
Muppet: MapReduce-Style Processing of Fast Data

Wang Lam1, Lu Liu1, STS Prasad1, Anand Rajaraman1, Zoheb Vacheri1, AnHai Doan1,2

{wlam,luliu,stsprasad,zoheb,anhai}@walmartlabs.com and anand@anandr.com
1@WalmartLabs, 2University of WisconsinMadison

ABSTRACT

MapReduce has emerged as a popular method to process big
data. In the past few years, however, not just big data, but
fast data has also exploded in volume and availability. Ex-
amples of such data include sensor data streams, the Twit-
ter Firehose, and Facebook updates. Numerous applications
must process fast data. Can we provide a MapReduce-style
framework so that developers can quickly write such applica-
tions and execute them over a cluster of machines, to achieve
low latency and high scalability?

In this paper we report on our investigation of this ques-
tion, as carried out at Kosmix and WalmartLabs. We de-
scribe MapUpdate, a framework like MapReduce, but specif-
ically developed for fast data. We describe Muppet, our im-
plementation of MapUpdate. Throughout the description
we highlight the key challenges, argue why MapReduce is
not well suited to address them, and briefly describe our
current solutions. Finally, we describe our experience and
lessons learned with Muppet, which has been used exten-
sively at Kosmix and WalmartLabs to power a broad range
of applications in social media and e-commerce.

1. INTRODUCTION
MapReduce [8] has emerged as a popular paradigm to pro-

cess big data. Using MapReduce, a developer simply writes
a map function and a reduce function. The system automat-
ically distributes the workload over a cluster of commodity
machines, monitors the execution, and handles failures.

In the past few years, however, not just big data, but
fast data, i.e., high-speed real-time and near-real-time data
streams, has also exploded in volume and availability. Prime
examples include sensor data streams, real-time stock mar-
ket data, and social-media feeds such as Twitter, Facebook,
YouTube, Foursquare, and Flickr. The emergence of social
media in particular has greatly fueled the growth of fast
data, with well over 4000 tweets per second (400 million
tweets per day [12]), 3 billion Facebook likes and comments
per day [9], and 5 million Foursquare checkins per day [2].

Numerous applications must process fast data, often with
minimal latency and high scalability. For example, an ap-
plication that monitors the Twitter Firehose for an ongoing
earthquake may want to report relevant information within
a few seconds of when a tweet appears, and must handle
drastic spikes in the tweet volumes. As the number and
sophistication of such applications grow, a natural question
arises: Can we provide a MapReduce-like framework for fast

data, so that developers can quickly write and execute such

applications on large clusters of machines, to achieve low

latency and high scalability?

In this paper we describe our investigation of this ques-
tion, as carried out at Kosmix, a San-Francisco-Bay-Area
startup, and at WalmartLabs, an advanced development lab
newly established by Walmart (Walmart acquired Kosmix in
May 2011 to form the seed of WalmartLabs). In Section 2
we describe a number of motivating applications that pro-
cess fast data, and argue why MapReduce is not well suited
for such applications.

In Section 3 we describe MapUpdate, a framework to pro-
cess fast data. Like MapReduce, in MapUpdate the devel-
oper only has to write a few functions, specifically map and
update ones. The system automatically executes these func-
tions over a cluster of machines. MapUpdate, however, dif-
fers from MapReduce in several important aspects. First,
MapUpdate operates on data streams, so map and update
functions must be defined with respect to streams. For
example, mappers and updaters map streams to streams,
split streams, or merge streams. Second, streams may never
end, so updaters use storage called slates to summarize the
data they have seen so far. The notion of slates does not
arise in MapReduce, nor in many recently proposed stream-
processing systems (see Section 6). In MapUpdate, slates
are in effect the “memories” of updaters, distributed across
multiple map/update machines as well as persisted in a key-
value store for later processing. Making such pieces of mem-
ory explicit and managing them as “first-class citizens,” in a
near-real-time fashion, is a key distinguishing aspect of the
MapUpdate framework. Finally, a MapUpdate application
often involves not just a mapper followed by an updater, but
many of them in an elaborate workflow that consumes and
generates data streams.

In Section 4 we describe Muppet, a MapUpdate imple-
mentation developed at Kosmix and WalmartLabs. We dis-
cuss the key challenges of Muppet in terms of distributed ex-
ecution, managing slates, handling failures, reading slates,
and sketch our solutions. Since mid-2010, we have used
Muppet extensively to develop many social media and e-

1814

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.



commerce applications (over streams such as Twitter and
Foursquare). We describe this experience, lessons learned,
as well as current and future extensions. We discuss related
work in Section 6 and conclude in Section 7.

2. MOTIVATING APPLICATIONS
We describe several motivating applications, argue why

MapReduce is not well suited for these applications, then
outline our desiderata for the MapUpdate framework.

Example 1. Consider an application that monitors the
Foursquare-checkin stream to count the number of check-
ins by retailer (e.g., JCPenney, Best Buy, and Walmart).
For each incoming checkin, the application analyzes the text
of the checkin (typically represented as a JSON object) to
identify the retailer (if any), then increases the appropriate
count. The counts are maintained continuously and dis-
played “live” on a Web page. ✷

Example 2. The second application monitors the Twit-
ter Firehose to detect hot topics as they occur. For ease of
exposition, we will use the following simple heuristic: The
application first classifies each incoming tweet into a small
set of pre-defined topics. Next, as a pre-specified time inter-
val (for example, a minute) passes, the application counts
the number of tweets per topic. If this number divided by
the average number of tweets that mention the same topic in
the corresponding time interval each day (this average num-
ber is maintained by the application across multiple days)
exceeds a pre-specified threshold, then the application emits
the topic and the minute. Thus, the output is a stream of
<topic, minute> pairs that reports which topic is hot for
each minute. ✷

Example 3. The third application maintains a reputa-
tion score for each Twitter user as users tweet. It analyzes
each incoming tweet to determine if the tweet affects the
score of any users, then changes those scores. The score of
a user can be affected by many factors. For example, if a
user A retweets or replies to a user B, then the score of B
may change, depending on the score of A. The output is a
real-time data structure (e.g., a hash table) of <user, score>
pairs. ✷

Other applications include maintaining the top-ten URLs
being passed around on Twitter, and maintaining live coun-
ters of the number of HTTP requests made to various parts
of a Web site.

The key commonality underlying all of these applications
is that they perform stream computations, which consume
streams and produce streams or continuously-updated data
structures as the output. We argue that MapReduce and
variations of it are not well suited to such computations, for
the following reasons. First, MapReduce runs on a static
snapshot of a data set, while stream computations proceed
over an evolving data stream. In MapReduce, the input
data set does not (and cannot) change between the start
of the computation and its finish, and no reducer’s input
is ready to run until all mappers have finished. In stream
computations, the data is changing all the time; there is no
such thing as working with a “snapshot” of a stream.

