EUTC would not penalize the last record be-
cause its nationality does not match any of the specified
values. It is possible that a document never mentions the
nationality of Tom Smith but does mention the nationality
of completely unrelated entities. Thus, EUTC only collects
positive evidence but does not penalize for non-matching
attribute values.

Note that it is possible that the EUTC query could con-
tain information from multiple entities whose combination
of attributes will match an entity in MDS that is not ref-
erenced within the document. However, we show in our
experimental results that at higher matching scores such a
result is less likely to occur. Our experiments also show that
the probabilistic matching offsets the imprecision in EUTC’s
annotations. For example, MDS may contain a person with
the first name “Said” and a document may contain text such
as “XYZ said ABC”. In this case, EUTC will incorrectly add
an annotation for NAME.NAME1 = “said”. However, MDS
will assigns a low score to any record where nothing beyond
the first name annotation matches.

When processing a document, EUTC needs to strike a
balance between recall (that is, all references to an existing
entity are found) and precision (that is, all references found
are indeed correct references to an existing entity). In order
to do so, EUTC enforces a user-specified minimum thresh-
old when querying MDS. Only results whose matching score
is above the threshold are returned by MDS. This thresh-
old is closely related to the auto-link and review thresholds
(outlined in Section 2.1) specified for entity resolution inside
MDS. In Section 5.3 we show how to choose a good threshold
based on a small set of labeled data.

In certain cases, the user may also need to make ad-
justments to the weights to avoid spurious matches due to
the fact that in EUTC negative matches are not penalized.
In order to compensate, distinguishing attributes such as
a name or email should be given more weight than non-
distinguishing attributes such as citizenship or place of birth.

4.2 Processing MDS Query Results
After EUTC receives all the records that matched the an-

notation set, it iterates over each MDS record and computes
the overlap between the MDS record and the annotation
set. It employs the same fuzzy matching (as during annota-
tion) to compare values of the same attribute type against
each other. It constructs an EUTC record which contains
the best matching annotation for each attribute type. If
an annotation for a composed attribute contains only one
atomic attribute value, but the MDS record contains mul-
tiple atomic attribute values, EUTC discards the match.
For example, the annotation (NAME.NAME1 = “said”) is
not added to the EUTC record, if the corresponding MDS
record contains two values (NAME.NAME1= “Said” and
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NAME.NAME2=“Lastname”). However, the annotation
(NAME.NAME1 = “XYZ Company”) is added to the EUTC
record, if the corresponding MDS record contains only one
value (NAME.NAME1=“XYZ Company”). The same logic
is applied for all composed attribute types.

4.3 Providing EUTC Results
The records constructed by EUTC are inserted into MDS

as new member records. Additionally, each EUTC record is
linked explicitly to the referenced MDS entity (see Figure
13 for an illustration). Each EUTC record also has an ad-
ditional attribute DOCID that contains a URI to the docu-
ment from which the record was extracted. MDS automat-
ically creates a document entity for the attribute DOCID
and links all records with the same document URI to the
same document entity (see Figure 13 for an illustration).

MDS maintains a source code attribute to distinguish be-
tween records from different data sources. Thus, EUTC
records can easily be distinguished from records received
from various structured data sources. No merging of EUTC
records with other MDS records is enabled. Instead, as de-
scribed above, an EUTC record is explicitly linked (by a
relationship) to the corresponding MDS record. This al-
lows applications that depend on highly trusted data to use
only member records from traditional data sources, whereas
more exploratory applications can use all member records
independent of their source.

Alternatively, EUTC records could be handled in the same
manner as those records coming from structured data sources.
In that case, explicit linking is unnecessary as MDS auto-
matically merges records that score above a certain thresh-
old into the same entity.

As briefly outlined in Section 2.1, MDS employs two dif-
ferent thresholds in order to decide when to merge automati-
cally and when to involve user interaction. Similarly, EUTC
accepts two different thresholds in order to determine when
to insert an EUTC record into MDS and when to store the
record outside MDS for review. If both thresholds are set to
the same value, all records with a score above the threshold
are inserted into MDS. If the two threshold values differ,
EUTC records which score between the two thresholds are
inserted into a separate data source outside of MDS. This
allows MDS to maintain its status as a trusted data source,
while it allows analysts to reach out and gather more infor-
mation about an entity from the external data source.

5. EXPERIMENTAL EVALUATION
In this section, we report experimental results and an

analysis of EUTC’s performance.

5.1 Experimental Setup
We have implemented EUTC using Java version 1.5. On

the MDM side, we have setup an Initiate MDS Version 9.7
instance running DB2 Version 9.7 for data storage. On the
content side, we have implemented an event handler that
monitors a specific folder in the file system and invokes
EUTC whenever a new document is added to the folder.

