
Building User-defined Runtime Adaptation Routines for
Stream Processing Applications

Gabriela Jacques-Silva†, Buğra Gedik†‡, Rohit Wagle†,
Kun-Lung Wu†, Vibhore Kumar†

†Thomas J. Watson Research Center, IBM Research, Hawthorne, NY 10532, USA
‡Computer Engineering Department, Bilkent University, Ankara 06800, Turkey

{g.jacques,rwagle,klwu,vibhorek}@us.ibm.com, bgedik@cs.bilkent.edu.tr

ABSTRACT

Stream processing applications are deployed as continuous
queries that run from the time of their submission until their
cancellation. This deployment mode limits developers who
need their applications to perform runtime adaptation, such
as algorithmic adjustments, incremental job deployment,
and application-specific failure recovery. Currently, develop-
ers do runtime adaptation by using external scripts and/or
by inserting operators into the stream processing graph that
are unrelated to the data processing logic. In this paper, we
describe a component called orchestrator that allows users
to write routines for automatically adapting the application
to runtime conditions. Developers build an orchestrator by
registering and handling events as well as specifying actua-
tions. Events can be generated due to changes in the system
state (e.g., application component failures), built-in system
metrics (e.g., throughput of a connection), or custom appli-
cation metrics (e.g., quality score). Once the orchestrator
receives an event, users can take adaptation actions by using
the orchestrator actuation APIs. We demonstrate the use of
the orchestrator in IBM’s System S in the context of three
different applications, illustrating application adaptation to
changes on the incoming data distribution, to application
failures, and on-demand dynamic composition.

1. INTRODUCTION
Stream processing applications perform a sequence of

transformations on live data streams. Developers build these
applications by composing a data flow graph, where each ver-
tex of the graph is an operator instance and each edge is a
stream connection. An operator executes data transforma-
tions upon the arrival of a stream data item, referred to as a
tuple, and sends the newly computed data item to its output
streams. For achieving high-performance and scalability, the
stream processing graph can execute in a distributed fashion
over a set of hosts.

Developers deploy a streaming application by submitting
the composed flow graph to the target stream processing

.

infrastructure, which then continuously runs the application
until it is explicitly cancelled. Multiple applications can be
submitted to the infrastructure at different times. These
applications can connect to each other at run-time to form
time-evolving solutions.

Oftentimes streaming applications need to automatically
adapt to runtime conditions. For instance, when the ap-
plication is overloaded due to a transient high input data
rate, it may need to temporarily apply load shedding poli-
cies to maintain answer timeliness [25]. As a second exam-
ple, different streaming applications can have different re-
quirements regarding fault tolerance [15, 16] (e.g., tuple loss
tolerant, no tuple loss or duplication allowed). As a result,
they need application-specific routines to coordinate failure
recovery. As a third example, applications may also adapt
due to events related to their own data processing seman-
tics. For example, one may choose to deploy a low resource
consumption streaming algorithm A at first, but switch to
a more resource hungry and more accurate streaming algo-
rithm B when a certain pattern is detected (such as low
prediction accuracy).

Stream processing languages usually do not provide means
to express runtime adaptation. This is because these lan-
guages are generally declarative, such as StreamSQL [17],
CQL [5], StreamIt [21], and IBM’s SPL [11]. As a result, de-
velopers focus on expressing data processing logic, but not
orchestrating runtime adaptations.

A common approach to making application executions
adaptable is to resort to external scripts that interact with
the stream processing infrastructure. These scripts are
generally hard to maintain and their logic have very low
reusability among different applications. This is because dif-
ferent developers use different scripting languages, achieving
the same task in many different ways (e.g., using widely dif-
ferent shell commands).

As an example, a script can use command line tooling
provided by the streaming infrastructure to monitor health
of application components and initiate application-specific
failure recovery actions upon detection of failures. Examples
of such actions include restarting application components,
cleaning up residual data files, or interacting with external
data stores to coordinate recovery.

Another approach to accomplishing adaptability is to de-
velop application extensions that deal specifically with adap-
tation logic, leading to the coupling of the application con-
trol logic and the stream data processing logic. These appli-
cation extensions are possible in languages and frameworks
that allow user-defined functionality, such as SPL and the

1826

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

Microsoft .NET framework LINQ used in StreamInsight [2].
Unfortunately, such extensions limit the reusability of the
applications, since the processing logic (often highly reusable
across applications) is tied to the control logic (often varies
across applications).

Figure 1 shows a simplified example based on a senti-
ment analysis application implemented in SPL in which the
processing graph is extended to provide runtime adapta-
tion. In this example, the application consumes a Twitter
(http://www.twitter.com) feed (op1) and categorizes each
incoming tweet according to a sentiment (op3). The tweet
is then correlated to a set of possible causes for negative
sentiment associated with products (op5). The list of causes
is computed offline on a large corpus and loaded by the
streaming application to do online tweet categorization (op2
and op4). The results of the correlation are then aggregated
(op6) and sent to a display application (op7). The aggre-
gation stream is also used to trigger application adaptation
(s�). The triggering condition (monitored by op8) is that the
number of tweets with negative sentiment associated with an
unknown cause is high. When op9 receives a tuple from op8,
op9 calls an external script that invokes the cause recom-
putation on a larger and more recent corpus. The new set
of causes is then automatically reloaded by operators op2
and op4. Because the control logic is embedded into the
application graph, neither the data processing logic nor the
adaptation logic can be reused by other applications.

!"
#

!"
#

!"
$

!"
$!"

%
!"

%

!"
&

!"
&!"

'
!"

'

!"
(

!"
(

!"
)

!"
)

!"
*

!"
*

!"
+

!"
+

,-
,--

,./0"1

Figure 1: Example application that includes extra
operators to implement the adaptation logic. Op-
erator op8 detects the condition for adaptation and
operator op9 executes the actuation logic.

To avoid the development of ad-hoc adaptation solutions
for streaming applications and at the same time separate
the control and data processing logic, we propose a new
component for stream processing systems called orchestra-
tor. An orchestrator is divided in two parts. The first part,
called orchestrator logic (or ORCA logic), is put together by
application developers by registering for runtime events of
interest and specifying handlers that will be executed upon
the delivery of these events. Such handlers often make use
of actuation APIs to facilitate runtime adaptation. The sec-
ond part, called orchestrator service (or ORCA service), is a
runtime component that detects changes and delivers rele-
vant events to the ORCA logic. The ORCA logic can further
use this service to inspect the meta-data associated with the
running application components to carry on specific tasks.

By running an orchestrator together with the application,
developers can effectively make their application follow a
specific management policy. The orchestrator also promotes
code reusability by promoting separation of control and data
processing code. This allows the application to be reused by
other solutions that have different runtime adaptation poli-
cies. In addition, it provides a uniform way to implement
event detection and actuation policies. This enables devel-
opers to share their adaptation solutions.

Developing an orchestrator for streaming applications has
two main challenges. First, streaming applications can have
distinct logical and physical representations. This is be-
cause the stream operator graph can be physically separated
into different operating system processes and run on a dis-
tributed set of hosts. As a result, adaptation policies need
to be able to understand and possibly influence the physical
representation of the processing graph. Yet, the applications
are developed using the logical representation of the graph.
This implies that the mapping between the logical and the
physical representation needs to be made available to the
developers via the orchestrator.

