
Only Aggressive Elephants are Fast Elephants

Jens Dittrich, JorgeArnulfo QuianéRuiz, Stefan Richter,

Stefan Schuh, Alekh Jindal, Jörg Schad

Information Systems Group
Saarland University

http://infosys.cs.unisaarland.de

ABSTRACT

Yellow elephants are slow. A major reason is that they consume

their inputs entirely before responding to an elephant rider’s orders.

Some clever riders have trained their yellow elephants to only con-

sume parts of the inputs before responding. However, the teaching

time to make an elephant do that is high. So high that the teaching

lessons often do not pay off. We take a different approach. We

make elephants aggressive; only this will make them very fast.

We propose HAIL (Hadoop Aggressive Indexing Library), an

enhancement of HDFS and Hadoop MapReduce that dramatically

improves runtimes of several classes of MapReduce jobs. HAIL

changes the upload pipeline of HDFS in order to create different

clustered indexes on each data block replica. An interesting feature

of HAIL is that we typically create a win-win situation: we improve

both data upload to HDFS and the runtime of the actual Hadoop

MapReduce job. In terms of data upload, HAIL improves over

HDFS by up to 60% with the default replication factor of three.

In terms of query execution, we demonstrate that HAIL runs up

to 68x faster than Hadoop. In our experiments, we use six clusters

including physical and EC2 clusters of up to 100 nodes. A series of

scalability experiments also demonstrates the superiority of HAIL.

1. INTRODUCTION
MapReduce has become the de facto standard for large scale data

processing in many enterprises. It is used for developing novel so-

lutions on massive datasets such as web analytics, relational data

analytics, machine learning, data mining, and real-time analyt-

ics [16]. In particular, log processing emerges as an important type

of data analysis commonly done with MapReduce [3, 24, 13]. Typ-

ically, users (as well as developers) want to analyze these web logs

in an exploratory way. In fact, Facebook and Twitter use Hadoop

MapReduce (the most popular MapReduce open source implemen-

tation) to analyze the huge amounts of web logs generated every

day by their users [32, 15, 23].

Let us see through the eyes of a representative analyst, say Bob,

who wants to analyze a large web log. The web log contains differ-

ent fields that may serve as filter conditions for Bob like visitDate,

adRevenue, sourceIP and so on. Assume Bob is interested in all

sourceIPs with a visitDate from 2011. Thus, Bob writes a MapRe-

duce program to filter out exactly those records and discard all oth-

ers. Bob is using Hadoop. It will scan the entire input dataset from

disk to filter out the qualifying records. This takes a while. Af-

ter inspecting the result set Bob detects a series of strange requests

from sourceIP 134.96.223.160. Therefore, he decides to modify his

MapReduce job to show all requests from the entire input dataset

having that sourceIP. Bob is using Hadoop. This takes a while.

Eventually, Bob decides to modify his MapReduce job again to

only return log records having a particular adRevenue. Bob is us-

ing Hadoop. Yes, it takes a while.

In summary, Bob uses a sequence of different filter conditions,

each one triggering a new MapReduce job. He is strolling around.

He is not exactly sure what he is looking for. The whole endeavor

feels like going shopping without a shopping list: “let’s see what

I am going to encounter on the way”. This kind of use-case illus-

trates an exploratory usage of Hadoop MapReduce. It is a major

use-case of Hadoop MapReduce [3, 13, 26].

This use-case has one major problem: slow query runtimes. The

time to execute a Hadoop MapReduce job based on a scan may be

very high: it is dominated by the I/O for reading all input data [27,

20]. While waiting for his MapReduce job to complete, Bob has

enough time to pick a coffee (or two). Every time Bob modifies the

MapReduce job, Bob will be able to pick up even more coffee. This

increases his caffeine levels to scary heights, kills his productivity,

and makes his boss unhappy.

Now, assume the fortunate case that Bob is the type of smart user

who thinks a bit about his data before running expensive MapRe-

duce jobs. He has read all the recent VLDB papers (including [8,

12, 22, 25, 17, 19]) on Hadoop MapReduce and made his way

through a number of DB textbooks. He remembers a sentence from

one of his professors saying “full-table-scans are bad; indexes are

good”1. He finds a paper that shows how to create a so-called trojan

index [12], i.e. an index that may be used with Hadoop MapReduce

and yet does not modify the underlying Hadoop MapReduce and

HDFS engines. Therefore, Bob decides to create a trojan index

on sourceIP before running his MapReduce jobs. However, using

trojan indexes raises two other problems:

(1.) Expensive index creation. The time to create the trojan index

on sourceIP (or any other attribute) is very long, actually it is much

longer than running a scan-based query on all his data in the first

place. If Bob’s MapReduce jobs use that index only a few times,

the index creation costs will never be amortized. So, why would

Bob create such an expensive index in the first place?

1The professor is aware that for some situations the opposite is true.

1591

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 11
Copyright 2012 VLDB Endowment 2150-8097/12/07... $ 10.00.

(2.) Which attribute to index? Even if Bob amortizes index cre-

ation costs by running a dozen queries filtering data on sourceIP:

the trojan index will only help for that particular attribute. How-

ever, the trojan index will not help when searching for other at-

tributes, e.g. visitDate or adRevenue. So, which attribute should

Bob use to create the index?

One day in autumn 2011, Bob reads about another idea [21]

where some researchers looked at ways to improve vertical par-

titioning in Hadoop. That work considered physical data layouts,

e.g. row, column, PAX [2], and vertical layouts. A major prob-

lem with those existing layouts was that they are good for one par-

ticular type of workload (e.g. requesting many attributes), but bad

for others (e.g. requesting only few attributes). Would there be a

neat way to use multiple data layouts at the same time? The re-

searchers of [21] realized that HDFS keeps three (or more) copies

of all data anyway. These copies were originally kept for failover

only. Hence, all copies used exactly the same physical data layout.

Therefore they decided to change HDFS to store each copy in a dif-

ferent vertical layout. The different layouts were computed by an

algorithm. As all layout transformation was done per HDFS block,

the failover properties of HDFS and Hadoop MapReduce were not

affected at all. At the same time, I/O times improved.

Bob thinks that this looks interesting. However, would that solve

his indexing problem?

This is where the story begins.

1.1 Idea
We propose HAIL (Hadoop Aggressive Indexing Library): an

enhancement of HDFS and Hadoop MapReduce. HAIL keeps the

existing physical replicas of an HDFS block in different sort orders

and with different clustered indexes. Hence, for a default replica-

tion factor of three at least three different sort orders and indexes

are available for MapReduce job processing. Thus, the likelihood

to find a suitable index increases and hence the runtime for a work-

load improves. We modify the upload pipeline of HDFS to already

create those indexes while uploading data to HDFS. Therefore, no

additional read of the data is required. No additional MapReduce

jobs are required to create those indexes. The decision on the in-

dexes to create can either be done by a user through a configuration

file or by a physical design algorithm. HAIL typically improves

both the upload times (even if index creation is included) and the

MapReduce job execution times. Therefore, HAIL provides a win-

win situation over Hadoop MapReduce and even over Hadoop++.