For the experiments, all three components (MDS, EUTC,
and the event handler) were running on the same machine.
All experiments were run on a machine provisioned from the
cloud with two Intel Xeon E5640 processors running at 2.67
GHz. The virtual machine was allocated 4GB RAM and
was running Windows server 2003, service pack 2.

Table 2: Document Data Characteristics
Minimum Maximum Average

Characters 417 4,013 2,554
Entity References 2 13 5.6

5.2 Data
Our experiments are based on a confidential real-world

MDS dataset from a public-safety scenario. The dataset
consolidates person data from two different sources with
4,865 and 488 member records, respectively. The combined
5,173 member records were grouped into 4,919 entities by
MDS’s automatic entity resolution. A subset of the member
records have been marked as potential duplicates and tasked
for manual review. The thresholds for auto-linking and man-
ual review were determined based on a user-specified sample
of records that must link or should not link.

The attributes for a person in this dataset are listed in Fig-
ure 6. All records contain a name; 75% contain an address;
approximately 50% contain identifier information such as
passport or license numbers, a date of birth, and an alias
name; all other attributes appear in less than 30% of the
records. Note that many records contain multiple values for
the same attribute. For example, it is common for a record
to contain a large number of aliases for the AKA attribute.

We also had access to a representative set of real-world
documents of reports related to the entities in the MDS
data set. We manually examined those documents to iden-
tify references to existing MDS entities. Each document was
manually annotated with the IDs of all entities in MDS ref-
erenced by the document. This process was done by two
people and only if both people agreed on the annotations,
the document was added to the test set. The test set con-
sists of 50 documents in which on average each document
contains about 2,600 characters and references 5.6 MDS en-
tities (see Table 2 for more details).

In other real-world scenarios, the number of MDM records
may be much larger. In order to demonstrate the scalability
of EUTC, we generated additional member records with a
distribution similar to the 5,173 real-world member records.
We used the dictionaries extracted from the existing MDS
data to generate values for the new members. To avoid a dis-
proportional increase in false positives, exact name matches
were excluded from the name dictionaries. Based on the gen-
erated data, we prepared two additional datasets by adding
25,000 and 50,000 records, respectively, to the original 5,137
records.

5.3 Qualitative Analysis
The most important task of EUTC is to correctly identify

references to existing entities. We measure how well EUTC
does for this task with respect to the test set described in
Section 5.2. We ran EUTC over the test set using various
threshold values and then compared the automatically ex-
tracted references with those assigned during the manual
process. We measure the quality of EUTC in terms of preci-
sion, recall, and F-measure for various thresholds. As MDS
is implemented to provide trusted data, customers are reluc-
tant to introduce unreliable data. This causes them to favor
precision over recall. Thus we use α = 0.5 for the weighted
F-measure
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Fα = (1 + α) precision∗recall
α∗precision+recall

.

As shown in Table 3, the maximum recall EUTC achieves
is 90%. This is due to EUTC’s generic, domain-independent
approach to annotating entity-information. For example,
EUTC does not consider “The Cooperative Import Export
Enterprise” (contained in a text) and “Co-operative Export-
Import Enterprise” (name value of an MDS entity) as sim-
ilar. Thus, EUTC is unable to detect a match in the re-
spective text with the value of an existing MDS entity and
misses to annotate the respective name. Notice that MDS it-
self would match the two name variants with a high score. If
a customer needs to improve recall for a particular attribute,
such as name, a custom annotator can be implemented and
used by EUTC.

EUTC achieves perfect precision for a threshold of 130.
But perfect precision comes at the cost of a significant drop
in recall to 46%. However, even if EUTC detects less then
half the entities referenced by text, it is still adding new
information into MDS, thus improving the value of MDS for
the customer. Better recall with a still decent precision is
achieved for a threshold of 100 where EUTC achieves over
90% precision with a recall of almost 75%. In general, we
suggest using the threshold with the highest F-measure (100
for this dataset) as the review threshold as it achieves the
best balance between recall and precision. We suggest using
a threshold that achieves a precision close to 100% (130 for
this dataset) as the insert threshold to preserve the quality
of MDS data.