The second challenge is that the orchestrator must be able
to express interest on dynamic properties (such as state,
health, and metrics) of runtime instances of application com-
ponents, and receive relevant events with enough context in-
formation to associate them back to the application compo-
nents without ambiguity. This requires an effective interface
to register for events over these properties in the presence of
hierarchical representation of application components (both
at the logical and physical levels) and deliver these events
with sufficient context information to facilitate effective ac-
tuation to implement autonomous behavior.

To tackle these challenges, our orchestrator design is based
on three key concepts. The first is a flexible event registra-
tion scheme, where filters that use the properties defined
over the logical application view are employed to express
application interests with clarity. The second is the event
context, which is associated with each event that the ORCA

service delivers to the ORCA logic. The context contains
physical and logical information about the application run-
time slice associated with a given event type and instance.
The third is an in-memory stream graph representation that
has both logical and physical deployment information. This
representation is maintained by the ORCA service and can
be queried by the adaptation logic using an event context
(e.g., which other operators are in the same operating sys-
tem process as operator x?). This allows users to understand
the relationship between the logical and physical mapping
of the application to take appropriate adaptation actions.

We implemented an orchestration framework on top of
System S [4, 27] – IBM’s middleware for stream processing.
Our current implementation is a C++ API, which, in the fu-
ture, will become part of the SPL [11] language. We demon-
strate the use of the orchestrator for building automatically
managed streaming applications by showcasing the follow-
ing three scenarios: (i) using application semantic-related
events to detect changes on the incoming data and trigger
an external model re-computation; (ii) using process failure
events to trigger replica failover; and (iii) using events to
start new streaming applications, which can consume data
produced by other applications under execution. These use
cases show how the orchestrator can effectively tackle real-
world scenarios that require autonomic management.

The main contributions of this paper are (i) a framework
based on event handling for building adaptive streaming ap-
plications, which allows users to separate the control and
data processing logic of an application; (ii) the representa-
tion of event context and the meta-data of a stream graph,
which enables developers to disambiguate logical and phys-
ical views of an application; (iii) a framework for managing
a set of streaming applications with dependency relations,
which includes automatic submission of dependent appli-

1827

cations and automatic cancellation of unused applications;
and (iv) the demonstration of scenarios associated with real
streaming applications that require orchestration solutions.
We believe that these concepts and use cases are generic and
can be applied to other stream processing platforms.

2. OVERVIEW OF IBM SYSTEM S
System S is IBM’s middleware for developing high-

performance and highly scalable stream processing appli-
cations. System S can be divided into two main parts: the
Streams Processing Language (SPL) and its runtime com-
ponents.

2.1 Streams Processing Language
SPL [11] allows the composition of streaming applications

by assembling operators and expressing their stream inter-
connections. In SPL, operators can implement any logic
(e.g., filtering, aggregation, image processing) and be arbi-
trarily interconnected. The language allows developers to
define composite operators. A composite operator is a logi-
cally related sub-graph that can be reused to assemble more
complex graphs. Composite operators are important for ap-
plication modularization, similar to methods and classes in
object-oriented programming. Figure 2 shows an SPL ap-
plication that uses a composite operator (composite1) to
express a split and merge operation formed by four oper-
ators (op3−6). The application instantiates the composite
operator twice to process data from both op1 (composite�1)
and op2 (composite��1).

!"#$"%&'(
)

"$
*

"$
)

"$
)

"$
+

"$
+

!"#$"%&'(
)

"$
,--

"$
.--

"$
/--

"$
0--

!

!!

"$
/-

"$
0-

"$
.-

"$
,-

Figure 2: Stream graph generated by an SPL pro-
gram that reuses a split and merge composite oper-
ator to build an application.

To execute an application, the SPL compiler places opera-
tors into processing elements (PEs), which are runtime con-
tainers for one or more operators. During execution, each
PE maps to an operating system process, which can execute
in any host available to the stream processing infrastructure.
The compiler partitions operators into PEs based on per-
formance measurements and following partition constraints
informed by the developers (e.g., op4� and op6� should run
in the same PE) [18]. During runtime, PEs are distributed
over hosts according to host placement constraints informed
by developers (e.g., PEs 1 and 3 cannot run on the same
host) as well as the resource availability of hosts and load
balance. The SPL compiler can group operators that be-
long to different composites into the same PE. This means
that the physical streaming graph layout does not reflect
the fact that some operators are logically grouped. Fig-
ure 3 shows a possible physical mapping of the application

illustrated in Figure 2. Note that operators in the same
composite are split into two different PEs (op3�−6� in PEs 1-
2). Operators in different composites instances (composite�1
and composite��1) are placed in the same PE (op4�−6� and
op4��−6�� in PE 2).

!"#$

!"%$

!"&$

'($%$

'($&$

'($)$

*!+,$-$

*!+,$.$

!"/0$

!"10$

!"20$!")0$

!")00$!"200$

!"/00$

!"100$

Figure 3: Possible physical layout of the application
in Figure 2. Application is partitioned into three
PEs and placed on two different hosts.

When the SPL compiler builds an application, it gener-
ates C++ code for each used operator and a file with the
application description called ADL. The ADL is an XML
description that includes the name of each operator in the
graph, their interconnections, their composite containment
relationship, their PE partitioning, and the PE’s host place-
ment constraints. Both the System S runtime and its visu-
alization tools use the ADL for tasks such as starting the
application and reporting runtime information to the users.

Another feature of SPL is runtime metrics. These met-
rics are counters updated during application execution and
can be read externally by users to inspect runtime statistics.
SPL offers both built-in and custom metrics. Built-in met-
rics are counters that maintain information that is common
to all operators and PEs in the system. Examples include
the number of tuples processed per operator, the number of
tuples sent by an operator, and the number of tuple bytes
processed by a PE. Custom metrics are related exclusively
to the semantic of each operator type available in SPL. For
example, a filter operator may maintain the number of tu-
ples it discards. Operators can create new custom metrics
at any point during their execution.

SPL allows applications to import and export streams
to/from other applications. Developers must associate a
stream ID or properties with a stream produced by an ap-
plication, and then use such ID or properties to consume
this same stream in another application. When both appli-
cations are executing, the SPL runtime automatically con-
nects the exporter and importer operators. Importing and
exporting streams enables many scenarios in which applica-
tion orchestration is important, such as incremental appli-
cation deployment and live application maintenance.

2.2 System S Runtime
The System S runtime infrastructure has three main com-

ponents, namely the Streams Application Manager (SAM),
the Streams Resource Manager (SRM), and the Host Con-
troller (HC).

The main responsibility of the SAM daemon is to receive
application submission and cancellation requests. Each ap-
plication submitted to SAM is considered a new job in the
system. When starting a job, SAM spawns all the PEs as-

1828

sociated with that application according to their placement
constraints. SAM can also stop and restart PEs running in
the system.

The SRM daemon is responsible for maintaining infor-
mation regarding which hosts are available to the System
S runtime for application deployment. It also maintains
status information about which system components (e.g.,
SAM) and PEs are up and running. The SRM is responsi-
ble for detecting and notifying the occurrence of process or
host failures. This daemon also serves as a collector for all
metrics maintained by the system, such as the built-in and
custom metrics of all SPL applications under execution.

The HC is a local daemon residing in each host of the
system that can run SPL applications. This daemon does
local operations on behalf of the central components of the
system, such as starting local processes for running PEs and
maintaining process status information. The HC also col-
lects metrics from PEs running locally and periodically send
them to SRM.