It is worth noting that even if in this paper we illustrate the ben-

efits of HAIL via a web log data processing example, many more

data analytics applications (such as OLAP and scientific applica-

tions) can benefit from using HAIL. However, discussing each of

these applications is beyond the scope of this paper.

1.2 Research Challenges and Questions
We face a number of key challenges:

(1.) How can we change HDFS to create indexes already when up-

loading files from outside into HDFS? How can we support differ-

ent sort orders and indexes for different replicas? Which changes

to the HDFS upload pipeline need to be done to make this efficient?

What happens to the involved checksum mechanism of HDFS?

How can we teach the HDFS namenode to distinguish the differ-

ent replicas and keep track of the different indexes?

(2.) How can we change Hadoop MapReduce to fully exploit the

different sort orders and indexes at query time? How much do we

need to change existing MapReduce jobs? How can we change

Hadoop MapReduce to schedule tasks to replicas having the ap-

propriate index? What happens to Hadoop MapReduce failover?

How will Hadoop MapReduce change from the user’s perspective?

1.3 Contributions and Answers
(1.) We show how to effectively piggy-back sorting and index cre-

ation on the existing HDFS upload pipeline. In fact, the HAIL

upload pipeline is so effective when compared to HDFS that the

additional overhead for sorting and index creation is hardly notice-

able in the overall process. HAIL even allows us to create more

than three indexes at reasonable costs. Our approach also benefits

from the fact that Hadoop is only used for appends: there are no

updates. Therefore, once a block is full it will never be changed

again. We will first give an overview of our system and its benefits

(Section 2) and then explain the differences between the HAIL and

Hadoop upload pipeline in more detail (Section 3).

(2.) We show how to effectively change the Hadoop MapReduce

pipeline to exploit HAIL indexes. We do this in a minimally in-

vasive manner, only changing the RecordReader and a few UDFs.

Moreover, we show how to allow users (or query optimizer) to eas-

ily exploit our indexes (Section 4).

(3.) We present an extensive experimental comparison of HAIL

with Hadoop and Hadoop++ [12]. We use six different clusters

including physical and virtual EC2 clusters of up to 100 nodes. A

series of scalability experiments (#indexes, #replicas, cluster scale-

up, cluster scale-out, and failover) with different datasets demon-

strates the superiority of HAIL (Section 6.3).

(4.) We show that the Hadoop MapReduce framework incurs a

very high scheduling overhead for short running jobs. As a result,

these jobs cannot fully benefit from using clustered indexes (Sec-

tion 6.4). HAIL reduces this overhead significantly using a novel

splitting policy to partition data at query time. This splitting policy

together with clustered indexes allows HAIL to run up to 68x faster

than Hadoop (Section 6.5).

2. OVERVIEW
We start with an overview contrasting HAIL with the current

HDFS and Hadoop MapReduce. At the same time we introduce the

terminology used in the reminder of this paper. For a more detailed

discussion on differences of HAIL to related work see Section 5.

Let’s return to Bob again. How can Bob analyze his log file using

the different systems?

2.1 Hadoop and HDFS
With the existing HDFS and Hadoop MapReduce stack, Bob

starts by uploading his log file to HDFS using the HDFS client.

HDFS then partitions the file into logical HDFS blocks using a con-

stant block size (the HDFS default is 64MB). Each HDFS block

is then physically stored three times (assuming the default repli-

cation factor). Each physical copy of a block is called a replica.

Each replica will sit on a different datanode. Therefore, at least

two datanode failures may be survived by HDFS. Note that HDFS

keeps information on the different replicas for an HDFS block in a

central namenode directory.

After uploading his log file to HDFS, Bob may run an ac-

tual MapReduce job. Bob invokes Hadoop MapReduce through

a Hadoop MapReduce JobClient, which sends his MapReduce job

to a central node termed JobTracker. The MapReduce job consists

of several tasks. A task is executed on a subset of the input file,

typically an HDFS block2. The JobTracker assigns each task to a

2Actually it is a split. The difference does not matter here. We will
get back to this in Section 4.2.

1592

different TaskTracker — which typically runs on the same machine

as an HDFS datanode. Each datanode will then read its subset of

the input file, i.e. a set of HDFS blocks, and feed that data into the

MapReduce processing pipeline which usually consists of a Map,

Shuffle, and a Reduce Phase (see [10, 12, 11] for a detailed descrip-

tion). As soon as all results have been written to HDFS, Bob will

be informed that the result sets are available. The execution time of

the MapReduce job is heavily influenced by the size of the initial

input because Hadoop MapReduce reads the input file(s) entirely

for each MapReduce job.

2.2 HAIL
In HAIL Bob analyzes his log file as follows. He starts by up-

loading his log file to HAIL using the HAIL client. In contrast to

the HDFS client, the HAIL client analyzes the input data for each

HDFS block, converts each HDFS block directly to binary PAX

layout [2] and sends it to three datanodes. Then all datanodes sort

the data contained in that block in parallel using a different sort

order — as manually specified by Bob in a configuration file or

as computed by a physical design algorithm. All sorting and index

creation happens in main memory. This is feasible as the block size

is typically between 64MB (default) and 1GB. This easily fits into

the main memory of most machines. In addition, in HAIL, each

datanode creates a different clustered index for each data block and

stores it with the sorted data.

After uploading his log file to HAIL, Bob may run his MapRe-

duce job exploiting the indexes created by HAIL. As before, Bob

invokes Hadoop MapReduce through a JobClient which sends his

MapReduce job to the JobTracker. However, his MapReduce job

is slightly changed to exploit the indexes available on the different

replicas in HAIL. For instance, assume that an HDFS block has

three replicas with clustered indexes on visitDate, adRevenue, and

sourceIP. Depending on the index required, Hadoop MapReduce

running on top of HAIL will use the replica with the suitable index.

If Bob has a MapReduce job filtering on visitDate, HAIL will use

the replica having the clustered index on visitDate. If Bob is fil-

tering on sourceIP, HAIL will use the replica having the clustered

index on sourceIP and so on. To provide failover and load balanc-

ing, HAIL may sometimes fall back to using a replica without a

useful index for some of the blocks, i.e. it will fall back to stan-

dard Hadoop scanning. However — even factoring this in — Bob’s

queries will on average run much faster.

2.3 HAIL Benefits
(1.) HAIL often improves both upload and query times. The up-

load is dramatically faster than Hadoop++ and often faster (or only

slightly slower) than with the standard Hadoop even though we

(i) convert the input file into binary PAX, (ii) create a series of dif-

ferent sort orders, and (iii) create multiple clustered indexes. From

the user-side this provides a win-win situation: there is no notice-

able punishment for upload. For querying, the user can only win:

if our indexes cannot help, we will fall back to standard Hadoop

scanning. If the indexes can help, query runtimes will improve.

Why don’t we have high costs at upload time? We basically exploit

the unused CPU ticks which are not used by standard HDFS. As

the standard HDFS upload pipeline is I/O-bound, the effort for our

sorting and index creation in the HAIL upload pipeline is hardly

noticeable. In addition, as we already parse data to binary while

uploading, we often benefit from a smaller binary representation

triggering less network and disk I/O.