Second, every MapReduce computation has a “start” and
a “finish.” Stream computations never end. The data stream
goes on forever. Typical stream computations update some

data structure based on the input stream, and either output
a stream or answer queries on the data structure they main-
tain (e.g., how many items have we seen so far that satisfy
certain conditions?). In the MapReduce model, the reduce
step needs to see a key and all the values associated with
the key; this is impossible in a streaming model.

Finally, in case of failure, it is always possible (even if
inconvenient) to restart a MapReduce computation from
scratch. This possibility may not exist for many stream
computations; streams continue to flow at their own rate,
oblivious to processing issues. The system should be able
to cope with failures very quickly to avoid falling too far
behind the stream.

Thus, we need a new framework for stream computations.
We would like this framework to satisfy the following re-
quirements:

• The framework should be easy to program. It should
have a simple model that enable the rapid develop-
ment of many applications. Ideally, it should retain
the familiar Map and Reduce feel, to help developers
quickly write stream applications.

• The framework should manage dynamic data struc-
tures as first-class citizens. Many developers are accus-
tomed to reasoning with such data structures explicitly
in their code, and many stream applications need to
produce such structures for higher-level applications.

• The framework should deliver low-latency processing.
Applications should stay near real-time with their in-
put streams, and computed data (i.e., dynamic data
structures) should be available for live querying.

• The framework should scale up on commodity hard-
ware with computation and stream rate.

In the next section we describe such a framework, MapUp-
date.

3. THE MAPUPDATE FRAMEWORK
We assume a hardware platform similar to MapReduce,

i.e., a cluster of commodity machines. In practice, the ma-
chines need to be more memory-heavy and less disk-heavy
than in a MapReduce cluster. The reason is that most
stream computations read streams as they flow by and main-
tain in-memory data structures, in contrast to MapReduce
computations that read and produce large files.

Events and Streams: Example events are tweets, Face-
book updates, and Foursquare checkins. Formally, an event

is a tuple 〈sid, ts, k, v〉, where

• sid is the ID of the stream that the event belongs to.

• ts is a timestamp. To ensure a well-defined output
when merging multiple streams, we assume timestamps
are global across all streams (local timestamps, if any,
can be stored in the value v).

• k is a key. Keys have atomic values and need not be
unique across events. For example, the key for a tweet
might be the user ID. Key are used to group events,
similar to the way they are used in MapReduce. We
assume a global key space across all streams, though
our model can be easily extended to handle multiple
key spaces (e.g., one per stream).

1815



Figure 1: Example MapUpdate applications

• Finally, v is a value, which can be any “blob” asso-
ciated with the event. For example, if the event is a
tweet with the key being the user ID, then the value
can be the entire JSON object representing the tweet.

A stream is then a sequence of all events with the same sid,
in the increasing order of timestamp ts (using a determinis-
tic tie-breaking procedure). Streams can be external (e.g.,
the Twitter Firehose and the Foursquare-checkin stream) or
internal, being generated by map and update functions as
described below.

Map Functions: A map function map(event) → event∗
subscribes to one or more streams. All events from these
streams will be fed as input, one by one, in the increasing
order of their timestamps, using a deterministic tie-breaking
procedure, to the map function. For example, suppose a
map function M subscribes to two streams S1 and S2, and
suppose that S1 begins with an event e with timestamp 21:23
and that S2 begins with an event f with timestamp 21:25.
Then event e will be fed to M , followed by event f , followed
by whichever event in S1 and S2 that has the next lowest
timestamp, and so on.

Given an event as the input, the map function processes
it then emits zero or more events to various streams. Thus,
this function is analogous to the map function in MapRe-
duce. Each output event has a timestamp greater than the
timestamp of the input event, so that even if an output
event is emitted to the same stream as the input event, the
stream’s events can be processed in timestamp order.

Update Functions and Slates: An update function
update(event, slate) → event∗ also subscribes to one or
more streams, and is also fed as input all events from these
streams, one by one, in the increasing order of their times-
tamps, using a deterministic tie-breaking procedure. When
the update function U takes as input an event e with key k,
it is also given a slate SU,k.

The slate SU,k is an in-memory data structure that stores
all important information that the update function U must
keep about all the events with key k that U has seen so
far. Within the update function U , there is one slate for
each key. For example, if the key space is Twitter user IDs,
then there is one slate per user ID for U , which may store

summary information such as the number of tweets by that
user, the time of the last tweet by the user, and the set of
user interests that the update function has been able to infer
from the tweets seen so far.

Recall that in MapReduce, the reduce function takes a
key k and the list L of all values associated with key k, then
“reduces” L to emit new <key, value> pairs. Update plays
an analogous role. However, because an update function
operates on streams, it cannot take as input the list of all
events with key k: It has not seen all such events, and in
any case, the list of events with key k that it has seen so far
may already be too large to keep around.

To solve this problem, we introduce the notion of slate:
a data structure that “summarizes” all events with key k
that an update function U has seen so far. When given
a new event e with the same key, U uses e to update the
slate (hence the name “update” for this function). Thus, the
slate is a live data structure that is continuously updated in
(near) real time. Each slate also has a time-to-live param-
eter, which is set to “forever” by default but can be set to
a concrete value after which the slate can be deleted to free
up memory. When an update function U accesses a slate
associated with a key k for the first time (either because
this is the first time U sees an event with key k, or because
the slate has been deleted after its time to live has expired),
the update function must set up the set of variables it needs
in the slate and initialize those variables.

It is important to emphasize that each pair <update U ,
key k> uniquely determines a slate, not that each key k
uniquely determines one. Indeed, we can have one slate
associated with a key k for an update function U1, and yet
another slate associated with key k for another update func-
tion U2.

In other words, unlike the “memoryless” map functions,
an update function has a memory. This memory is parti-
tioned into pieces called slates, each associated with a par-
ticular event key. Each copy of an update function, when
run on a machine, is in charge of a set of event keys, and
hence will directly update the set of slates associated with
those keys (see Section 4.1). The slates are updated and
kept in the main memory of those machines, but also per-
sisted on disk in a key-value store (see Section 4.2). The

1816



developer can reason about the slates explicitly, and query
them live.

In addition to updating the input slate, the update func-
tion may also emit new events, just like the map function.

MapUpdate Applications: A MapUpdate application
is a workflow of map and update functions. Map func-
tions consume streams and produce new streams, or emit
new events into existing streams. Updater functions con-
sume streams, continuously update slates, and produce new
streams or emit new events into existing streams.