3. ORCHESTRATOR ARCHITECTURE
An orchestrator is composed of two parts. The first part

is the ORCA logic, which contains the application-specific
control code. The ORCA logic can be used to start and
control one or more streaming applications. The second
part is the ORCA service, which is a daemon that provides
the ORCA logic a set of interfaces for event handling and an
API to help the implementation of actuation routines.

Developers write the ORCA logic in C++ by inheriting an
Orchestrator class. The Orchestrator class contains the
signature of all event handling methods that can be special-
ized. The ORCA logic can invoke routines from the ORCA

service by using a reference received during construction.
Note that the ORCA logic can only receive events and act
on applications that were started through the ORCA service.
If the ORCA logic attempts to act on jobs that it did not
start, the ORCA service reports a runtime error.

The result of the compilation of the ORCA logic is a shared
library. We also create an XML file, which contains the ba-
sic description of the ORCA logic artifacts (e.g., ORCA name
and shared library path) and a list of all applications that
can be controlled from the orchestrator. Each list item con-
tains the application name and a path to its corresponding
ADL file. The ORCA service uses the ADL file to start
applications and to create an in-memory stream graph rep-
resentation of all the applications being managed.

To support the execution of an orchestrator, we extended
System S to consider orchestration as a first class concept
in its runtime infrastructure. This means that the runtime
components of System S (e.g., SAM and SRM) are aware of
an orchestrator as a manageable entity. For example, SAM
keeps track of all orchestrators running in the system and
their associated jobs.

Figure 4 shows how the System S runtime handles orches-
trator instances. Similar to the process of submitting an
application, users submit the orchestrator description file
(MyORCA.xml) to SAM. SAM then forks a process to exe-
cute the ORCA service. Executing the orchestrator in a new
process ensures memory isolation between user-written code
and infrastructure components. On its startup, the ORCA

service loads the ORCA logic shared library (MyORCA.so)
and invokes the orchestrator start event callback. The ORCA

logic can then call any functionality available from the ORCA

service. As a result, the ORCA service can issue and re-
ceive calls to/from infrastructure components, such as SAM,
SRM, and operators belonging to a managed application.

!"!#$""

!%$""

&'()*+""

!"#$!"%$

!"$,-%.#/&0"

-%.#"&123*41"$,-%.#/5)6"
70289:"

;2041&&.0))<=>9:"

&'()"*$

?1+$1+2*4&@<+<9:"

&'()*+A0(9:"

Figure 4: Users submit a new orchestrator to SAM,
which instantiates a new process for running the
ORCA logic. The specified logic can result in the
ORCA service issuing requests to SAM, SRM, and
to operators that belong to one of the managed ap-
plications.

The figure also shows the external components that the
ORCA service may interact with to generate events to the
ORCA logic. More specifically, the ORCA service generates
component failure events once SAM pushes a failure noti-
fication. The generation of such an event does not add a
performance penalty to the managed applications, since we
are reusing the failure detection mechanisms already avail-
able in the System S infrastructure. The handling of such an
event by the orchestrator, however, can increase the recovery
time of the application, since the failure reaction is delayed
by one extra remote procedure call (from SAM to ORCA

service) plus the time consumed by the user-specific failure
handling routine.The ORCA service generates runtime met-
ric events by pulling such data from SRM at a specified rate.
This call does not have a direct effect on application perfor-
mance because getting metrics from SRM do not generate
further remote calls to operators. Operators and PEs de-
liver updated metric values to SRM at fixed rates (every 3
seconds, by default) independent of orchestrator calls. The
ORCA service can also receive user-generated events via a
command tool, which generates a direct call to the ORCA

service. This direct call also does not interfere with the
application hot path. This interaction is not shown in the
diagram for simplicity purposes. The above performance
impact assessment is specific to the System S infrastruc-
ture. The impact of providing application information to an
orchestrator managing another streaming platform depends
on how each system detects and disseminates event data.

Note that the ORCA service and the ORCA logic provide
additional functionality to the system and do not substitute
the role of other infrastructure components (e.g., deploy-
ment of individual jobs). In addition, the orchestrator does
not substitute local adaptation policies that are application-
independent, which are, in general, specialized to certain
operator types and that take place at the operator code
itself (e.g., a dynamic filter operator that changes its filter-
ing condition during runtime upon receiving a control com-
mand). The ORCA service acts, in fact, as a proxy to issue
job submission and control commands. The ORCA logic im-
plements an application-specific management policy by using
the ORCA service to enforce adaptation conditions and the
order in which control commands must take place.

1829

4. BUILDING AN APPLICATION MAN-

AGEMENT POLICY
To build a management policy with the orchestrator, de-

velopers must specify which events are of interest and how
the application should adapt upon the occurrence of these
events. With the orchestrator, this logic is specified in the
ORCA logic by using the APIs provided by the ORCA service
(e.g., actuation methods that are applicable to all streaming
applications). In this section, we describe in more detail the
services built into ORCA service that facilitate the imple-
mentation of management policies.

4.1 Event Scope
The ORCA service can deliver two different sets of events.

The first set has events generated by the ORCA service it-
self. This includes the following notifications: a start sig-
nal, job submission, job cancellation, and timer expiration.
The second set of events requires the ORCA service to in-
teract with external middleware runtime components. This
includes events related to application metrics, failure events,
and user-defined events.

To simplify the development of the ORCA logic and re-
duce the number of notifications received during runtime,
developers can specify the event scope they are interested
in. In our design, the only event that is always in scope
and must be handled by the ORCA logic is the start notifi-
cation. For other events, developers must explicitly register
with the ORCA service event scope. The ORCA service event
scope is composed of a disjunction of subscopes. The ORCA

service delivers an event to the ORCA logic when it matches
at least one of the registered subscopes. The ORCA service
delivers each event only once, even when the event matches
more than one subscope.

Creating a subscope to be registered with the ORCA ser-
vice requires the definition of which type of events the ap-
plication control logic needs. Examples of event types in-
clude PE failures, operator metrics, PE metrics, and oper-
ator port metrics. Subscopes can be further refined based
on the different attributes of an event. For example, one
attribute of a metric event is its name. A subscope can
define a filter on these attributes, such as asking for opera-
tor metrics that have a given metric name. Other available
event attributes include application related attributes (e.g.,
application name) and attributes of the subgraph of the ap-
plication that the event is contained within (e.g., type of
the composite operator that contains the event). This fine-
grained filtering is enabled by the stream graph represen-
tation maintained by the ORCA service for all applications
being managed. Filtering conditions defined on the same
attribute are considered disjunctive (e.g., as asking for an
event that is associated with application A or application
B), while conditions defined on different attributes are con-
sidered conjunctive (e.g., as asking for an event that is as-
sociated with application A and contained within composite
operator type composite1). The ORCA logic can register
multiple subscopes of the same type.