Table 3: Precision and Recall of EUTC
Threshold Recall Precision F0.5-Measure

50 0.90 0.13 0.18
60 0.81 0.16 0.22
70 0.79 0.35 0.43
80 0.77 0.62 0.66
90 0.76 0.86 0.82
100 0.73 0.93 0.85
110 0.65 0.96 0.83
120 0.58 0.97 0.79
130 0.46 1.00 0.72

5.4 Comparison with Naive Approach
A naive approach to find entity references in text is to

just rely on a person’s name, ignoring all other attributes.
We tested to what extent finding all exact matches of a per-
son’s name in the text, helped in correctly identifying entity
references. We used all name-related dictionaries extracted
from MDS and annotated all exact matches in a document.
Wherever possible we used the algorithm described in Sec-
tion 3.5 to combine the name annotations to create a full
name. We performed an exact text search for the full name
in MDS for the NAME and AKA attribute, respectively.

Using an exact name match yields a recall of 48% and
a precision of 91%. At a similar precision EUTC achieves
a considerably higher recall of 73%. To improve recall for
the naive approach, we also ran some experiments allow-
ing fuzzy matching for the name. However, even at very
low levels of fuzziness, the precision dropped to unaccept-
ably low levels. The reason the naive approach works at
all, is that our specific dataset is well curated and different

Table 4: Breakdown of Runtime (in sec)
original original original
dataset + 25K + 50K

Annotation 0.17 0.21 0.20
Member Search 0.82 4.36 7.65
Member Score 0.02 0.03 0.03
Member Details 0.03 0.05 0.05
Record Construction 0.07 0.19 0.27
Member Insert 0.71 0.81 0.92
Overall 1.82 5.65 9.13

variants of a name have already been captured in the alias
attribute. Also, due to the size of the dataset, the number
of person entities that shared the same name was not statis-
tically significant. Many real-world MDM instances, such as
the customer base of a large bank, contain multiple persons
with the same name and instances where the same person’s
name is spelled differently. In such a case, the precision of
the naive approach will drop rapidly.

Also, in the naive approach the user has no way to reduce
the number of false matches and must accept the achieved
precision as final. EUTC instead allows the user to specify
a matching threshold such that the achieved precision is
compatible with the intended use of the extracted entity
information.

5.5 Performance
We report the performance of EUTC as the time taken per

document for the original dataset, the dataset with 25,000
additional records, and the dataset with 50,000 additional
records. Table 4 shows the time taken for running EUTC
with an insert threshold of 130 and a review threshold of
100. The parameters were chosen based on the analysis in
Section 5.3. Note that the reported numbers only reflect
an upper bound on what can be expected in a customer
setting. The testing environment in which the performance
tests were run is not optimized for the performance of MDS
in terms of hardware or system settings.

EUTC performs five different API calls to MDS. Member

Search retrieves a list of all member record that match the
annotation query. This is the most time consuming step as
MDS needs to figure out which records in MDS score above
the threshold against the set of annotations. Once the mem-
ber records are returned by MDS, Member Score retrieves
a breakdown of the matching score for all returned records.
This breakdown is inserted into MDS later on as an attribute
of the relationship link between the extracted entity and the
MDS entity. For each returned record, Member Details re-
trieves the corresponding entity ID. Finally, Member Insert

includes two API calls, one to insert the extracted member
records and one to establish the relationship between each
extracted entity and its matching MDS entity.

In terms of components external to MDS, only Annota-

tion takes significant amount of time. The remaining tasks
(summarized in Record Construction) such as extracting the
text from a document or processing results returned by MDS
contribute very little to the run time.

Figure 15 shows the distribution of runtime over the dif-
ferent components of EUTC. For the original dataset, the
combined time for matching the annotations with MDS enti-
ties and inserting the extracted records into MDS dominate
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Figure 15: Distribution of EUTC runtime

the overall runtime. For larger MDS datasets, the anno-
tation time contribute little to the overall processing time.
Also, for larger MDS datasets, the time for querying MDS
to retrieve the matching entities dominates the overall run-
time. Overall, it takes between 1.8 and 9 seconds to process
a document. It is important to stress that the processing
time will be lower in a customer setting where MDS has
been optimized for performance.

6. RELATED WORK
We now provide a brief overview of literature related to

the specific tasks accomplished by EUTC.
Named-entity Recognition: There is ample literature on

named-entity recognition, that is, the task of finding named-
entity mentions in text. Note that, in this context, the term
named entity is used to denote a single attribute of an en-
tity in the MDM context. The approaches for named-entity
extraction can broadly be classified into three categories:
dictionary-based, learning-based, and rule-based.

Dictionary-based approaches find approximate matches in
a text with respect to a large dictionary of known named-
entity values (see [22, 12, 11, 18] for some recent papers on
the topic). Learning-based approaches (for example, condi-
tional random fields [20]) use text data labeled with named
entities to learn how to extract named entities. Learning-
based approaches may also be combined with dictionary-
based approaches [4]. In rule-based approaches such as Sys-
temT [3], a human being specifies how to extract named en-
tities. Rule-based approaches complement dictionary-based
extraction by finding named-entity mentions that might not
be covered by the dictionary.