Thus, the workflow is modeled as a directed graph (allow-
ing cycles), whose nodes represent map and update func-
tions, and whose edges represent streams. Figure 1(a) shows
such a graph. The output of the MapUpdate application is
a set of streams and slates, as specified by the application.
The following two examples illustrate MapUpdate applica-
tions:

Example 4. Figure 1(b) shows the workflow of the ap-
plication that counts Foursquare checkins per retailer (see
Example 1). This application starts with stream S1, the
Foursquare checkin stream. A map function M1 inspects
each checkin to see if the checkin happened at a retailer’s
location. If yes, M1 emits an event with the retailer ID (e.g.,
JCPenney, Walmart) to a new stream S2. An update func-
tion U1 subscribes to S2 and counts the number of checkins
per retailer. Specifically, for each retailer U1 maintains a
slate with a count variable initially set to 0. U1 then incre-
ments count by 1 every time it sees an event with the same
retailer ID. The output of the application is the set of slates
maintained by U1. ✷

Example 5. Figure 1(c) describes the application that
monitors tweets to detect hot topics (see Example 2). The
application starts with S1, the Twitter stream. A map func-
tion M1 analyzes each tweet t in S1 to infer a set of topics
(taken from a predefined set of possible topics). Let m be
the minute in which the timestamp of tweet t occurs (e.g.,
if the timestamp is 00:14 then m = 14; if the timestamp
is 23:59 then m = 1439). For each inferred topic v, M1

publishes an event with the key v m (i.e., a string that con-
catenates v and m) to a new stream S2 indicating that topic
v is mentioned in a tweet that occurs in the minute m.

An update function U1 subscribes to stream S2 to count
the frequencies of topics per minute. When U1 first encoun-
ters an event with key v m, it creates a slate for this key,
and sets count = 0 in the slate. Every time it sees an event
with the same key, it increments count by 1. After a minute
(counting from when it sees the first event with key v m),
U1 publishes an event (key = v m, value = count) to a new
stream S3, indicating that topic v is mentioned count times
in the minute m.

An update U2 monitors stream S3 to find hot topics.
Specifically, when U2 sees an event (v m, count), it com-
putes count/avg countv m. If this ratio exceeds a certain
threshold then U2 publishes an event with key v m to a new
stream S4, indicating that topic v is hot in the minute m.
The quantity avg countv m is the average count of topic v
in the minute m. U2 keeps a slate for key v m, with two
summaries:

• total count: the total number of times topic v has been
mentioned in the minute m so far, since the first day,
and

Figure 2: An illustration of the working of Muppet

• days: the number of days since when the application
is deployed.

U2 uses these two quantities to compute avg countv m. The
output of the application is stream S4. ✷

We note that update functions maintain no “global” vari-
ables (across the slates). For example, update function U2 in
Example 5 maintains a “local” variable days in each of the
slates, even though all days variables have the same value
across all slates, and thus technically can be “merged” into a
single “global” variable. Update functions do not maintain
global variables across the slates to avoid the concurrency-
control problem in which multiple copies of the same update
functions, run on different machines, all attempt to modify
the same “global” variables at the same time.

As described above, it is not difficult to show that if

• the map and update functions are deterministic, in
that the input event completely determines the output
events and slate updates;

• the events of the subscribed streams are fed into a
map/update function in a well-defined order (which in
this case is the increasing order of their timestamps,
using a deterministic tie-breaking procedure); and

• the timestamps of output events are greater than that
of the input event (to ensure that loop executions are
well-defined),

then a MapUpdate application is well-defined, in that it gen-
erates well-defined streams and sequences of slate updates.
Ideally, a MapUpdate implementation should produce these
exact streams and slate updates. Due to practical con-
straints, however, it often can only approximate them, but
should try to do so as closely as possible.

To write a MapUpdate application, a developer writes the
necessary map and update functions, then a configuration
file that includes the workflow graph.

4. THE MUPPET SYSTEM
We now describe Muppet, our implementation of the Ma-

pUpdate framework. We describe Muppet 1.0 (Sections 4.1–
4.4), developed at Kosmix, then Muppet 2.0 (Section 4.5),
developed at WalmartLabs, which addresses several key lim-
itations of Muppet 1.0.

1817



4.1 Distributed Execution
To execute a MapUpdate application on a cluster of ma-

chines, Muppet starts up a set of programs on each machine.
Each program executes a map or update function. The pro-
grams are called workers, which can be divided into map-

pers and updaters, depending on which function they run.
To distribute the computation, each worker will be fed only
events of certain key values, as determined by a hash func-
tion. Figure 2 illustrates this process. Given an application
that runs a map function followed by an update function,
suppose Muppet has decided to run five workers: three map-
persM1−M3 for the map function, and two updaters U1−U2

for the update function.
Muppet begins by using a special mapper M0 to read from

the input stream (see the figure). Given an event e with a
key k, M0 hashes k to find out which mapper to send e
to. Suppose this mapper is M1. M0 places event e in the
queue for M1 (this queue is maintained in memory for the
M1 program). M0 then reads the next event in the input
stream, and so on.

The mapper M1 takes the next event from its queue, pro-
cesses the event, and produces a set of events. For each
produced event f , M1 hashes its key and the destination
update function to find out which updater to send the event
to. Suppose this updater is U2. M1 then places event f in
the queue for U2. M1 then processes the next event from its
own queue, and so on.

Thus, events flow continuously through the workflow of
mappers and updaters. For each event that a worker pro-
duces, it must find out which workers to send the event to,
where those workers are (i.e., on which machines), then place
the event into the queues for the workers. One way to make
this determination (and the way Muppet currently employs)
is to give all workers the same hash function to map <event
key, destination map/update function> to workers. That
way, after producing an event, any worker can instantly cal-
culate which worker the event hashes to, then contact that
worker to place the event into the appropriate queue. Each
worker has its own queue for input events.

This mode of passing events is in stark contrast to MapRe-
duce. There, after a mapper has produced output files, it
contacts the master, which in turn notifies the appropriate
reducers to get the files. This solution is not well suited
for our setting because it is very important for many Ma-
pUpdate applications to minimize latency, i.e., to produce
streaming output data quickly, in as “real time” as possible.
To achieve this, we try to remove as many intermediaries
as possible. Hence, Muppet lets the workers pass events
directly to one another without going through any master.
(The master in Muppet is used for handling failures, see
Section 4.3.)

Hashing ensures that all events with the same key k will go
to the same updater U (this is similar to MapReduce, where
all events with the same key go to the same reducer). The
updater uses the events to update a slate SU,k associated
with key k. Only this updater can update SU,k, so there are
no concurrent updates for SU,k.

4.2 Managing Slates

Persisting Slates in a Key-Value Store: As described,
an updater U maintains a slate SU,k for each key k. These
slates are cached in the memory of the machine running U .