Figure 5 shows a code segment of the ORCA logic for the
application in Figure 2. This ORCA logic receives events
that match two different kinds of subscopes. The first sub-
scope is of type operator metric (OperatorMetricScope, line
04). It matches events related to a limited set of operators
with specific type (lines 05-06) and related to one specific
metric (lines 07-08). Note that developers can specify sub-

scopes by considering the application structure. For exam-
ple, the invocation to addCompositeTypeFilter (line 05)
results in only operators residing in a composite of type
composite1 being considered for event delivery. The in-
vocation to addOperatorTypeFilter (line 06) leads to an
additional filtering condition, which mandates only events
associated with operators of type Split and Merge to be
delivered. Once the ORCA service receives the oms sub-
scope registration (line 13), the ORCA logic can receive op-
erator metric events for all metrics named queueSize from
operators of type Split or Merge that are contained in any
instance of a composite operator of type composite1 (i.e.,
queueSize metric events for operators op3� , op3�� , op6� , and
op6�� in Figure 2). The second subscope matches PE fail-
ure events (PEFailureScope, line 10). This subscope only
has an application filter (addApplicationFilter, line 11),
so failure events affecting PEs that contain any operator in
application Figure2 are delivered to the ORCA logic.

01: void MyOrca::handleOrcaStart(
02: const OrcaStartContext & context)
03: {
04: OperatorMetricScope oms("opMetricScope");
05: oms.addCompositeTypeFilter("composite1");
06: oms.addOperatorTypeFilter({"Split", "Merge"});
07: oms.addOperatorMetric(
08: OperatorMetricScope::queueSize);
09:
10: PEFailureScope pfs("failureScope");
11: pfs.addApplicationFilter("Figure2");
12:
13: _orca->registerEventScope(oms);
14: _orca->registerEventScope(pfs);
15:
16: // other operations here
17: }

Figure 5: Example code for specifying and regis-
tering event scopes with the ORCA service. ORCA

service delivers operator metric events for metrics
named and associated with operators of
type or residing in a composite of type

. Any PE failure event associated with
the application is also delivered.

The proposed API offers a much simpler interface to devel-
opers when compared to an SQL-based approach to express
event scopes. This is because stream application graphs can
be built by assembling operators and composite operators.
Composite operators can contain other composite operators,
which require the use of recursive queries to fully evaluate
operator containment relationships. The SQL query below
is equivalent to the OperatorMetricScope described in Fig-
ure 5. In this SQL query, we assume that each event at-
tribute is represented as a table. For simplicity, we assume
that composite and operator types are attributes of the com-
posite and operator instance tables.

WITH CompPairs(compName, parentName) as (
SELECT CI.compName, CI.parentName

FROM CompositeInstances as CI
UNION ALL
SELECT CI.compName, CP.parentName

FROM CompositeInstance as CI, CompPairs as CP
WHERE CI.parentName = CP.compName)

SELECT metricValue
FROM OperatorMetrics as OM, OperatorInstances as OI,

1830

CompositeInstances as CI, CompPairs as CP
WHERE

OM.metricName = 'queueSize' and
OM.operName = OI.operName and
(OI.operKind = 'Split' or OI.operKind = 'Merge') and
CI.compKind = 'composite1' and
(OI.compName = CI.compName or

(OI.compName = CP.compName and
CI.compName = CP.parentName))

4.2 Event Delivery
The ORCA service delivers to the ORCA logic all events

matching at least one of the registered subscopes. Events are
delivered to the ORCA logic one at a time. If other events
occur while an event handling routine is under execution,
these events are queued by the ORCA service in the order
they were received.

For each event, the ORCA service delivers two items. The
first item is an array that contains the keys for all subscopes
that match the delivered event. Developers associate a key
with a subscope when the subscope is created (lines 04 and
11 in Figure 5). The second item is the context of the event.
The context contains a slice of the application runtime in-
formation in which the event occurs. The context has the
minimum information required to characterize each type of
event. Developers can use the context to further query the
ORCA service and inspect the logical and physical repre-
sentation of the application. Some examples of inspection
queries are: Which stream operators reside in PE with id
x? Which composites reside in PE with id x? What is
the enclosing composite operator instance name for opera-
tor instance y? What is the PE id for operator instance y?
Using the ORCA inspection APIs together with the event
context enables the developer to put the received event into
perspective with respect to the logical and physical views of
the application. The ORCA logic can use this information
to decide the appropriate management action to execute.

For delivering built-in and custom metric-related events,
the ORCA service periodically queries the SRM infrastruc-
ture component. The query frequency has a default value
(15 seconds), but developers can change it at any point of
the execution. Because SRM’s response contains all metrics
associated with a set of jobs, many of them can match the
current ORCA service event scope at the same time. For
each metric that matches the event scope, the ORCA service
delivers one event. To facilitate the identification of metric
values that are measured in the same round (i.e., pertaining
to the same SRM query response), the ORCA service adds
an epoch value to the event context. The epoch value is in-
cremented at each SRM query and serves as a logical clock
for the ORCA logic. This epoch value can be used when the
event handling routine needs to evaluate if multiple metrics
together meet a given condition.

Figure 6 shows a code segment for handling a subset of
the events matching the operator metric scope registered in
Figure 5. The routine uses the context object to identify
which operator instance name the event is associated with
(lines 05 and 10). The context also contains information
about the metric name (lines 07 and 12), its value (lines
09 and 14), and epoch (lines 08 and 12). Note that the
tests for metric name (lines 06-07 and 11-12) are for illus-
tration purposes only. This is because the only metric in
the ORCA event scope is queueSize, so events associated
with any other metrics are not delivered. In line 19, the

event handling routine uses the epoch values to identify if
the queueSize metric measurement for both operators op3’
and op6’ occur at the same logical time.

01: void MyOrca::handleOperatorMetricEvent(
02: const OperatorMetricContext & context,
03: const std::vector<std::string> & scope)
04: {
05: if (context.instanceName == "op3’" &&
06: context.metric ==
07: toString(OperatorMetricScope::queueSize)) {
08: _op3PrimeEpoch = context.epoch;
09: _op3PrimeValue = context.value;
10: } else if (context.instanceName == "op6’" &&
11: context.metric ==
12: toString(OperatorMetricScope::queueSize)) {
13: _op6PrimeEpoch = context.epoch;
14: _op6PrimeValue = context.value;
15: } else {
16: return;
17: }
18:
19: if (_op3PrimeEpoch == _op6PrimeEpoch) {
20: // adaptation logic here
21: }
22: }

Figure 6: Example code for handling an operator
metric event. ORCA service delivers the context in-
formation and all matched scopes.

The ORCA service delivers PE failure events immediately
after receiving a notification that such an event occurred
from SAM.When SAM receives a PE crash notification (e.g.,
due to an uncaught exception), it identifies which ORCA ser-
vice manages the crashed PE and then informs the ORCA

service that a PE has crashed. It provides the PE id, the
failure detection timestamp, and the crash reason. The
ORCA service also adds an epoch value to the PE failure
event context, which allows developers to identify that dif-
ferent PE failure invocations are related to the same physical
event. The ORCA service increments the epoch value based
on the crash reason (e.g., host failure) and the detection
timestamp.

4.3 Application Placement and Partitioning
As described in Section 2.1, SPL allows to specify both

host placement and partitioning annotations for each opera-
tor in the application. Users specify these annotations based
on performance, fault tolerance, and resource requirements
(e.g., operators need to run in a host that has a special
hardware device). Being able to influence the application
partitioning and placement configurations is critical to de-
velop effective orchestration policies.