(2.) We do not change the failover properties of Hadoop.

Why is failover not affected? All data stays on the same logical

HDFS block. We just change the physical representation of each

replica of an HDFS block. Therefore, from each replica we may

recover the logical HDFS block.

(3.) HAIL works with existing MapReduce jobs incurring only

minimal changes to those jobs.

Why does this work? We allow Bob to annotate his existing jobs

with selections and projections. Those annotations are then con-

sidered by HAIL to pick the right index. Like that, for Bob the

changes to his MapReduce jobs are minimal.

3. THE HAIL UPLOAD PIPELINE
Let’s take a look at the HAIL upload process in more detail. As

you will see, there are some surprising challenges to tackle when

changing HDFS to create different indexes per replica. Figure 1

shows the data flow when Bob is uploading a file to HAIL.

3.1 Data Transformation
In HDFS, for each block, the client contacts the namenode to

obtain the list of datanodes that should store the block replicas.

Then, the client sends the original block to the first datanode, which

forwards this to the second datanode and so on.

In HAIL, the HAIL client preprocesses the file based on content

to consider end of lines 1 in Figure 1. We parse the contents into

rows by searching for end of line symbols and never split a row

between two blocks. This is in contrast to standard HDFS which

splits a file into HDFS blocks after a constant number of bytes.

For each block the HAIL client parses each row according to the

schema specified by the user3. If HAIL encounters a row that does

not match the given schema (i.e., a bad record), it separates this

record into a special part of the data block. HAIL then converts all

data blocks to a binary PAX representation 2 . The HAIL client

also collects metadata information from each data block (such as

the data schema) and creates a block header (Block Metadata) for

each data block 2 .

If we piggy-backed naively on this existing HDFS upload

pipeline by first storing the original block data as done in Hadoop

and then converting it to binary PAX layout in a second step, we

would have to re-read and then re-write each block to create the in-

dex. This would trigger one extra write and one extra read for each

replica, e.g. for an input file of a 100GB we would have to pay

600GB extra I/O on the cluster. In fact, one of our first prototypes

followed the naive approach; this lead to very long upload times.

In contrast, HAIL has an important benefit: we do not have to pay

any of that extra I/O. However, to achieve this dramatic improve-

ment, we have to make non-trivial changes in the standard Hadoop

upload pipeline.

3.2 Upload Pipeline
To understand the HAIL upload pipeline, we first have to analyze

the existing HDFS pipeline in more detail.

In HDFS, while uploading a block, the data is further partitioned

into chunks of constant size 512B. Chunks are collected into pack-

ets. A packet is a sequence of chunks plus a checksum for each of

the chunks. In addition some metadata is kept. In total a packet has

a size of up to 64KB. Immediately before sending the data over the

network, each HDFS block is converted to a sequence of packets.

On disk, HDFS keeps, for each replica, a separate file containing

checksums for all of its chunks. Hence, for each replica two files

are created on local disk: one file with the actual data and one file

with its checksums. These checksums are reused by HDFS when-

ever data is send over the network, e.g. if the data is read by a

3Alternatively, HAIL may suggest an appropriate schema to users.

1593

Network

Network

0110100010111
0101000110110

0101010101010
0011010001100

Block Metadata

0101001010111
0110010111010

C

B

A

PAX Block

0110100010111
0101000110110

0101010101010
0011010001100

Block Metadata

0101001010111
0110010111010

C

B

A

PAX Block

Network

...

forward
PCK

2

0110100010111
0101000110110

0101010101010
0011010001100

Block Metadata

0101001010111
0110010111010

C

B

A

PAX Block

PCK

1

PCK

2

PCK

1

append

HAIL Client Datanode DN
1

upload

2

4

5
6

7

check

acknowledge

reassemble

PCK

2

PCK

1

reassemble

8

HAIL Block

1000101010001
0111101100110

1011000110110
1000101110101

Block Metadata

0000100100011
0011110111111

C

B

A

Index Metadata

Index

0010
1110

HAIL Block

0001001100011
0111100111111

1001110111011
1010101101010

Block Metadata

0010011101101
1101001101101

C

B

A

Index Metadata

IndexA C

ACK 1

3 2 1

ACK 2

3 2 1

ACK 1

3

ACK 1

3 2 1

ACK 2

3 2forward

1

Bob

10

15

13

9

buildA CB

1

preprocess

build

12

HDFS Namenode

Block directory HAIL Replica directory

14

registerregister

ACK 2

3

convert

11

notify

get location

3

OK

Datanode DN
3

Figure 1: The HAIL upload pipeline

remote datanode. The HDFS client (CL) sends the first packet of

the block to the first datanode in the upload pipeline (DN1). DN1

splits the packet into two parts: the first contains the actual chunk

data, the second contains the checksums for those chunks. Then

DN1 flushes the chunk data to a file on local disk. The checksums

are flushed to an extra file. In parallel DN1 forwards the packet

to DN2 which splits and flushes the data like DN1 and in turn for-

wards the packet to DN3 which splits and flushes the data as well.

Yet, only DN3 verifies the checksum for each chunk. If the recom-

puted checksums for each chunk of a packet matches the received

checksums, DN3 acknowledges the packet back to DN2, which ac-

knowledges back to DN1. Finally, DN1 acknowledges back to CL.

Each datanode also appends its ID to the ACK. Like that only one

of the datanodes (the last in the chain, here DN3 as the replication

factor is three) has to verify the checksums. DN2 believes DN3,

DN1 believes DN2, and CL believes DN1.

If any CL or DNi receives ACKs in the wrong order, the upload

has failed. The idea of sending multiple packets from CL is to

hide the roundtrip latencies of the individual packets. Creating this

chain of ACKs also has the benefit that CL only receives a single

ACK for each packet and not three. Notice that HDFS provides

this checksum mechanism on top of the existing TCP/IP checksum

mechanism (which has weaker correctness guarantees than HDFS).

In HAIL, in order to reuse as much of the existing HDFS pipeline

and yet to make this efficient, we need to perform the following

changes. As before the HAIL client gets the list of datanodes to

use for this block from the HDFS namenode 3 . But rather than

sending the original input, CL creates the PAX block, cuts it into

packets 4 and sends it to DN1 5 . Whenever a datanode DN1–DN3

receives a packet, it does neither flush its data nor its checksums

to disk. Still DN1 and DN2 immediately forward the packet to the

next datanode as before 8 . DN3 will verify the checksum of

the chunks for the received PAX block 9 and acknowledge the

packet back to DN2
10 . This means the semantics of an ACK for a

packet of a block are changed from “packet received, validated, and

flushed” to “packet received and validated”. We do neither flush the

chunks nor its checksums to disk as we first have to sort the entire

block according to the desired sort key. We assemble the block

from all packets in main memory 6 . This is realistic in practice for

most modern servers, as main memories tend to be beyond 10GB

for any modern server. Typically, the size of a block is between

64MB (default) and 1GB. This means that for the default size we

could keep about 150 blocks in main memory at the same time.