Muppet also persists them in a key-value store, for three
reasons. First, the slates of U may outgrow the memory, in
which case some of them have to be spilled to disk. Second,
persistent slates help resuming, restarting, or recovering the
application from crashes. Finally, we often need to query
the slates, which represent the computation of a MapUpdate
application, long after the termination of the application.

Muppet currently uses Cassandra as the key-value store.
A Cassandra cluster consists of a set of machines, each run-
ning the Cassandra program, all configured to recognize one
another as parts of the same cluster. The cluster maintains
a set of key spaces, each of which contains a set of column
families. Each column family, in turn, stores data values
indexed by <key, column> pairs.
A Muppet application’s configuration file identifies a Cas-

sandra cluster (by its machine names and service TCP port),
a key space within the cluster, and a column family within
the key space. Within this column family, Muppet stores
slate SU,k (for the update function U and key k) as a value
at row k and column U . Our applications often use JSON
to encode slates for language independence and flexibility,
so Muppet compresses each slate before storing it in the
key-value store.

When the updater U needs the slate with key k, Muppet
first checks the cache (in the memory of the machine running
U). If the slate is not found, Muppet retrieves the slate
from the Cassandra cluster by reading the value indexed by
the pair <k,U>. The retrieved value is decompressed then
passed to the updater.

If the requested slate does not exist in Cassandra, either
because the updater has never seen an event with this key,
or because the slate has been deleted after its time to live
expired, then Muppet initializes a new slate in the cache,
then passes it to the requesting updater.

Using SSDs and Caching Slates: We run our Cas-
sandra key-value store on solid-state flash-memory storage
(SSDs). This allows us to devote Cassandra’s memory to
buffering writes, while caching reads in the slate cache (i.e.,
the memory of machines running updaters). We found this
solution very helpful for several reasons:

• When Muppet starts up, its slate cache is empty, so
early update events may require many row fetches from
the key-value store. Fast random access helps the store
respond to this volume of reads more quickly, warming
the slate cache.

• While running, Muppet often needs random-seek I/O
capacity to fetch uncached slates. Meanwhile, Cas-
sandra also requires I/O capacity for periodic com-
pactions, thus slowing down Muppet. Using SSDs pro-
vides high I/O capacity to help us sustain both needs.

• Because applications often update popular slates re-
peatedly, we minimize disk I/O for writing at the key-
value store if we devote the store’s main memory to
buffering writes. Overwrites of the same row in the
key-value store are relatively inexpensive if the row is
still in memory at the time of the write, so it is ad-
vantageous for us to delay flushing the writes (i.e., the
memory table) to disk as long as possible. Further, the
more times a row is flushed to disk by the store since
its last file compaction, the more files will have to be
checked for the row when it needs to be retrieved.

1818



Flushing, Quorum, and Time-to-Live Parameters:

Muppet applications can adjust a set of parameters to reach
the desired level of performance, reliability, and consistency.
First, dirty (updated) slates are periodically flushed to the
key-value store. The application can set the flushing inter-
val, ranging from “immediate write-through” to “only when
evicted from cache.”

Second, the application can specify the desired quorum
used by the Cassandra store for a successful read/write op-
eration: any single machine to which the data is assigned for
storage, a majority of replicas where the data is assigned, or
all of the replicas where the data is assigned.

Third, key-value stores like Cassandra allow their clients
to specify a time-to-live (TTL) parameter for each write.
Correspondingly, each updater function in a Muppet appli-
cation can have a TTL value configured for its slates. Slates
that have not been updated (written) for longer than the
TTL value may be garbage-collected by the key-value store,
resetting to an empty slate at that time.

The TTL parameter helps contain the amount of storage
used by a Muppet application over time. Many such appli-
cations only care about current activities in their streams,
declining to receive or generate events on obsolete keys. For
example, an application may want to keep track of only ac-
tive Twitter users (e.g., those who have tweeted at least
once in the past quarter), a working set which is typically
much smaller than the set of all Twitter users who have ever
tweeted.

By making TTL a user-configured parameter, application
developers can keep slates as long as needed without having
to manually delete slates that are no longer useful. This
setting is configurable per update function because different
update functions often track different kinds of data, thus
requiring different shelf lives.

4.3 Handling Failures
We now describe how Muppet handles two major types of

failure: machine crash and queue overflow.

Machine Crash: In Muppet each worker keeps track
of all failed machines. Recall that when a worker A needs
to pass an event, it determines the worker B to which to
send the event by hashing the key and destination updater
function of the event (technically accomplished using a hash
ring). Worker A reaches worker B to place the event on B’s
incoming-event queue.

If A cannot contact B, then it assumes the machine host-
ing B has failed, and A contacts the master to report the
machine failure. The master broadcasts the machine failure
to all workers, which update their lists of failed machines
accordingly. Since all workers use the same hash ring, from
then on all events with the same key will be routed to worker
C instead of the (now failed) worker B. The event that
failed to reach B is lost (and logged as lost) rather than
sent through the event-dispatch process again.

In Muppet, since events typically flow through the system
at high speed, and since a worker is frequently contacted, in
most cases the above solution allows us to detect worker
failures and recover from them in a timely fashion, and is
preferable to the MapReduce solution of having the master
pinging the workers periodically to detect worker failure.

When an updater fails, whatever changes that it has made
to the slates and that have not yet been flushed to the key-
value store are lost. Furthermore, all events in its queue are

also lost. Currently, low latency is far more important for
most of our Muppet applications, while failing to process
some tweets, for example, is acceptable. Hence, we do not
attempt to recover the lost events in the queue. Instead, we
focus on quickly detecting the failed worker and redirecting
events to another worker, thereby minimizing our latency
and losses. Developing a replay capability to recover the
lost events is a subject of future work.

Queue Overflow: When a worker A tries to place an
event into the queue of a worker B, if the queue of B is full
(i.e., its size has reached a pre-specified limit), B will decline
to accept the event. In this case A has to invoke a queue
overflow mechanism.

The queue overflow mechanism can take one of several
actions. First, it can decide to drop the incoming events
(until B can accept events again). The dropped events
can be logged for later processing and debugging. Sec-
ond, it can direct the incoming events to a specified “over-
flow” stream whose recipients can process such events. The
overflow stream can be connected to map and update func-
tions that implement “slightly degraded” service, for exam-
ple by substituting expensive operations in the main work-
flow pipeline with approximate operations that are cheaper
to execute. Finally, the overflow mechanism can also decide
to slow down the pace of passing events among the mappers
and updaters (as discussed in more detail in Section 5).

4.4 Reading Slates
As Muppet runs a MapUpdate application, the applica-

tion maintains live state in its updaters’ slates. This state
is often the value of the application’s computation, and is
often read by higher-level applications. To make this pos-
sible, Muppet provides a small HTTP server on each node
for slate fetches.