A host placement configuration indicates in which hosts
operators should reside. In System S, developers specify
hosts by creating host pools, which contain a list of host
names or tags. Influencing host placement is useful when
developing management policies that require different ap-
plications to run in different hosts. One such example is a
policy that manages replicas of the same application. If two
replicas run on the same host, a host failure results in the
crash of both replicas, defeating the objective of the pol-
icy. The ORCA service exposes a method that changes the
configuration of a given application to run only in exclusive
host pools, i.e., in sets of hosts that cannot be used by any

1831

other application. When developers call this method, the
ORCA service modifies the application ADL to update all
its host pool configurations [11]. The host pool configura-
tion change must occur before the application is submitted,
since the host pool is interpreted by the SAM component
when instantiating the PEs of the submitted application.

A partitioning configuration specifies which operators
should be placed in the same PE (i.e., the same operat-
ing system process). One example where changing operator
partitioning can be convenient is when writing policies that
involve restart of operators that are logically related. If log-
ically related groups are not isolated into multiple PEs, the
restart of one group may force the restart of other logically
related groups, resulting in a cascading application restart.
In SPL, reconfiguring operators into different PEs require
application recompilation. Our current implementation of
the ORCA service does not support application recompila-
tion, but this is trivial to implement by exposing interfaces
that annotate the application source code with partitioning
constraints and triggering application recompilation based
on that, assuming application source code is available at
runtime.

4.4 Application Sets and Dependencies
A common scenario in stream processing is to compose a

solution based on a set of applications. For example, ap-
plications can consume streams or files produced by other
applications. This practice has many benefits. The first is
that it reduces development effort by promoting code reuse.
The second is that it reduces the computational resources
required to run applications that use the same data streams.
This is because the reused application is instantiated only
once and its output is dynamically routed to other applica-
tions that want to consume the streams it produces. The
third is that it enables applications to evolve over time. For
example, parts of the application can be brought up and
down on demand based on runtime conditions. In SPL, ap-
plications can be dynamically composed by importing and
exporting streams (Section 2.1), or by using special input
adapter operators that, for example, scan a given directory
on the file system.

Despite its benefits, dynamic application connection can
also generate inconsistencies and waste of resources. Incon-
sistencies occur because users can bring applications up and
down at any time. As a result, an application A being used
by application B can suddenly be cancelled, making applica-
tion B starve. Another situation is when an application con-
sumes results from another application that is still building
up its state and producing inaccurate results. This occurs
when the application is instantiated without specific delays
or without waiting for runtime conditions to be fulfilled (e.g.,
processing x data items). Furthermore, resource waste can
occur when applications continue to run even though they
are not being used by any other application.

To solve these consistency and resource consumption
problems, our orchestrator design allows multiple applica-
tions to be managed in the same orchestrator instance.
When writing the ORCA logic, developers can register ex-
plicit dependency relations between different applications
with the ORCA service. Based on the dependency relations,
the ORCA service automatically submits applications that
are required by other applications and automatically can-
cels applications that are no longer in use.

To take advantage of the automatic application submis-
sion and cancellation provided by the orchestrator, develop-
ers must first create application configurations. An applica-
tion configuration consists of the following items: (i) a string
identifier, (ii) the application name, (iii) a string hash map
with submission-time application parameters, (iv) a boolean
indicating if the application can be automatically cancelled
(i.e., the application is garbage collectable), and (v) a float
value indicating for how long a garbage collectable appli-
cation should continue to run before being automatically
cancelled (called the garbage collection timeout). Once a
configuration is created for each application that must be
submitted, developers can register a unidirectional depen-
dency between two application configurations. The ORCA

service returns a registration error if the registered depen-
dency leads to the creation of a cycle. When registering a
dependency, developers can also indicate an uptime require-
ment. This requirement informs that the submission of the
dependent application must be delayed by a specific number
of seconds after its dependency is fulfilled (i.e., the applica-
tion it depends on is submitted).

Figure 7 illustrates an example application dependency
graph for an orchestrator managing six different applica-
tions. Each dashed box represents one application. The
annotation in the upper left side of each box indicates the
configuration parameters of the application (T for true and
F for false with respect to enabling garbage collection).
The dashed green arrows represent the established unidirec-
tional dependency between applications. The arc annota-
tions indicate the uptime requirement for each dependency.

!"#$

!"#$

!"#

!"#

$"#

$"#

%"#

%"#

%"&$

%"&$

!"'$

!"#$

fb

tw

fox

msnbc

sn

all

Figure 7: ORCA service internal representation of
application dependencies registered in the ORCA

logic. Application annotations represent configura-
tion parameters. Arc annotations indicate how long
the source application must run before the target
one can start.

Once the dependencies are established, developers can
submit requests for applications to start. When the start
request is submitted, the ORCA service starts an application
submission thread. This thread takes a snapshot of the cur-
rent application dependency graph and cuts all nodes and
edges that are not directly or indirectly connected to the
submitted application (e.g., when application all is submit-
ted, node sn and its connections to fb and tw are discarded).
It then searches the graph for all applications that have no
dependencies (e.g., fb, tw, fox, and msnbc), and issues start
requests to SAM for all applications that are not yet run-
ning. The thread then searches for the next target appli-
cation that it must instantiate and sleeps until all uptime
requirements for the target application are fulfilled. The

1832

ORCA service choses an application as the next target only
when all of its dependencies are satisfied (i.e., submitted)
and when it has the lowest required sleeping time among all
other applications with satisfied dependencies. For example,
assuming that fb, tw, fox, and msnbc are all submitted at
the same time, the thread sleeps for 80 seconds before sub-
mitting all. If sn was to be submitted in the same round as
all, sn would be submitted first because its required sleep-
ing time (20) is lower than all’s (80). The ORCA service
delivers a job submission event to the ORCA logic after every
application submission.

If developers issue an application cancellation request, the
ORCA service automatically cancels unused applications.
First, the ORCA service evaluates the application depen-
dency graph to check if the cancellation request is issued
to an application that is feeding another running applica-
tion (e.g., cancellation request to fb). If so, the ORCA ser-
vice returns an error code, enforcing that other applications
do not starve. If not, it starts an application cancellation
thread which evaluates a full snapshot of the application de-
pendency graph to find out which applications must be can-
celled. Potentially, all applications that feed the cancelled
application directly or indirectly are cancelled. An appli-
cation (and its dependencies) are not automatically can-
celled when (i) the application is not garbage collectable
(i.e., false is passed as a configuration in AppConfig, such
as fox), (ii) the application is being used by other running
applications (e.g., fb and tw feeding an instance of sn), or
(iii) the application was explicitly submitted by the ORCA

logic. The thread cancels applications following the garbage
collection timeouts. These timeouts are useful when the
ORCA logic submits another application that reuses an ap-
plication enqueued for cancellation. This application is then
immediately removed from the cancellation queue, avoiding
an unnecessary application restart. For every cancelled ap-
plication, the ORCA service delivers a job cancellation event.

5. USE CASES
This section describes three different use cases enabled by

the proposed orchestrator. Each use case displays a different
class of self-management policies for streaming applications.
The objective of this section is to illustrate how real scenar-
ios can benefit from our proposed framework.

5.1 Adaptation to Incoming Data Distribution
Target Application. In this scenario, we consider an appli-

cation that runs a sentiment analysis algorithm on Twitter
feeds, as described in Figure 1. The application first filters
out all tweets that are not related to a configured product
of interest. It then categorizes the tweet as containing an
either positive or negative sentiment. If the tweet has a neg-
ative sentiment, it is stored on disk for later batch process-
ing. Each tweet with a negative sentiment is then associated
with a cause. Tweets associated with the same cause are ag-
gregated to identify the top causes for user frustration when
using the product of interest. The set of possible causes for
user frustration are pre-computed using a Hadoop job [26]
using IBM’s Big Insights platform [13] and its module for
text analytics [19]. The streaming application consumes the
output of the Hadoop job during its bootup.