Note that most of these approaches may improve upon
EUTC’s named-entity extraction process described in Sec-
tion 3. However, the goal of EUTC is to provide a domain-
independent, out-of-the-box approach to integrating any un-
structured data with any type of master data repository.
Thus, EUTC intentionally employs a very generic approach
to information extraction. However, EUTC includes the ca-
pability for a customer to extend upon the named-entity
extraction to improve the extraction for a specific domain
or named-entity (see 2.2.4).

Relationship Extraction: Entity records can be viewed as a
multi-way relationship between named entities. Extracting

binary relationships between two named entities of differ-
ent type, is a common task in information extraction [19].
For example, a binary relationship extractor may extract a
phone-belongs-to relationship between a named entity phone

and a named entity person name. More recently, informa-
tion extraction also deals with more complex multi-way re-
lationships. For example, the authors of [15] propose a tech-
nique to identify maximal cliques in a graph where attributes
are interconnected by pairwise relations, and generalize it to
probabilistic cliques, where each binary relation may have
a confidence associated with it. The drawbacks of combin-
ing binary relations using agglomerative algorithms or the
technique used in [15] for record extraction are analyzed
in [23]. The authors of [23] propose a modified approach
that evaluates the compatibility of a set of attributes. Such a
compatibility function is seen to achieve better accuracy in
record extraction. Contrary to EUTC, all of the approaches
mentioned for relationship extraction require considerable
customization for each new domain.

Combining Structured and Unstructured Data: The au-
thors of [14] present a method for integrating information
from semi-structured sources with existing large database
with multi-relational entities. The presented approach ex-
ploits a variety of recognition clues available in the database
of entities to aid traditional information extraction with con-
ditional random fields or semi-markov models. It also aug-
ments the database itself with the information about mul-
tiple noisy variants of entities to aid future extraction. The
approach works well if the task is limited to extracting infor-
mation from semi-structured text (for example, to integrate
publication data from personal home pages with existing
structured databases such as ACM digital library or DBLP).

EROCS (Entity RecOgnition in Context of Structured
data) [2] efficiently links text documents with structured
data. It employs entity templates and noun-phrase identifi-
cation to identify the entities that best match a document.
EROCS also embeds the identified entities in the document,
thereby creating links between the structured data and seg-
ments within the document. With EROCS, the user explic-
itly defines entity templates that specify the entities to be
matched in the document and for each entity, the context
information that can be exploited to perform the match.
EUTC improves upon EROCS by automatically extracting
the entity data model from MDM and exploiting the proba-
bilistic matching provided by the MDM system to perform
the entity matching.

There is also existing work to integrate documents from
content management systems with MDM. IBM InfoSphere
Master Content for InfoSphere MDM Advanced Edition9

links documents stored in IBM FileNet Content Manager
with master records in IBM InfoSphere MDM Advanced
Edition repository. The linking is done based on a docu-
ment’s metadata and does not exploit the document text.
It works well in scenarios where each document contains in-
formation about a single entity. For example, it facilitates
a single view of a citizen by providing access to documents
such as birth certificate, driver’s license, and passport.

The authors of [17] present an extension to IBM Info-
Sphere Master Content that additionally extracts informa-
tion from the text of each document. The information ex-
tracted can be used to recognize errors in content metadata,

9http://www-01.ibm.com/software/data/infosphere/
mdm server/master-content.html
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enables the concept of master content, and helps to identify
duplicates. However, the extension still assumes that each
document contains information about a single entity. Also,
it employs domain-specific information extraction which re-
quires considerable customization for each new domain.

7. CONCLUSION
In this paper, we have established that it is both pos-

sible and beneficial to integrate information from unstruc-
tured data sources into a MDM system. To the best of
our knowledge, IBM InfoSphere MDM Extension for Un-
structured Text Correlation (EUTC) is the first commercial
solution that integrates information extracted from unstruc-
tured data into a MDM system. EUTC provides a generic
architecture that works with any MDM system and any type
of unstructured text. It exploits existing structured data to
discover references to MDM entities in any free text. EUTC
is domain-independent and works out-of-the-box; despite
the fact that information extraction usually requires consid-
erable customization to work for new domains or datasets.
We have demonstrated experimentally that EUTC works
well in a public-safety scenario. We are in the process of eval-
uating EUTC for other domains such as financial services.
In terms of technical capabilities, we are extending EUTC
to also learn previously unknown facts about an entity from
text and automatically enrich existing master records with
new attribute values.
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