The URI of a slate fetch includes the name of the up-
dater and the key of the slate to uniquely identify a slate.
The fetch retrieves the slate from Muppet’s slate cache (on
the appropriate machine, forwarding the request internally
if necessary) rather than from the durable key-value store
to ensure an up-to-date reply.

4.5 Developing Muppet 2.0
So far we have described Muppet 1.0, which was developed

at Kosmix. In Muppet 1.0, each worker was implemented
as two tightly coupled processes: a Perl process called a
conductor, and a process running the JVM called a task
processor here.

The conductor is in charge of all “Muppet logistics,” in-
cluding retrieving the next event from its queue of incoming
events; sending the event (together with a slate, if necessary)
to the JVM task processor; receiving the output events (and
a modified slate if applicable) from the JVM task processor;
hashing the output events to their appropriate destinations;
enqueueing the events at their destination workers’ queues,
and so on. The JVM task processor’s sole task is to run
the map or update code to process the event passed to it
by the conductor, then send the output events back to the
conductor.

As described, Muppet 1.0 suffered from several limita-
tions:

• Recall that a machine typically runs a set of workers.
Each worker on the machine must load its own copy

1819



of the map or update code so that it can run its JVM
task processor. These duplicate copies of code waste
memory.

• Passing data between processes (e.g., passing events
back and forth between the conductor and the task
processor) can be computationally wasteful.

• Each worker on a machine maintains its own slate (in
the conductor). Thus, the slate cache on the machine
is technically the set of disparate slates maintained by
the workers. Maintaining the slates disparately can
result in a significant waste of memory. For example,
suppose we determine that we need to cache a work-
ing set of 100 popular slates on a single machine to
run update events efficiently. If we run a single up-
dater on the machine, we could reasonably assign the
update function a slate cache of 100 slates to capture
this working set. By contrast, if we run five updaters
on the same machine, Muppet divides the slates of the
update function among them. Because the keys of the
popular slates may be hashed unevenly among them
(for example, one of the five updaters might get 25
of the popular slates, not 20), we have to configure
a larger slate cache per updater (e.g., 25 slates each
and not 20) to cache the same working set (yielding a
larger total slate cache of 125 slates instead of 100).

• Finally, it is difficult to fully utilize the number of
cores on the machine, because the number of work-
ers per machine is typically set based on the nature
of the application, not based on the number of cores.
In a machine with numerous CPU cores, it may be
impractical to run as many workers as cores for every
map and reduce function to utilize all cores regardless
of which function has the most events to process at
any moment. As the number of cores and the num-
ber of map and reduce functions grow, the number of
workers would grow, amplifying the memory problems
described above. The more numerous processes can
also require more context switching to execute when
events distribute widely among them.

Muppet 2.0, developed at WalmartLabs mostly in Java
and Scala, addresses these limitations. In Muppet 2.0, we
start up many threads of execution in a dedicated thread
pool per machine. Each thread in this thread pool is now
a worker, capable of running any map or update function.
It is helpful to specify as large a number of threads as the
parallelization of the application code allows. For example,
the number may be as large as the number of CPU cores
available on a machine, or smaller if the application’s op-
erators depend on a bottleneck resource that has a lower
parallel-scaling limit.

Besides the worker threads, each machine also runs a
thread to provide background I/O to the durable key-value
store (so that writes to the store can proceed without block-
ing map and update calls), and a thread pool to provide
HTTP service for slate reads and basic status information
(such as the event count of the largest event queues).

Map and update functions are then written so that they
can be run in multiple threads concurrently. To conserve
memory, each map and update function is constructed only
once and shared by all threads. All slates are now kept

in a single “central” slate cache, not scattered in multiple
conductor processes as in Muppet 1.0.

To process events, Muppet 2.0 maintains a queue per
worker thread. When an event arrives at the machine, it
is hashed by event key and destination updater function
into a primary event queue and a secondary event queue. If
the thread for either queue is already processing this event
key for this update function, then the event is placed in the
corresponding queue. Otherwise, the event is placed in the
primary queue unless the secondary queue is significantly
shorter, in which case the event is placed in the secondary
queue instead. Each thread then takes the next event from
its queue; executes the map or update function, depending
on what the event requires; updates the appropriate slates if
necessary; sends out the output events; takes the next event
from its queue; and so on.

The dispatch of an incoming event to only one of two
target queues, instead of to potentially any of the queues,
brings several benefits. First, an incoming event locks no
more than two queues to be dispatched to one of them re-
gardless of the number of threads running map and update
operations, reducing queue-lock contention when receiving
incoming events.

Second, events of the same key for the same update func-
tion do not scatter across many threads on the same ma-
chine, reducing contention for the same slate among threads
when those events get executed.

Finally, should an incoming event’s primary queue be al-
ready heavily loaded by some other events, the incoming
event can be placed on a secondary queue to better balance
event load across available cores.

Thus, unlike Muppet 1.0, in which only one worker can
process events of the same key for a particular update func-
tion, ensuring no slate contention, in Muppet 2.0, two work-
ers can vie for the same slate, but this contention is limited
to at most two workers per slate.

A fundamental reason why Muppet 2.0 allows slate con-
tention is that if only one worker can process events of the
same key, that worker can become a hotspot: if it is over-
loaded by a huge number of events with key k1 already in its
queue, a long time may pass before the worker gets around
to processing events with some key k2. Hence, Muppet 2.0
allows events with key k2 to be placed into the queue of a
second worker, if the queue of the first worker is already too
long. This helps relieve the hotspot at the first worker, but
can introduce slate contention when both the first worker
and the second worker get events with key k2 enqueued. In
practice we have found that if the contention for any slate
is limited to just two workers, it does not cause noticeable
problems for our current applications.

As described, Muppet 2.0 addresses the above four limita-
tions of Muppet 1.0. Each worker is now a thread that can
execute any map or update function, not a pair of tightly
coupled processes that can execute a single map or update
function. All threads share the same map and update code,
thus eliminating the waste of memory to hold redundant
copies of the code. Passing data between processes is elimi-
nated within each machine. All slates are now kept in a cen-
tral pool, eliminating potentially underutilized slate-cache
memory. Finally, the number of worker threads are set to
maximize the potential for parallel execution on multicore
machines.