Need for Adaptation. This application must adapt to
changes on the content of the incoming data. This is be-
cause the possible causes for user frustration can change

over time (e.g., as companies release new product version).
To adapt to these conditions, this application code contains
two extra operators. The first operator consumes a stream
that contains the values of two custom metrics maintained
by one of the upstream operators. The metrics contain the
total number of negative tweets with known and unknown
causes. When the number of tweets with unknown causes is
greater than the number of tweets with known causes, the
operator sends a tuple to the second extra operator. The
second operator then executes a script that issues a new
Hadoop job that recomputes the possible user frustration
causes using the file containing the latest tweets with neg-
ative sentiment. The streaming application automatically
reloads the output of the Hadoop job as soon as the job fin-
ishes. By using the orchestrator, we are able to place the
adaptation code purely in the ORCA logic, separating the
application control and the data processing logic.

Event Scope. During the execution of the orchestrator
start callback, we add to the scope the two custom opera-
tor metrics that maintain the total number of tweets with
known and unknown causes. These two metrics values are
sufficient to indicate that there are too many users complain-
ing about an unknown issue, and, therefore, the application
must adapt.

Actuation. When receiving operator metric events, the
handling routine updates the ORCA logic private variables
with the notified metric value and the metric notification
epoch. If the metric epoch values for both the known and
unknown causes are the same, the routine compares the met-
ric values. If there are a greater number of tweets with un-
known cause, the ORCA logic calls the script that issues the
Hadoop job. The event handling routine only issues a new
Hadoop job if no other job has been started in the last 10
minutes. This avoids the continuous triggering of new jobs
before the application can refresh its internal state. The
orchestrator has 114 lines of C++ code.

Experiment. Figure 8 displays the ratio of the number of
tweets with unknown and known causes (y-axis) over time
(or metric epoch, x-axis). In this experiment, we configured
the streaming application to monitor negative sentiments
related to the iPhone product. During startup, the pre-
computed causes for iPhone complaints are related to Flash
technology support and screen problems. At this point, the
number of tweets with known causes is higher than the ones
with unknown cause (ratio below 1.0). Around epoch 250,
we feed a stream of tweets in which users complain about
antenna issues. At this point, the graph shows the orches-
trator measurement values growing, surpassing the defined
actuation threshold of 1.0. Once it surpasses the threshold
for the first time, the ORCA logic triggers the Hadoop job for
model recomputation. Once the Hadoop job completes, the
application updates its internal state. As a result, the or-
chestrator reports measurements below 1.0, confirming that,
after the adaptation, the application can correlate the ma-
jority of the incoming tweets to a known cause.

5.2 Adaptation to Failures
Target Application. This scenario uses a financial engi-

neering application named “Trend Calculator”, which pro-
cesses streams from the stock market and applies a set of
financial algorithms for each incoming stock symbol over a
sliding time window of 600 seconds. These algorithms in-
clude the minimum and maximum stock trade prices, the

1833

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

!#)!# (!!# ()!# $!!# $)!# *!!# *)!# %!!#

!
"
#
"
$
%
"
&'
$
&#
"
$
%
"
&(
)
*
+,
&-
)
.
$
&

/0$(1&

!"#$%&'()#*+,-*'./)

Figure 8: Unknown to known sentiment ratio over
time (epoch). Measurement surpasses the actuation
threshold defined in the ORCA logic, triggering the
submission of the Hadoop job. Measurement stabi-
lizes after the streaming job refreshes its model.

average stock price, and the Bollinger Bands above and be-
low the average price.

Need for Adaptation. When crash failures affect applica-
tion PEs, PEs with stateful operators can lose their state
and PEs with stateless operators may lead to tuple loss,
which further impacts the state of the operators downstream
of the failed PE [16]. To reduce end-to-end latency and
increase application throughput, this application does not
employ any state checkpointing feature available from the
stream processing middleware. As a result, it needs to pro-
cess tuples for 600 seconds to fully recover its state (i.e.,
until it fully refreshes its internal windows).

Event Scope. The only event required to provide runtime
adaptation are PE failure events.

Actuation. To provide quick recovery for this applica-
tion when PE crashes occur, we devised an orchestrator
that manages three application replicas. When receiving
an orchestrator start notification event, we first set the ap-
plication to execute in an exclusive host pool and submit
three copies of the application. The orchestrator assigns
each replica an active or backup status. The status is also
propagated to a file, so that a GUI can read which replica is
currently active. The user of the GUI should always look for
the output of the active replica for the most up-to-date re-
sults. During orchestrator startup, we also add registrations
for PE failure events occurring in the target application to
the ORCA event scope. Upon the occurrence of a PE failure
and delivery of the relevant event, the ORCA logic evaluates
if the failed replica is either active or backup. If the failed
replica is the active one, then the ORCA logic finds the oldest
running replica (i.e., replica with longest history and, most
likely, with full sliding windows), sets it as active, and up-
dates the status file. It then sets the previous active replica
as backup and restarts the failed PE. The total orchestrator
size is 196 lines of C++ code.

Experiment. Figure 9 shows the application result in two
graphs that get live updates from the active replica and
one of the backup replicas. The graph displays in its title
the replica identifier and its current status (highlighted with
solid line box), which is periodically updated based on the
status file generated by the ORCA logic. The graph shows
the results of all the financial calculations applied to a given
stock of interest. Figure 9(a) shows the application results
when all replicas are healthy. The orchestrator sets replica
0 as active and replica 1 as backup. When both replicas are

healthy, the graphed output is identical. To forcefully trig-
ger an orchestrator event, we kill one of the PEs belonging to
the active replica. When the ORCA logic receives the event,
it triggers an application failover and updates the status of
both replicas 0 and 1. Figure 9(b) shows the graph updates
after the orchestrator event handler execution. In addition
to the updated status on the graph title, the figure shows
the application result right after the failure occurred. The
dashed line box highlights the difference between the repli-
cas. While replica 1 continues to update the graph output,
replica 0 does not produce any output while the PE is down
(dashed box), and produces incorrect output right after the
PE restarts and up until the application fully recovers its
state.

5.3 On-demand Dynamic Application Com-
position

Target Application. To illustrate a dynamic composition
scenario, we use an application that analyzes social media
data and creates comprehensive user profiles. The applica-
tion creates a comprehensive user profile by merging user in-
formation from multiple social media websites. For example,
users with limited information in Twitter can have richer
profiles in Facebook (http://www.facebook.com). The in-
vestigation of their interactions with other media sources,
such as blogs and forums, can further reveal their prefer-
ences. This application is built with the following three
sub-application categories:

• The first category (C1) are applications designed to
extract user profile and sentiment information from
social media websites that provide APIs for reading
continuous streams of updates. These applications
also identify some profiles based on certain criteria
(e.g., profiles discussing a certain topic), which are
sent out for further analysis. Our current implemen-
tation processes data from both Twitter and MySpace
(http://www.myspace.com).

• The second category (C2) are applications that depend
on the profiles identified by C1 applications. C2 appli-
cations query social media sources that use keyword-
based search. These applications build queries based
on keywords extracted from each profile. The search
results are integrated into existing profiles in a data
store. We currently search for extra information
in Facebook, Twitter and Blogs (via BoardReader -
http://boardreader.com).