In parallel to forwarding and reassembling packets, each datan-

ode sorts the data, creates indexes, and forms a HAIL Block 7 , (see

Section 3.5). As part of this process, each datanode also adds In-

dex Metadata information to each data block in order to specify the

index it created for this block. Each datanode (e.g., DN1) typically

sorts the data inside a block in a different sort order. It is worth

noting that having different sort orders across replicas does not im-

pact fault-tolerance as all data is reorganized inside the same block

only — data is not reorganized across blocks. As soon as a datan-

ode has completed sorting and creating its index, it will recompute

checksums for each chunk of a block. Notice that checksums will

differ on each replica, as different sort orders and indexes are used.

Hence, each datanode has to compute its own checksums. Then

each datanode flushes the chunks and newly computed checksums

to two separate files on local disk as before. For DN3, once all

chunks and checksums have been flushed to disk, DN3 will ac-

knowledge the last packet of the block back to DN2
10 . After that

DN3 will inform the HDFS namenode about its new replica includ-

ing its HAIL block size, the created indexes, and the sort order 11

(see Section 3.3). Datanodes DN2 and DN1 append their ID to each

ACK 12 . Then they forward each ACK back in the chain 13 . DN2

and DN1 will forward the last ACK of the block only if all chunks

and checksums have been flushed to their disks. After that DN2

and DN1 individually inform the HDFS namenode 14 . The HAIL

client also checks that all ACKs arrive in the right order 15 .

To keep track of the different sort orders it is important to change

the HDFS namenode as well. We discuss how the namenode main-

tains the sort order for each data block replica in Section 3.3.

3.3 HDFS Namenode Extensions
In HDFS, the central namenode keeps a directory Dir block of

blocks, i.e. a mapping blockID 7→ Set Of DataNodes. This direc-

tory is required by any operation retrieving blocks from HDFS.

Hadoop MapReduce exploits Dir block for scheduling. In

Hadoop MapReduce whenever a block needs to be assigned to a

worker in the map phase, the scheduler looks up Dir block in the

HDFS namenode to retrieve the list of datanodes having a replica

of that block. Then the Hadoop MapReduce scheduler will try to

schedule map tasks on those datanodes if possible. Unfortunately,

the HDFS namenode does not differentiate the replicas any further

w.r.t. their physical layouts. HDFS was simply not designed for

this. From the point of view of the namenode all replicas are byte-

equivalent and have the same size.

1594

In HAIL, we need to allow Hadoop MapReduce to change the

scheduling process to schedule map tasks close to replicas having

a suitable index — otherwise Hadoop MapReduce would pick in-

dexes randomly. Hence we have to enrich the HDFS namenode to

keep additional information about the available indexes. We do this

by keeping an additional directory Dir rep mapping (blockID,

datanode) 7→ HAILBlockReplicaInfo. An instance of HAILBlock-

ReplicaInfo contains detailed information about the types of avail-

able indexes for a replica, i.e. indexing key, index type, size, start

offsets, and so on. As before, Hadoop MapReduce looks up

Dir block to retrieve the list of datanodes having a replica for

a given block. However, in addition, HAIL looks up the main

memory Dir rep to obtain the detailed HAILBlockReplicaInfo

for each replica, i.e. one main memory lookup for each replica.

HAILBlockReplicaInfo is then exploited by HAIL to change the

scheduling strategy of Hadoop MapReduce (we will discuss this in

detail in Section 4).

3.4 Which Attributes to Index?
Bob is happy doing his web-log analysis using HAIL. The web

logs contain just a few attributes and he configures HAIL manually

to simply create indexes on all of them. But what if Bob’s dataset

contains more attributes than the number of replicas? Picking the

right indexes is not easy in such cases. Over the years, databases re-

searchers have proposed several algorithms [9, 4, 6, 1] to select the

indexes to create, given a query workload. However, these index

selection algorithms do not take into account default data replica-

tion (which is the case for HDFS).

Our recently proposed Trojan Layouts algorithm [21] overcomes

this problem for vertical partitioning, i.e. it respects data block

replication in HDFS and creates different physical vertical layouts

for the different replicas. However, the Trojan Layouts algorithm

is strictly limited to vertical partitioning. In contrast, for HAIL it

would be interesting to have an algorithm that can propose different

clustered indexes for different replicas. We believe that [21] can be

extended to compute these indexes. Actually we believe that it can

even be extended to compute both vertical partitions and indexes

for different replicas simultaneously. However, this research leads

way beyond the scope of this paper and we will investigate it as

part of future work.

3.5 Indexing Pipeline
Why Clustered Indexes? An interesting question is why we focus

on clustered indexes? We require an index structure that is cheap

to create in main memory, cheap to write to disk, and cheap to

query from disk. We tried a number of indexes in the beginning of

the project — including coarse-granular indexes and unclustered

indexes. After some experimentation we quickly discovered that

sorting and index creation in main memory is so fast that techniques

like partial or coarse-granular sorting do not pay off for HAIL.

Whether you pay three or two seconds for sorting and indexing

per block during upload is hardly noticeable in the overall upload

process of HDFS. In addition, a major problem with unclustered

indexes is that they are only competitive for very selective queries

as they may trigger considerable random I/O for non-selective in-

dex traversals. In contrast, clustered indexes do not have that prob-

lem. Whatever the selectivity, we will read the clustered index and

scan the qualifying blocks. Hence, even for very low selectivities

the only overhead over a scan is the initial index node traversal

— which is very cheap in comparison to the scan and especially

in comparison to an unclustered index traversal. Moreover, as un-

clustered indexes are dense by definition, they require considerably

more space on disk and require more write I/O than a sparse clus-

tered index. Thus, using unclustered indexes would severely affect

upload times. Yet an interesting direction for future work would be

to extend HAIL to support additional indexes which might boost

the performance of our system even further including bitmap in-

dexes for low cardinality domains or inverted lists for untyped or

bad records, i.e. records not obeying a specific schema.

Column Index Structure. All sorting and index creation happens

in main memory; this is a realistic assumption as the HDFS block

size is small (typically below 1GB). Hence, on each data node sev-

eral blocks may be indexed in parallel entirely in main memory.

Let’s assume we want to create a clustered index on sourceIP. We

first sort the data using sourceIP as the sort key. We need to pre-

serve the sort order among all columns in the PAX-block. There-

fore, we build a sort index to reorganize all other columns as ex-

plained above. After that we create a sparse clustered B+-tree,

which has a single large root directory. It logically divides the data

of attribute sourceIP into partitions consisting of 1,024 values and

has child pointers to their start offsets (see Figure 2). All but the

first child pointer are implicitly defined as all leaves are contigu-

ous on disk and can be reached by simply multiplying the leaf size

with the leaf ID. The structure has some similarities with a CSB+-

tree [29], but our index is different in that we keep all leaves con-

tiguous on disk rather than in main memory. In addition, we keep a

single directory since index lookups are dominated by disk seeks.