1820



5. MUPPET EXPERIENCE

AND ONGOING EXTENSIONS
The first version of Muppet went into production at Kos-

mix in mid-2010. Since then we have improved Muppet
several times, as discussed above, and used it extensively
at Kosmix and later at WalmartLabs. At Kosmix it was
used to process the Twitter Firehose and Foursquare-checkin
stream. By early 2011 Muppet processed over 100 millions
tweets and 1.5 million checkins per day. It kept over 30 mil-
lions slates of user profiles and 4 million slates of venue pro-
files. It ran over a cluster of tens of machines, and achieved
a latency of under 2 seconds. Muppet was used to power
TweetBeat, the flagship product of Kosmix, and now Shopy-
Cat, a popular Facebook product recently released by Wal-
martLabs. About 16 developers (about half of the developer
workforce at Kosmix) have used Muppet to quickly write
about 15 applications, a number of whom have worked with
Muppet applications at Kosmix and selected it again for new
applications at WalmartLabs. By June 2012, our Cassandra
store has grown to maintain over 2 billion slates for various
production Muppet applications. We now discuss our expe-
rience running Muppet and several ongoing extensions.

Limiting Slate Sizes: We observe that slates can grow
quite large and updaters that maintain large slates can run
more slowly due to the overhead. Consequently, we encour-
age developers to keep individual slates small, e.g., many
kilobytes rather than many megabytes.

Changing the Number of Machines on the Fly: Mup-
pet runs on a cluster of machines. Currently the number of
machines in the cluster cannot be changed on the fly. To add
more machines, for example, we have to restart the Muppet
application. While this setting has proven sufficient for our
applications so far, one can imagine scenarios where it is
desirable to be able to change the number of machines on
the fly.

Hence, we are currently exploring this option. The main
challenge is how to redistribute the workload. For example,
suppose that a machine A is currently overwhelmed with
processing events with key k. So we want to add a new
machine B to help with this. Should we move some of the
events with key k to machine B? If so, both machines A and
B will be processing events with key k. The slate for these
events would have to be replicated at both A and B; and
coordinating the two slate copies will be highly difficult.

Handling Hotspots: The distribution of event keys can
be strongly skewed (e.g., follow a Zipfian distribution). Con-
sequently, updaters can receive widely varying loads, and an
updater that receives an overwhelming load can potentially
become a hotspot.

We already discussed one way to handle such hot spots:
sending events with the same key to up to two threads in-
stead of one (see Section 4.5). This approach allows Muppet
to make progress on processing events with the same key on
a secondary thread if the first thread is currently bogged
down with other events, and at the same time reduce the
workload of the first thread. This load distribution comes
at the cost of some contention between the two threads for
ownership of the same slate.

Another way to handle hotspots is to exploit the fact that
numerous update computations are associative and commu-
tative, to distribute the workload of an overwhelmed up-

dater among a set of updaters. The following simple exam-
ple illustrates this idea:

Example 6. Consider again the application that counts
Foursquare checkins per retailer in Example 4. In this ap-
plication, a map function examines each checkin to emit the
name of a retailer (if any), such as JCPenney, Best Buy,
or Walmart. An update function then counts the emitted
location events per retailer.

Let U be the updater that counts Best Buy events. Sup-
pose, hypothetically, that a lot of people are checking into
Best Buy: U can quickly become a hotspot as it becomes
overwhelmed by the number of arriving Best Buy events.
To address this problem, observe that counting Best Buy
events is associative and commutative. Hence, instead of
using just a single updater U , we can use a set of updaters,
each of which counts just a subset of Best Buy events. We
can then sum the counts of these updaters.

Specifically, we can modify the map function to replace the
single key “Best Buy” with two keys “Best Buy1” and “Best
Buy2,” say. In effect, the map function partitions the set of
events with key “Best Buy” into two subsets with keys “Best
Buy1” and “Best Buy2,” respectively. Next, we modify the
update function so that it regularly emits the counts of “Best
Buy1” events and “Best Buy2” events, respectively, as new
events under the key “Best Buy.” Finally, we write a new
update function that receives the events of key “Best Buy”
to determine the total counts of “Best Buy1” events and
“Best Buy2” events. ✷

We have discussed how to redistribute the workload of a
hotspot updater among a set of updaters. Yet another way
to handle hotspots is to slow down the pace of events in
the workflow. In our settings, some Muppet applications
do not need near-real-time latencies (e.g., in milliseconds
or seconds). Examples include applications that do not
use time-related or time-sensitive data (and simply tap the
MapUpdate framework as a convenient way to implement
a workflow for machine-scalable distributed computation)
and applications that run on legacy tweets. In such cases,
accepting longer latencies for stable operation is often ac-
ceptable. Consequently, when Muppet detects a hotspot, it
can slow down the pace at which it consumes events from
its input streams (e.g., the Twitter Firehose) to allow until
the hotspot updater has a chance to catch up. We call this
approach source throttling.

It is also possible to throttle the pace of events at any later

point in the workflow, not just at the input streams, but if
not done very carefully, doing so can quickly introduce dead-
locks. To see why, consider an updater U that emits events
into its input streams (thus introducing a loop). Suppose
U consumes an event e and is about to emit 10,000 events
back into U ’s input stream, and emitting 10,000 events all
at once would overwhelm U . We may be tempted to slow
down the pace at which events are emitted: Muppet could
emit 10,000 events one by one, in an incremental fashion,
as soon as U is ready to consume its next event. Unfor-
tunately, this approach would introduce a deadlock. After
emitting the first event of the 10,000 output events, Mup-
pet would be waiting for U to finish processing the current
event (i.e., event e), before emitting the second event of the
10,000 output events. However, U cannot finish processing
event e until we have emitted all 10,000 output events.

1821



Note that the above scenario does not arise in the case of
slowing down the pace of consuming events from the appli-
cation’s input streams (e.g., the Twitter Firehose), because
we assume that no mappers nor updaters can emit events
into such streams.

Placing Mappers and Updaters: Currently the place-
ment of mappers and updaters in Muppet is in effect decided
by the hashing function that hashes event keys to machines
and workers. We are exploring how to place mappers and
updaters so that they are close to their data in a way that
reduces network traffic.

This problem is nontrivial in part because Muppet may
not know in advance which event streams will have the most
data. For example, let us revisit the application that counts
Foursquare checkins per retailer in Example 4. In it, a map
function emits an event to an update function each time a
checkin for a recognized retailer arrives. Suppose, for sim-
plicity, that checkins arrive at a particular machine m, and
a mapper there runs the map function. Which keys (and
corresponding slates) for the update function should go to
machine m, and which ones should be assigned elsewhere? If
the most popular retailers’ slates reside on machine m, then
the smallest number of events from the mapper have to tra-
verse the network (and pay the corresponding latency costs
or consume the corresponding network utilization) to reach
an updater. Unfortunately, such a determination depends
on the contents of the checkin events themselves, so Mup-
pet cannot determine this assignment in advance. Muppet
cannot even know whether perturbations in retailer popu-
larity are transient spikes to absorb or changing trends that
require a different slate-to-machine assignment. Finally, ap-
plications typically have multiple update functions that may
be directly or indirectly connected by event flows, so moving
slates to optimize network traffic into one update function
may affect the network usage of events from it to a subse-
quent update function. (Key and slate assignments that re-
duce network traffic for the input or output of one functions
may increase the network traffic coming in or out another
function.)