• The third category (C3) are applications that use the
data store produced by C2 applications to find corre-
lations between the sentiments expressed by users and
their profile attributes. We currently implement an
application that correlates user sentiments with their
age, gender or location.

Need for Adaptation. This application must expand itself
based on the discoveries made by C1 and C2 applications.
Once they find a sufficient number of profiles with new at-
tribute fields, the application can spawn a C3 application to
correlate the new attributes with user sentiments. The ap-
plication must also contract itself once the correlation task
is finished. Expanding and contracting the application over
time helps decrease the overall resource consumption.

1834

(a) Application result before PE crash (b) Application result after PE crash

Figure 9: Figure 9(a) shows the output of the Trend Calculator application before the crash of a PE belonging
to replica 0. Figure 9(b) displays the graph after the orchestrator executes the event handling routine. The
dashed line box highlights the differences between the output generated by the failed and healthy replicas.

Event Scope. We add to the orchestrator event scope two
different sets of application metrics, which are used to ex-
pand and contract the application graph on-demand. The
first set is a collection of custom metrics associated to each
C2 application. Each C2 application maintains a set of met-
rics containing the number of profiles with a specific at-
tribute (e.g., gender). The second set is a built-in system
metric of the sink operator of each C3 application. We use
the final punctuation system metric to detect that the appli-
cation has processed all of its tuples. In SPL, a final punc-
tuation is a special mark in a stream that indicates that an
operator will no longer produce tuples. The generation and
forwarding of final punctuations are automatically managed
by the SPL runtime [11].

Actuation. During orchestrator startup, the ORCA logic
establishes dependency relations between C2 and C1 appli-
cations. The uptime requirement used for all dependencies
is set to zero, since none of the C1 applications build up
internal state. After the dependencies are established, the
orchestrator submits all C2 applications. This results in all
C1 and C2 applications to be started. When the orchestra-
tor receives metric events associated with C2 applications,
it evaluates if the aggregate number of new available pro-
files with a given attribute (i.e., among all C2 applications)
is greater than a threshold. If so, the orchestrator submits
a C3 application to compute the statistics for the given at-
tribute. The ORCA logic evaluates the number of new avail-
able profiles based on the number of profiles available on
the last C3 application submission. Note that the aggregate
number of profiles may contain profiles that are duplicates.
This is because C1 applications feed multiple C2 applica-
tions. Even though the orchestrator measurements include
duplicates, C3 applications do not see duplicate profiles be-
cause they read directly from the data store, which has no
duplicate profile entry. When the orchestrator receives a fi-
nal punctuation metric event for a C3 application, it issues a

job cancellation request. The orchestrator implementation
has 139 lines of C++ code.

Experiment. Figure 10 shows the application graph visual-
ization when applications of all categories are running in the
system. In this experiment, we considered the following ap-
plications: (C1) applications consuming Twitter’s 10% sam-
ple stream (TwitterStreamReader) and MySpace’s stream
(MySpaceStreamReader); (C2) applications searching for
Twitter (TwitterQuery), Blogs (BlogQuery), and Facebook
(FacebookQuery); and (C3) applications segmenting profiles
based on age, gender, and location (AttributeAggregator).
We also configured C1 applications to consider only profiles
that issue negative posts regarding a specific product. Once
the orchestrator detects that a number (e.g., 1500) of new
profiles with gender, age, or location attributes were discov-
ered, it spawns the job that does profile segmentation using
the attribute of interest (e.g., gender) as a parameter.

6. RELATED WORK
Orchestration in the context of stream processing sys-

tems has not been studied in the literature, as very few
of the existing systems support dynamic composition and
external interaction with deployed application components.
Existing systems often perform automatic run-time adap-
tation, such as adjusting the quality of the stream data
based on resource availability [14], shedding load under over-
loaded conditions [25], and providing self-configuring high-
availability [12]. While providing such management services
by the runtime is often desirable, the resulting solutions
are not flexible enough due to the lack of application-level
knowledge within the streaming runtime. It is a significant
challenge to convey an application’s notion of quality, which
is often defined via custom metrics, to the runtime system.
Similar arguments can be made for partial fault-tolerance re-
quirements of the applications [16], which are often hard to
generalize. Our work focuses on application-driven orches-

1835

!"#$%&'()*)

!"#$%&'()+)

!"#$%&'(),)

Figure 10: Visualization of the full application
graph, which is composed of 6 sub-applications. Or-
chestrator expands and contracts the application
graph with Category 3 application based on runtime
events.

tration. We provide abstractions that enable developers to
specify the appropriate orchestration behavior required by
their application. A streaming system that provides a lim-
ited form of runtime adaptability is Borealis [1]. In this sys-
tem, operators can adapt their behavior by receiving control
signals. Our approach is more generic, since we allow other
kinds of application actuations, such as dynamic application
composition and invocation of external components.

Oozie [28] is an open-source coordination service to man-
age data processing jobs for Apache Hadoop [26]. It orches-
trates dependencies between jobs running on Hadoop. It is
similar to our work in terms of the dependency management,
but lacks the notion of garbage collection as Hadoop jobs are
batch-based. Furthermore, it does not support any notion
of subscribing to system and application-defined metrics, or
introspecting the topology of the running applications.

Workflow orchestration in web services is another line of
work related to ours. A web services workflow is the automa-
tion of a business process, during which documents, infor-
mation or tasks are passed from one participant to another
for action, according to a set of procedural rules. Business
Process Execution Language (BPEL) [22] is a well adopted
standard for workflow orchestration. A BPEL orchestra-
tion specifies an executable process that involves message
exchanges with other systems, such that the orchestration
designer controls the message exchange sequences. While
similar in spirit, BPEL differs from our work due to its focus
on orchestrating loosely coupled web services. As a result, it
does not support registering for events of interest from the
web services that are being orchestrated. It does, however,
support introspecting the interfaces of the available services
through their WSDL [6] descriptions.

Another area relevant to our work is orchestration within
the IT infrastructure, exemplified by IBM Tivoli Orchestra-
tor [20]. Such tools react to changes in resource require-
ments by taking automated provisioning actions, such as
allocating servers, or installing, configuring, and patching
software. Amazon’s Simple Workflow Service [3] provides

orchestration for cloud services. Our framework focuses on
orchestration APIs for stream processing application, which
can have different logical and physical deployments.

Orchestration can also be related to database tuning.
Database tuning focus on acting on physical parameters of
databases to optimize their performance [24, 29]. Our or-
chestration work focus on application specific adaptation,
which can consider not only physical aspects (e.g., node
placement), but application semantics (e.g., custom oper-
ator metrics).

Our work can also be compared to research in pervasive
an ubiquitous computing, where it is common to associate
a context to an event [10, 23]. For example, the context can
indicate a device location change and result in application
adaptation. More recently, context-aware publish-subscribe
systems have been developed to provide richer information
regarding message producers and consumers [7, 9]. In our
orchestrator, the context also conveys information about an
event. The difference is that we use the context to further
query the ORCA service to inspect the application. This is
critical to disambiguate the physical and logical layout of a
distributed streaming application.

Finally, the aspects of our orchestration that deal with
system health and unexpected errors can be compared to
exception handling in programming languages. The funda-
mental difference lies in where the exception handling logic is
executed. In our work, the orchestrator is at a central loca-
tion where exceptions from multiple distributed application
components can be received, and actions that require coor-
dination across a distributed set of runtime components can
be taken. This is necessitated by the distributed nature of
the exception handling task [8], and is unlike programming
languages where the exception handling code is embedded
in a few locations within the code.