4210771033 3032 3033 70807075... ... 9020 ...9073

42 1077 907370803033

1024 1024 1024 1024 ≤ 1024

Index Array
(Main Memory)

Contiguous
Data Column

(Disk)

3

1

Query: 1248 < @0 < 2496

2explicit implicit

Figure 2: HAIL data column index

Why not a multi-level tree? For instance, assume that the input

dataset has 10 attributes of a fixed-size 4B each, i.e. each row occu-

pies 40B. Hence each 256MB block stores 6.7 million rows. Each

attribute occupies 25.6MB. If we assume a page size of 4KB this

is 25.6MB/4KB=6,554 pages per attribute. Therefore the root node

has 6,554 entries of 4B each, i.e. in total 25.6KB. This represents

an overhead of 0.01% over the data block size4. Let’s assume a

realistic hard disk transfer rate of 100MB/sec. Hence the root node

may be read within ∼0.3ms plus the initial seek of 5ms, i.e. 5.3ms

total read time. In contrast, a two-level index access would trigger

an extra seek, i.e. in total 5+5=10ms seek costs plus data transfer.

How big does the HDFS block have to be to justify a multilevel

index? We compute the maximum index size as 100MB/sec/5ms

= 500KB. This index corresponds to 125,000 index entries, hence

512MB per attribute and therefore 5GB HDFS block size. Only for

larger HDFS blocks a multi-level index would pay off. We did not

implement multi-level trees as block sizes are usually below 1GB.

In contrast to a standard B+-tree range query we already determine

the first and the last partition of the data to read in main memory 1

& 2 to avoid post-filtering the entire range 3 .

Accessing Variable-size Attributes. Accessing variable-size at-

tributes is different from accessing fixed-size attributes like sour-

ceIP in that we cannot simply calculate the offsets of partitions any-

more. In general, we store variable-sized attributes as a sequence

of zero-terminated values. Whenever we index a block, we also

create additional lists of offsets for all variable-size attributes and

4The overhead of an unclustered index would be about 10% to 20%
over the data block size.

1595

store them in front of their corresponding data. Notice that we only

need to store one offset for each logical partition. Hence we only

store every n-th offset, where n is the number of values in each

partition. With this minor modification our index supports tuple

reconstruction for variable-size attributes. For instance, assume a

query filtering on fixed-size sourceIP and projecting to variable-

length URL. The index on sourceIP returns a number of qualifying

rowIDs. For these rowIDs we have to retrieve their variable-length

URL values. We simply do this by looking up the offsets to the next

partition in main memory. Assume we need to retrieve the URL for

rowID=43,425 and each partition has 1,024 entries. Then we scan

the partition ⌊43,425/1,024⌋ = 42 entirely from disk. The over-

heads for scanning that partition over the initial random I/O are

small. Then, in main memory we post-filter the partition to retrieve

the URL for rowID 43,425.

4. THE HAIL QUERY PIPELINE
We now focus on how Bob builds his MapReduce jobs and the

way HAIL executes MapReduce jobs. From Bob’s perspective, we

will see in Section 4.1 that Bob has to write his MapReduce jobs

(almost) as before and run them exactly as when using Hadoop

MapReduce. From the system perspective, we first analyze the

standard Hadoop MapReduce pipeline in Section 4.2 and then see

how HAIL executes MapReduce jobs in Section 4.3. We will see

that HAIL requires only small changes in the Hadoop MapRe-

duce framework, which makes HAIL easy to integrate into newer

Hadoop versions. Figure 3 shows the query pipeline when Bob runs

a MapReduce job on HAIL.

4.1 Bob’s Perspective
In Hadoop MapReduce, Bob writes a MapReduce job, including

a job configuration class, a map function, and a reduce function.

In HAIL, the MapReduce job remains the same (see 1 and 2 in

Figure 3), but with three tiny changes:

(1) Bob specifies the HailInputFormat (which uses

a HailRecordReader
5 internally) in the main class of

the MapReduce job. By doing this, Bob enables his MapReduce

job to read HAIL Blocks (see Section 3.2).

(2) Bob annotates his map function to specify the selection predi-

cate and the projected attributes required by his MapReduce job6.

For example, assume that Bob wants to write a MapReduce job that

performs the following SQL query (example from Introduction):

SELECT sourceIP

FROM UserVisits WHERE visitDate

BETWEEN ‘1999-01-01’ AND ‘2000-01-01’;

To execute this query in HAIL, Bob adds to his map function

a HailQuery annotation as follows:

@HailQuery(filter="@3 between(1999-01-01,

2000-01-01)", projection={@1})

void map(Text key, Text v) { ... }

Where the literal @3 in the filter value and the literal @1

in the projection value denote the attribute position in the

UserVisits records. In this example the third attribute (i.e. @3)

is visitDate and the first attribute (i.e. @1) is sourceIP. By

annotating his map function as mentioned above, Bob indicates that

he wants to receive in the map function only the projected attribute

values of those tuples qualifying the specified selection predicate.

In case Bob does not specify filter predicates, MapReduce will per-

form a full scan on the HAIL Blocks as in standard Hadoop. At

5Which is also called itemize UDF in Hadoop++ [12].
6Alternatively, HAIL allows Bob to specify the selection predicate
and the projected attributes in the job configuration class.

query time, if the HailQuery annotation is set, HAIL checks (us-

ing the Index Metadata of a data block) whether an index exists on

the filter attribute. Using such an index allows us to speed up the

execution of a map task. HAIL also uses the Block Metadata to de-

termine the schema of a data block. This allows HAIL to read the

attributes specified in the filter and projection parameters correctly.

(3) Bob uses a HailRecord object as input value in the map

function. This allows Bob to directly read the projected attributes

without splitting the record into attributes as he would do it in

the standard Hadoop MapReduce. For example, using standard

Hadoop MapReduce Bob would write the following map function

to perform the above SQL query:

MAP FUNCTION FOR HADOOP MAPREDUCE (PSEUDO-CODE):

void map(Text key, Text v) {

String[] attributes = v.toString().split(",");

if (DateUtils.isBetween(attributes[2],

"1999-01-01", "2000-01-01"))

output(attributes[0], null);

}

Using HAIL Bob writes the following map function:

MAP FUNCTION FOR HAIL:

void map(Text key, HailRecord v) {

output(v.getInt(1), null);

}

Notice that Bob now does not have to filter out the incoming

records, because this is automatically handled by HAIL via the

HailQuery annotation (as mentioned earlier). This new map

function as well as the annotation is illustrated in Figure 3.

4.2 Hadoop Perspective
In Hadoop MapReduce, when Bob submits a MapReduce job a

JobClient instance is created. The main goal of the JobClient in-

stance is to copy all the resources needed to run the MapReduce

job (e.g. metadata and job class files). But also, the JobClient

fetches all the block metadata (BlockLocation[]) of the in-

put dataset. Then, the JobClient logically breaks the input into

smaller pieces called input splits (split phase in Figure 3) using the

InputFormat-UDF. By default, the JobClient computes input

splits such that each input split maps to a distinct HDFS block. No-

tice that an input split defines the input data of a map task. On the

other hand, a data block is a horizontal partition of a dataset stored

in HDFS (see Section 3.1 for details on how HDFS stores datasets).

For scheduling purposes, the JobClient retrieves for each input split

all datanode locations having a replica of that block. This is done

by calling the getHosts method of each BlockLocation. For

instance in Figure 3, block42 is stored on datanodes DN3, DN5, and

DN7, and hence these datanodes are the split locations for split42.