Bulk Reading of Slates: In many applications at Kosmix
and WalmartLabs users want to make periodic dumps of
many slates. In such cases, repeated HTTP slate fetches can
be expensive (in network round trips) or difficult (because
the query agent must know all the slate keys in advance to
enumerate the slate requests).

To address this problem, we have advised bulk-dump users
to log the relevant slate data that they wish to process in
bulk later as a part of the applications’ update functions.
This approach allows users to write less than the entire
slate to minimize the dumped data, and provides steady-
state write behavior that avoids sudden bulk I/O, which can
affect the performance of the machines supporting the appli-
cation. These writes can be streamed using a library of the
user’s choice into HDFS, for example, if further processing
in Hadoop is desired.

Another approach users can take is to request large-volume
row reads from the durable key-value store itself. Users that
choose to do so must know how slates are written to the key-
value store (an implementation detail of Muppet, described
in Section 4.2) to extract the slates back from the appropri-
ate key-value-store queries.

In the future, we would like to revisit the scenario of how

users use MapUpdate-application slates for later Hadoop
processing so that we can simplify and automate this in-
tegrated use case better.

Managing Side Effects: We have found that applications
sometimes wish to act on events in ways outside of updat-
ing slates or publishing events. Such actions fall outside the
scope of the current MapUpdate framework itself, and we
currently leave it to the application to carry out such actions
in its own map and update functions. For example, appli-
cations may want to log relevant slate data for later bulk
processing, as discussed above. As another example, de-
velopers often instrument map and update functions to log
certain data for later debugging. As yet another example,
an application may wish to have a map or update function
make some HTTP request to a server when a criterion is
satisfied, so that the outside server can be notified when the
criterion is satisfied rather than requiring the server to sam-
ple or probe slates repeatedly to make the determination.

While leaving it to the applications to carry out such side-
effect actions, we do advise developers to be careful of subtle
effects of such actions on the Muppet application. For ex-
ample, asking mappers and updaters to write to a common
log can introduce lock contention for the common logger,
thereby dramatically slowing down the workers.

6. RELATED WORK
We have compared our work with MapReduce throughout

this paper.
A number of recent works (such as MapReduce Online [7],

Nova [18], work by Li et al. [14], and Incoop [4]) have ex-
tended MapReduce to perform incremental batch process-
ing. MapReduce Online pipelines data between the map
and reduce operators by calling reduce with partial data
for early results. To retain the MapReduce programming
model, it runs reduce periodically (as a minimum interval of
time passes or a batch of new data arrives), retaining some
of its blocking behavior. Nova determines and provides the
deltas between increments directly to workflows written for
Pig, but its authors warn that this approach is more suit-
able for large batches than small increments because of the
overhead costs in underlying systems. Systems such as In-
coop apply memoization to the results of partial computa-
tions so that subsequent computations can efficiently reuse
results for inputs that were unchanged by additional incre-
mental data. The prototype one-pass analytics platform de-
scribed in [14] optimizes MapReduce jobs by (among other
improvements) exploiting main memory to pre-combine map
outputs by key (when the MapReduce job has an optional
combine function defined); this optimization is most nearly
analogous to how Muppet exploits main memory to cache
slates (indexed by updater operator and event key), minus
any event-serialization considerations for a slate.

By contrast, MapUpdate uses slates to summarize past
data, so an updater can immediately process each event
(and change the slate) as the event comes in. This approach
allows us to stream events through the system with millisec-
ond to second latencies.

Many streaming query-processing systems, such as con-
tinuous query systems, have been developed in the database
community [10] and in industry (e.g., Aurora [21], commer-
cialized as StreamBase Systems, and Borealis [1]; Cloud-
Scale [6]; STREAM [3]; SPADE [11] for System S, com-

1822



mercialized as IBM InfoSphere Streams; and Telegraph [5],
commercialized into Truviso). Our work differs from these
systems in two important aspects. First, these systems of-
ten employ declarative query languages over structured data
with known schema. In contrast, we make few assumptions
about the structure of the data, and adopt a MapReduce
style in which applications are decomposed into a proce-
dural workflow of custom code. Second, much work has
focused on optimizing query processing over data streams
in a relational-database style (e.g., how to factor opera-
tions out of multiple queries, and push operators to opti-
mal locations for query execution). In contrast, we focus
on how to efficiently execute relatively arbitrary Maps and
Updates over a cluster of machines to achieve low latency
and high scalability. Like Flux [19], Muppet strives to dis-
tribute the input load of each update operator across mul-
tiple machines, but Muppet does not currently change its
load partitioning dynamically except when a machine fails.
Unlike Spark Streaming [20], which offers APIs for Scala to
enable developers to write programs modeling streams as
a sequence of small batch computations, Muppet offers a
simple MapReduce-style framework, MapUpdate, to enable
developers to write continuously updating streaming appli-
cations.

Other avenues of low-latency-application development are
available, including specialized stream-processing chips such
as GPUs programmed with OpenCL [13] or CUDA [17]),
and high-bandwidth remote-memory access (RDMA) over
specialized high-speed interconnects (such as InfiniBand).
Unlike computations on GPUs, which often perform well
computing similar operations in parallel on a vector of val-
ues, MapUpdate is designed to allow arbitrary computation
on general-purpose CPU cores for each input event, includ-
ing data-dependent recursion or event publication. Unlike
RDMA, which allows an application to span multiple ma-
chines using a shared-memory model implemented on high-
speed networks, Muppet is designed to run on commodity
hardware, allowing us to build large slate caches using the
union of main memory on multiple machines linked by inex-
pensive gigabit Ethernet networks. The MapUpdate model,
in particular, allows us to explicitly shard application state
across machines to sidestep an explicit need for fast shared
memory between them.

Our work is also similar in spirit to recently proposed
distributed stream-processing systems, such as S4 [16] and
Storm [15]. These systems, however, leave it to the applica-
tion to implement and manage its own state. Our experience
suggests that this is highly nontrivial in many cases. By
contrast, Muppet transparently manages application stor-
age, which are slates in our case, and makes these slates
accessible as the continually-updated computed values of a
streaming application.

Indeed, the explicit and first-class-citizen management of
application memory in the form of slates is a key distinguish-
ing aspect of our work, in sharp contrast to current work in
incremental MapReduce, RDBMS-style stream processing,
and industrial distributed stream processing systems.