7. CONCLUSIONS
Due to their continuous nature, streaming applications

may need to perform runtime adaptation and react to run-
time events, such as failures, changes in the workload, and
performance problems. In this paper, we propose the inclu-
sion of an orchestrator component as a first class concept
in a stream processing infrastructure. This allows users to
(i) make their analytics and application adaptation routines
more reusable by separating control and data processing
logic, and (ii) to specialize event handling routines to imple-
ment adaptive stream processing applications. One of the
key concepts of our orchestrator is the delivery of events with
sufficient context information and an API to query graph
meta-data, so that developers can disambiguate the physi-
cal and logical deployment of a streaming application. Our
current orchestrator implementation works with the IBM
System S infrastructure, and is able to deliver events related
to failures, system-defined and application-specific metrics,
and job dynamics, among others.

As future work, we plan to allow developers to dy-
namically add an application to the orchestrator (e.g.,
applications developed after orchestrator deployment). We
also plan to make the orchestrator component fault-tolerant
by adding transaction IDs to delivered events, and associ-
ating actuations taking place via the ORCA service to the
event transaction ID. This enables reliable event delivery
and actuation replay (when necessary). Furthermore,
we plan to add the orchestrator concepts as an SPL ab-

1836

straction, which further facilitates the development of the
ORCA logic. One option is to use rules (similar to complex
event processing) for users to express event subscription
more easily and take default adaptation actions when no
specialization is provided for a given event (e.g., automatic
PE restart).

Acknowledgments. We thank Kirsten Hildrum, Senthil
Nathan, Edward Pring, and Chitra Venkatramani for shar-
ing their SPL applications with us.

8. REFERENCES

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B.
Zdonik. The design of the Borealis stream processing
engine. In Proc. of CIDR, pages 277–289, 2005.

[2] M. H. Ali, B. Chandramouli, B. S. Raman, and
E. Katibah. Spatio-temporal stream processing
Microsoft StreamInsight. IEEE Data Engineering
Bulletin, 33(2):69–74, 2010.

[3] Amazon. Amazon simple workflow service.
http://aws.amazon.com/swf, 2012.

[4] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen,
R. King, P. Selo, Y. Park, and C. Venkatramani. SPC:
A distributed, scalable platform for data mining. In
Proc. of DM-SSP, pages 27–37, 2006.

[5] A. Arasu, S. Babu, and J. Widom. The CQL
continuous query language: Semantic foundations and
query execution. VLDBJ, 15(2):121–142, 2006.

[6] E. Cerami. Web Services Essentials. O’Reilly Media,
2002.

[7] G. Cugola, A. Margara, and M. Migliavacca.
Context-aware publish-subscribe: Model,
implementation, and evaluation. In Proc. of ISCC,
pages 875–881, 2009.

[8] C. Doney, J. L. Knudsen, A. Romanovsky, and
A. Tripathi, editors. Advanced Topics in Exception
Handling Techniques (LNCS / Programming and
Software Engineering). Springer, 2006.

[9] D. Frey and G.-C. Roman. Context-aware publish
subscribe in mobile ad hoc networks. In Proc. of
COORDINATION, pages 37–55, 2007.

[10] K. Henricksen and J. Indulska. Developing
context-aware pervasive computing applications:
Models and approach. Pervasive and Mobile
Computing, 2(1):37–64, February 2006.

[11] M. Hirzel, H. Andrade, B. Gedik, V. Kumar, G. Losa,
M. Mendell, H. Nasgaard, R. Soulé, and K.-L. Wu.
SPL stream processing language specification.
Technical Report RC24897, IBM Research, 2009.

[12] J.-H. Hwang, Y. Xing, U. Cetintemel, and S. Zdonik.
A cooperative, self-configuring high-availability
solution for stream processing. In Proc. of ICDE,
pages 176–185, 2007.

[13] IBM. IBM InfoSphere BigInsights. http://www-01.
ibm.com/software/data/infosphere/biginsights,
2011.

[14] C. Isert and K. Schwan. ACDS: Adapting
computational data streams for high performance. In
Proc. of IPDPS, pages 641–646, 2000.

[15] G. Jacques-Silva, B. Gedik, H. Andrade, and K.-L.

Wu. Language level checkpointing support for stream
processing applications. In Proc. of DSN, pages
145–154, 2009.

[16] G. Jacques-Silva, B. Gedik, H. Andrade, K.-L. Wu,
and R. K. Iyer. Fault injection-based assessment of
partial fault tolerance in stream processing
applications. In Proc. of DEBS, pages 231–242, 2011.

[17] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke,
J. Widom, H. Balakrishnan, U. Çetintemel,
M. Cherniack, R. Tibbetts, and S. Zdonik. Towards a
streaming SQL standard. Proc. of the VLDB
Endowment (PVLDB), 1(2):1379–1390, 2008.

[18] R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, J. L.
Wolf, K.-L. Wu, H. Andrade, and B. Gedik. COLA:
Optimizing stream processing applications via graph
partitioning. In Proc. of Middleware, pages 308–327,
2009.

[19] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss,
S. Vaithyanathan, and H. Zhu. SystemT: a system for
declarative information extraction. SIGMOD Rec.,
37(4):7–13, 2008.

[20] E. Manoel, M. Hicks, M. Moeller, I. Naick,
M. Poulson, and J. Surmann. Developing Workflows
and Automation Packages for IBM Tivoli Intelligent
Orchestrator V3.1. IBM Redbooks, 2006.

[21] MIT. StreamIt language specification version 2.1.
http://groups.csail.mit.edu/cag/streamit/

papers/streamit-lang-spec.pdf, 2006.

[22] OASIS Committee. Web services business process
execution language (WS-BPEL), version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/

wsbpel-v2.0.html, 2007.

[23] A. Ranganathan and R. H. Campbell. Middleware for
context-aware agents in ubiquitous computing
environments. In Proc. of Middleware, pages 143–161,
2003.

[24] K. Schnaitter, S. Abiteboul, T. Milo, and
N. Polyzotis. COLT: continuous on-line tuning. In
Proc. of SIGMOD 2006, pages 793–795, 2006.

[25] N. Tatbul, U. Çetintemel, and S. B. Zdonik. Staying
FIT: Efficient load shedding techniques for distributed
stream processing. In Proc. of VLDB, pages 159–170,
2007.

[26] T. White. Hadoop: The Definitive Guide. O’Reilly
Media, 2009.

[27] K.-L. Wu, P. S. Yu, B. Gedik, K. Hildrum, C. C.
Aggarwal, E. Bouillet, W. Fan, D. George, X. Gu,
G. Luo, and H. Wang. Challenges and experience in
prototyping a multi-modal stream analytic and
monitoring application on System S. In Proc. of
VLDB, pages 1185–1196, 2007.

[28] Yahoo. Oozie, workflow engine for Hadoop.
http://yahoo.github.com/oozie/releases/3.1.0/

index.html, 2011.

[29] D. C. Zilio, J. Rao, S. Lightstone, G. Lohman,
A. Storm, C. Garcia-Arellano, and S. Fadden. DB2
design advisor: integrated automatic physical
database design. In Proc. of VLDB, pages 1087–1097,
2004.

1837