After this split phase, the JobClient submits the job to the Job-

Tracker with a set of splits to process 3 . Among other operations,

the JobTracker creates a map task for each input split. Then, for

each map task, the JobTracker decides on which computing node

to schedule the map task, using the split locations 4 . This decision

is based on data-locality and availability [10]. After this, the Job-

Tracker allocates the map task to the TaskTracker (which performs

map and reduce tasks) running on that computing node 5 .

Only then, the map task can start processing its input split. The

map task uses a RecordReader UDF in order to read its input data

blocki from the closest datanode 6 . Interestingly, it is the local

HDFS client running on the node where the map task is running

that decides from which datanode a map task will read its input

— and not the Hadoop MapReduce scheduler. This is done when

the RecordReader asks for the input stream pointing to blocki. It

is worth noting that the HDFS client chooses a datanode from the

1596

MapReduce PipelineHadoop MapReduce Pipeline

HDFS
HDFS

Task TrackerJob TrackerJob Client

Split Phase Scheduler Map Phase

for each split in splits {

 allocate split to closest

 DataNode storing block

}

Record Reader:

- Perform Index Scan

- Perform Post-Filtering

- for each Record invoke

 map(HailRecord)

send

splits[]

allocate

Map Task

chose
computing

Node

read
block42

DN3 DN4 DN5 DN6 DN7 DNnDN2

...
C BA

block42
block42 block42

1

2

3

4 6

5

7
store

output

...

@HailQuery(

filter="@3 between(1999-01-01, 2000-01-01)",

projection={@1})

void map(Text k, HailRecord v) {

 output(v.getInt(1), null);

}

...

MapReduce Job

Main Class

map(...)

reduce(...)

write
Job

run
Job

Bob's Perspective System's Perspective

i

i

i

HAIL Annotation

Bob

DN1

for each block in input {

 locations =

 block .getHostWithIndex(@3);

 splitBuilder.add(locations,

 block);

}

splits[] = splitBuilder.result;

i

i

i

Figure 3: The HAIL query pipeline (with default Hadoop scheduling)

set of all datanodes storing a replica of block42 (via the getHosts

method) rather than from the locations given by the input split. This

means that a map task might eventually end up reading its input

data from a remote node even though it is available locally. Once

the input stream is opened, the RecordReader breaks block42 into

records and makes a call to the map function for each record. As-

suming that the MapReduce job consists of a map phase only, the

map task then writes its output back to HDFS 7 . See [12, 33, 11]

for more details on the Hadoop MapReduce execution pipeline.

4.3 HAIL Perspective
In HAIL, it is crucial to be non-intrusive to the standard Hadoop

execution pipeline so that users run MapReduce jobs exactly as be-

fore. However, supporting per-replica indexes in an efficient way

and without significant changes in the standard execution pipeline

is challenging for several reasons. First, the JobClient cannot sim-

ply create input splits based only on the default block size as each

block replica has a different size (because of indexes). Second, the

JobTracker can no longer schedule map tasks based on data-locality

and nodes availability only. The JobTracker now has to consider the

existing indexes on each block replica. Third, the RecordReader

has to perform either index access or full scan of data blocks with-

out any interaction with users. Fourth, the HDFS client cannot any-

more open an input stream to a given block based on data-locality

and nodes availability only (it has to consider existing indexes as

well). HAIL overcomes these issues by mainly providing two

UDFs: the HailInputFormat and the HailRecordReader.

Using UDFs, we allow HAIL to be easy to integrate into newer

versions of Hadoop MapReduce.

In contrast to the Hadoop MapReduce InputFormat, the

HailInputFormat uses a more elaborate splitting policy, called

HailSplitting. The overall idea of HailSplitting is to

map one input split to several data blocks whenever a MapReduce

job performs an index scan over its input. This allows HAIL to

reduce the number of map tasks to process and hence to reduce

the aggregated cost of initializing and finalizing map tasks. The

reader might think that using several blocks per input split may

significantly impact failover. However, this is not true since jobs

performing an index scan are relatively short running jobs (in the

order of a few seconds). Therefore, the probability that one node

fails in this period of time is very low [28]. In case a node fails in

this period of time, HAIL simply reschedules the failed map tasks,

which results only in a few seconds overhead anyways. Optionally,

HAIL could apply the checkpointing techniques proposed in [28]

in order to improve failover. We will study these interesting aspects

in a future work. Notice that for those MapReduce jobs perform-

ing a full scan, HailSplitting still uses the default Hadoop

splitting, i.e., it creates an input split for each data block. Hence,

failover for these jobs is not changed at all.

To improve data locality, HailSplitting first clusters the

blocks of the input of an incoming MapReduce job by locality.

As a result of this process, HailSplitting produces as many

collections of blocks as there are datanodes storing at least one

block of the given input. Then, for each collection of blocks,

HailSplitting creates as many input splits as map slots each

TaskTracker has. HAIL creates a map task per resulting input split

and schedules these map tasks to the replicas having the matching

index. For example in Figure 3, DN5 has the matching clustered

index to process split42, hence the JobTracker schedules map task

for split42 to DN5 (or close to it). The reader might think that per-

formance could be negatively impacted in case that data locality is

not achieved for several map tasks. However, fetching small parts

of blocks through the network (which is the case when using in-

dex scan) is negligible [21]. Moreover, one can significantly im-

prove data locality by simply using an adequate scheduling policy

(e.g. the Delay Scheduler [34]). If no relevant index exists, HAIL

scheduling falls back to standard Hadoop scheduling by optimizing

data locality only.

The HailRecordReader is responsible for retrieving the

records that satisfy the selection predicate of MapReduce jobs

(as illustrated in the MapReduce Pipeline of Figure 3). Those

records are then passed to the map function. For example in

Bob’s query of Section 4.1, we need to find all records having

visitDate between(1999-01-01, 2000-01-01). To

do so, we first open an input stream to the block having the re-

quired index. For this, HAIL instructs the local HDFS Client to

use the newly introduced getHostsWithIndex method of each

BlockLocation so as to choose the closest datanode with the

required index. Once that input stream has been opened, we use

the information about selection predicates and attribute projections

from the HailQuery annotation or from the job configuration file.

When performing an index-scan, we read the index entirely into

main memory (typically a few KB) to perform an index lookup.

This also implies reading the qualifying block parts from disk into

main memory and post-filtering records (see Section 3.5). Then, we

reconstruct the projected attributes of qualifying tuples from PAX

1597

to row layout. In case that no projection was specified by users,

we then reconstruct all attributes. Finally, we make a call to the

map function for each qualifying tuple. For bad records (see Sec-

tion 3.1), HAIL passes them directly to the map function, which in

turn has to deal with them (just like in standard Hadoop MapRe-

duce). For this, the HailRecord provides a flag to indicate bad

records. If full scan is used, the HailRecordReader still ap-

plies the selection predicate and performs tuple reconstruction.

5. RELATED WORK
The closest work to HAIL is Hadoop++ [12], which creates

a logical block-level index. However, Hadoop++ can only cre-

ate this so-called trojan index per logical HDFS block rather than

per physical replica as in HAIL. In addition, index creation in

Hadoop++ is very expensive, as after uploading the input file to

HDFS, Hadoop++ uses an additional MapReduce job to convert

the data to binary format and to create the trojan index. We collect

considerable evidence on this in the experiments.