7. CONCLUSION
We have motivated the need for a MapReduce-style frame-

work for processing fast data. We have described such a
framework, MapUpdate, and our implementation of Ma-
pUpdate at Kosmix and WalmartLabs, Muppet. Through-

out the discussion we have tried to motivate and highlight
the differences between MapReduce and MapUpdate. The
key differences include the need to redefine applications and
user-defined functions to operate over streams; the need for
slates, continuously updated data structures that “summa-
rize” the events seen so far; the need for workflows of Maps
and Updates; the importance of minimizing latency and how
that influences design decisions on distributing and passing
events and handling failures; and finally the need to persist
slates, as the semantics of the application dictates.

We have also reported on our experience using Muppet
at Kosmix and WalmartLabs. Overall, we conclude that a
MapReduce-style framework to process fast data, such as
implemented in Muppet, is feasible and highly promising,
in terms of allowing developers to quickly write fast-data
applications, and to achieve low latency and high scalability
in those applications. Learning from our experience, we are
currently deploying Muppet to more applications and are
extending it in several important directions.

8. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. S.
Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. Zdonik. The Design of the Borealis Stream
Processing Engine. In CIDR, pages 277–289, 2005.

[2] AWS Case Study: foursquare. http://aws.amazon.
com/solutions/case-studies/foursquare/.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and Issues in Data Stream
Systems. In PODS, pages 1–16, 2002.

[4] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar,
and R. Pasquin. Incoop: MapReduce for Incremental
Computations. In SOCC, pages 7:1–7:14, 2011.

[5] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. Madden, V. Raman, F. Reiss,
and M. Shah. TelegraphCQ: Continuous Dataflow
Processing for an Uncertain World. In CIDR, pages
269–280, 2003.

[6] CloudScale. http://www.cloudscale.com/.

[7] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. MapReduce Online. In
NSDI, pages 313–327, 2010.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI, pages
137–150, 2004.

[9] Facebook, Inc. Amendment No. 8 to Form S-1
Registration Statement Under The Securities Act of
1933. http://sec.gov/Archives/edgar/data/
1326801/000119312512235588/d287954ds1a.htm,
2012.

[10] M. Garofalakis, J. Gehrke, and R. Rastogi, editors.
Data Stream Management. Springer, 2009.

[11] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and
M. Doo. SPADE: The System S Declarative Stream
Processing Engine. In SIGMOD, pages 1123–1134,
2008.

[12] Going Social. http://www.economist.com/
events-conferences/americas/information-2012?

bclid=1682222098001&bctid=1684182003001. An

1823



interview with Twitter CEO Dick Costolo at Ideas
Economy: Information.

[13] K. Group. OpenCL. http://www.khronos.org/opencl/.

[14] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. J.
Shenoy. A Platform for Scalable One-Pass Analytics
using MapReduce. In SIGMOD, pages 985–996, 2011.

[15] Storm. https://github.com/nathanmarz/storm.

[16] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed Stream Computing Platform. In ICDMW,
pages 170–177, 2010.

[17] J. Nickolls, I. Buck, M. Garland, and K. Skadron.
Scalable Parallel Programming with CUDA. Queue,
6(2):40–53, 2008.

[18] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han,
M. Larsson, A. Neumann, V. B. N. Rao,
V. Sankarasubramanian, S. Seth, C. Tian,
T. ZiCornell, and X. Wang. Nova: Continuous
Pig/Hadoop Workflows. In SIGMOD, pages
1081–1090, 2011.

[19] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and
M. J. Franklin. Flux: An Adaptive Partitioning
Operator for Continuous Query Systems. In ICDE,
pages 25–36, 2003.

[20] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica.
Discretized Streams: An Efficient and Fault-Tolerant
Model for Stream Processing on Large Clusters. In
HotCloud, 2012.

[21] S. Zdonik, M. Stonebraker, M. Cherniack,
U. Çetintemel, M. Balazinska, and H. Balakrishnan.
The Aurora and Medusa Projects. IEEE Data

Engineering Bulletin, 26(1):3–10, 2003.

APPENDIX

A. EXAMPLE MAP AND UPDATE
The map and update functions are expressed in JVM lan-

guages for Muppet as application-provided class implemen-
tations of Java interfaces called Mapper and Updater. Im-
plementations of the interfaces are constructed using two
parameters, a configuration object for the application and a
string for the name of the map or update function being in-
stantiated. (Because the same Mapper or Updater code can
be reused as different map and update functions through-
out an application, each map and update function in the
application is identified by unique name.)

Figures 3 and 4 (cf. M1 and U1 in Example 4, respec-
tively) show an example of how these interfaces could be
used in Java.

package com.walmartlabs.example;

import java.nio.charset.Charset;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.kosmix.muppet.application.Config;
import com.kosmix.muppet.application.binary.Mapper;
import com.kosmix.muppet.application.binary.PerformerUtilities;

public class RetailerMapper implements Mapper {
private final Logger logger =

LoggerFactory.getLogger(RetailerMapper.class);
private final Charset charset = Charset.forName("UTF-8");

private final Pattern walmart =
Pattern.compile("(?i)\\s*wal.*mart.*");

private final Pattern samsclub =
Pattern.compile("(?i)\\s*sam.*s\\s*club\\s*");

private String name;

public RetailerMapper(Config config, String n) { name = n; }

@Override
public String getName() { return name; }

@Override
public void map(PerformerUtilities submitter,

String stream, byte[] key, byte[] event)
{

String checkin = new String(event, charset);
String venue = getVenue(checkin);

String retailer = null;
if (walmart.matcher(venue).matches()) {

retailer = "Walmart";
} else if (samsclub.matcher(venue).matches()) {

retailer = "Sam’s Club";
}

if (retailer != null) {
try {

submitter.publish("S_2",
retailer.getBytes(charset), event);

} catch(Exception e) {
logger.error("Could not publish event: "+

e.toString());
}

}
}

private String getVenue(String checkin) {
// actual checkin parsing would go here
return "name of venue";

}
}

Figure 3: An example Java-language Mapper

1824



package com.walmartlabs.example;

import java.nio.charset.Charset;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.kosmix.muppet.application.Config;
import com.kosmix.muppet.application.binary.PerformerUtilities;
import com.kosmix.muppet.application.binary.Updater;

public class Counter implements Updater {
private final Logger logger =

LoggerFactory.getLogger(Counter.class);
private final Charset charset = Charset.forName("UTF-8");

private String name;

public Counter(Config config, String n) { name = n; }

@Override
public String getName() { return name; }

@Override
public void update(PerformerUtilities submitter,

String stream, byte[] key, byte[] event,
byte[] slate)

{
int count = 0;
try {

if (slate != null)
count =

Integer.parseInt(new String(slate, charset));
} catch (NumberFormatException e) {

count = 0;
}
++count;
byte[] updatedSlate =

Integer.toString(count).getBytes(charset);
submitter.replaceSlate(updatedSlate);

}
}

Figure 4: An example Java-language Updater

1825