In another related work [15], researchers from Twitter proposed

a full text indexing technique for improving Hadoop performance.

However, this indexing technique is not well suited for analytical

and exploratory queries as considered in this paper. This is because

full text indexes are only suitable for highly selective queries as al-

ready concluded in [15]. Nevertheless, we ran micro-benchmarks

for upload and index creation times. We observed that [15] re-

quired 2, 088 seconds to only create a full-text index on 20GB,

while HAIL takes 1, 600 seconds to both upload and index 200GB.

Recently, CoHadoop [13] improved the co-partitioning features

of Hadoop++. However, CoHadoop did not improve any of the

indexing features of Hadoop++, which is the focus of HAIL. Man-

imal [5] proposed to analyze MapReduce jobs to determine filter

conditions. Then, MapReduce jobs are rewritten to match an ex-

isting index. Again, Manimal only considers logical indexes on

the block level and not per replica indexes. Manimal’s MapReduce

job code analysis could be combined with our system. Cloud in-

dexing [7] creates a P2P overlay on a network of virtual machines,

which is very similar to established P2P systems like Chord [31].

The main idea is to setup an extra indexing service on top of the un-

derlying cloud data service adding extra resources like main mem-

ory. That is not what we propose: our idea is to integrate index-

ing with an existing service: in our case HDFS. In terms of data

layouts we used PAX [2], which was originally invented for cache-

conscious processing but adapted by a number of other people in

the context of MapReduce [8, 14]. In our previous work [21], we

showed how to improve PAX by computing different layouts on

the different replicas. However, in that work we did not consider

indexing. This paper fills this gap.

To the best of our knowledge, this is the first work that aims at

pushing indexing to the extreme at low index creation cost.

6. EXPERIMENTS
Let’s get back to Bob again and his initial question: will HAIL

solve his indexing problem efficiently? Overall, we need to answer

the following questions experimentally:

(1.) What is the performance of HAIL at upload time? What is

the impact of HAIL indexing in the upload pipeline? How many

indexes can we create in the time the standard HDFS uploads the

data? How does hardware performance affect HAIL upload on a

cluster of nodes? How well does HAIL scale-out on large clusters?

(We answer these questions in Section 6.3).

(2.) What is the performance of HAIL at query time? How much

do query sequences benefit from HAIL? How much do Recor-

dReader times benefit from HAIL? How does query selectivity af-

fect HAIL? How do failing nodes affect HAIL? (We answer these

questions in Section 6.4). How does HailSplitting improve

end-to-end job runtimes? (We answer this question in Section 6.5).

6.1 Hardware and Systems
Hardware. We use six different clusters. One is a physical 10-node

cluster. Each node has one 2.66GHz Quad Core Xeon processor

running 64-bit platform Linux openSuse 11.1 OS, 4x4GB of main

memory, 6x750GB SATA hard disks, and three Gigabit network

cards. Our physical cluster has the advantage that the amount of

runtime variance is limited [30]. Yet, to fully understand the scale-

up properties of HAIL, we use three different EC2 clusters, each

having 10 nodes. For each of these three clusters, we use different

node types (see Section 6.3.3). Finally, to understand how well

HAIL scales-out, we also consider two more EC2 clusters: one

with 50 nodes and one with 100 nodes (see Section 6.3.4). We

report the average runtime of three trials for all experiments.

Systems. We compared the following systems: (1) Hadoop,

(2) Hadoop++ as described in [12], and (3) HAIL as described

in this paper. For HAIL, we disable the HAIL splitting policy

(HailSplitting) in Section 6.4 in order to measure the ben-

efits of using this policy in Section 6.5. All three systems are based

on Hadoop 0.20.203 and are compiled and run using Java 7. All

systems were configured to use the default block size of 64MB if

not mentioned otherwise.

6.2 Datasets and Queries
Datasets. For our benchmarks we use two different datasets. First,

we use the UserVisits table as described in [27]. This dataset

nicely matches Bob’s Use Case. We generated 20GB of UserVisits

data per node using the data generator proposed by [27]. Second,

we additionally use a Synthetic dataset consisting of 19 integer

attributes in order to understand the effects of selectivity. It is worth

noting that this Synthetic dataset is similar to scientific datasets,

where all or most of the attributes are integer/float attributes (e.g.,

the SDSS dataset). For this dataset, we generated 13GB per node.

Queries. For the UserVisits dataset, we consider the following

queries as Bob’s workload:

Bob-Q1 (selectivity: 3.1 x 10−2)

SELECT sourceIP FROM UserVisits WHERE visitDate

BETWEEN ‘1999-01-01’ AND ‘2000-01-01’;

Bob-Q2 (selectivity: 3.2 x 10−8)

SELECT searchWord, duration, adRevenue

FROM UserVisits WHERE sourceIP=‘172.101.11.46’;

Bob-Q3 (selectivity: 6 x 10−9)

SELECT searchWord, duration, adRevenue

FROM UserVisits WHERE sourceIP=‘172.101.11.46’ AND

visitDate=‘1992-12-22’;

Bob-Q4 (selectivity: 1.7 x 10−2)

SELECT searchWord, duration, adRevenue

FROM UserVisits

WHERE adRevenue>=1 AND adRevenue<=10;

Additionally, we use a variation of query Bob-Q4 to see how well

HAIL performs on queries with low selectivities:

Bob-Q5 (selectivity: 2.04 x 10−1)

SELECT searchWord, duration, adRevenue

FROM UserVisits

WHERE adRevenue>=1 AND adRevenue<=100;

1598

0

3250

6500

9750

13000

0 1 2 3

1600155415291427

11212

7290

1398

U
p

lo
a

d
 t
im

e
 [
s
e

c
]

Number of created indexes

Hadoop Hadoop++ HAIL

(a) Upload time for UserVisits

0

1700

3400

5100

6800

0 1 2 3

717712704671

5766

3472

1132

U
p

lo
a

d
 t
im

e
 [
s
e

c
]

Number of created indexes

Hadoop Hadoop++ HAIL

(b) Upload time for Synthetic

0

1075

2150

3225

4300

3 5 6 7 10

1700

12541089956
717

3710

2712

2256

1773

1132

U
p

lo
a

d
 t
im

e
 [
s
e

c
]

Number of created replicas

Hadoop HAIL

(default)

Hadoop upload time with 3 replicas

(c) Varying replication for Synthetic

Figure 4: Upload times when varying the number of created indexes (a)&(b) and the number of data block replicas (c)

Table 1: Synthetic queries.
Query #Projected Attributes Selectivity

Syn-Q1a 19 0.10
Syn-Q1b 9 0.10
Syn-Q1c 1 0.10
Syn-Q2a 19 0.01
Syn-Q2b 9 0.01
Syn-Q2c 1 0.01

For the Synthetic dataset, we use the queries in Table 1.

Notice that for Synthetic all queries use the same attribute

for filtering. Hence for this dataset HAIL cannot benefit from its

different indexes: it creates three different indexes, yet only one of

them will be used by these queries.

6.3 Data Loading
We strongly believe that upload time is a crucial aspect for

users while adopting data-intensive systems. This is because most

users (such as Bob or scientists) want to start analyzing their data

early [18]. In fact, low startup costs are one of the big advantages of

standard Hadoop over RDBMSs. Here, we thus exhaustively study

the performance of HAIL when uploading datasets.

6.3.1 Varying the Number of Indexes

We first measure the impact in performance when creating in-

dexes. For this, we scale the number of indexes to create when

uploading the UserVisits and the Synthetic datasets. For

HAIL, we vary the number of indexes from 0 to 3 and for

Hadoop++ from 0 to 1 (this is because Hadoop++ cannot create

more than one index). Notice that we only report numbers for 0
indexes for standard Hadoop as it cannot create any indexes.

Figure 4(a) shows the results for the UserVisits dataset. We

observe that HAIL has a negligible upload overhead of ∼2% over

standard Hadoop. Then, when HAIL creates one index per replica

the overhead still remains very low (at most ∼14%). On the other

hand, we observe that HAIL improves over Hadoop++ by a factor

of 5.1 when creating no index and by a factor of 7.3 when creating

one index. This is because Hadoop++ has to run two expensive

MapReduce jobs for creating one index. For HAIL, we observe that

for two and three indexes the upload costs increase only slightly.

Figure 4(b) illustrates the results for the Synthetic dataset.

We observe that HAIL significantly outperforms Hadoop++ again

by a factor of 5.2 when creating no index and by a factor of

8.2 when creating one index. On the other hand, we now ob-

serve that HAIL outperforms Hadoop by a factor of 1.6 even when

creating three indexes. This is because the Synthetic dataset

is well suited for binary representation, i.e., in contrast to the

UserVisits dataset, HAIL can significantly reduce the initial

dataset size. This allows HAIL to outperform Hadoop even when

creating one, two, or three indexes.

For the remaining upload experiments, we discard Hadoop++

as we clearly saw in this section that it does not upload datasets

efficiently. Therefore, we focus on HAIL using Hadoop as baseline.

6.3.2 Varying the Replication Factor

We now analyze how well HAIL performs when increasing the

number of replicas. In particular, we aim at finding out how many

indexes HAIL can create for a given dataset in the same time

standard Hadoop needs to upload the same dataset with the de-

fault replication factor of three and creating no indexes. To do

this, we upload the Synthetic dataset with different replication

factors. In this experiment, HAIL creates as many clustered in-

dexes as block replicas. In other words, when HAIL uploads the

Synthetic dataset with a replication factor of five, it creates five

different clustered index for each block.

Figure 4(c) shows the results for this experiment. The dotted

line marks the time Hadoop takes to upload with the default repli-

cation factor of three. We see that HAIL significantly outperforms

Hadoop for any replication factor and up to a factor of 2.5. More

interestingly, we observe that HAIL stores six replicas (and hence

it creates six different clustered indexes) in a little less than the

same time Hadoop uploads the same dataset with only three repli-

cas without creating any index. Still, when increasing the repli-

cation factor even further for HAIL, we see that HAIL has only a

minor overhead over Hadoop with three replicas only. These re-

sults also show that choosing the replication factor mainly depends

on the available disk space. Even in this respect, HAIL improves

over Hadoop. For example, while Hadoop needs 390GB to upload

the Synthetic dataset with 3 block replicas, HAIL needs only

420GB to upload the same dataset with 6 block replicas! Thereby,

HAIL enables users to stress indexing to the extreme to speed up

their query workloads.

6.3.3 Cluster ScaleUp

In this section, we study how different hardware affects HAIL

upload times. For this, we create three 10-nodes EC2 clusters:

the first uses large (m1.large) nodes7, the second extra large

(m1.xlarge) nodes, and the third cluster quadruple (cc1.4xlarge)

nodes. We upload the UserVisits and the Synthetic datasets

on each of these clusters.

We report the results of these experiments in Table 2(a) (for

UserVisits) and in Table 2(b) (for Synthetic), where we

display the System Speedup of HAIL over Hadoop as well as the

Scale-Up Speedup for Hadoop and HAIL. Additionally, we show

again the results for our local cluster as baseline. As expected,

we observe that both Hadoop and HAIL benefit from using better

hardware. In addition, we also observe that HAIL always benefits

from scaling-up computing nodes. Especially, using a better CPU

7For this cluster type, we allocate an additional large node to run
the namenode and jobtracker.

1599

Table 2: Scale-up results
(a) Upload times for UserVisits when scaling-up [sec]

Cluster Node Type Hadoop HAIL System Speedup

Large 1844 3418 0.54
Extra Large 1296 2039 0.64
Cluster Quadruple 1284 1742 0.74

Scale-Up Speedup 1.4 2.0

Physical 1398 1600 0.87

(b) Upload times for Synthetic when scaling-up [sec]

Cluster Node Type Hadoop HAIL System Speedup

Large 1176 1023 1.15
Extra Large 788 640 1.23
Cluster Quadruple 827 600 1.38

Scale-Up Speedup 1.4 1.7

Physical 1132 717 1.58

makes parsing to binary faster. As a result, HAIL decreases (in

Table 2(a)) or increases (Table 2(b)) the performance gap with re-

spect to Hadoop when scaling-up (System Speedup). Unlike HAIL,

we see that Hadoop does not significantly improve its performance

when scaling-up from extra large nodes to cluster quadruple nodes.

This is because Hadoop is I/O bound and hence adding better CPUs

does not allow it to improve its performance. In contrast, HAIL

benefits from additional and/or better CPU cores. Finally, we ob-

serve that the system speedup of HAIL over Hadoop is even better

when using physical nodes.

6.3.4 Cluster ScaleOut

At this point, the reader might have already started wondering

how well HAIL performs for larger clusters. To answer this ques-

tion, we allocate one 50-nodes EC2 cluster and one 100-nodes EC2

cluster. We use cluster quadruple (cc1.4xlarge) nodes for both

clusters, because with this node type we experienced the lowest

performance variability. In both clusters, we allocated two addi-

tional nodes: one to serve as Namenode and the other to serve as

JobTracker. While varying the number of nodes per cluster we

keep the amount of data per node constant.

0

550

1100

1650

2200

Syn UV Syn UV Syn UV

1486

633

1530

684

1742

600

1476

1026

1836

918

1284

827

U
p

lo
a

d
 T

im
e

 [
s
e

c
]

Number of Nodes

Hadoop HAIL

10 nodes 50 nodes 100 nodes

Figure 5: Scale-out results

Figure 5 shows these results. We observe that HAIL achieves

roughly the same upload times for the Synthetic dataset. For

the UserVisits dataset, we see that HAIL improves its upload

times for larger clusters. In particular, for 100 nodes, we see that

HAIL matches the Hadoop upload times for the UserVisits

dataset and outperforms Hadoop by a factor up to ∼ 1.4 for the

Synthetic dataset. More interesting, we observe that HAIL

does not suffer from high performance variability [30]. This is not

the case for Hadoop where we observed higher variance. Overall,

these results show the efficiency of HAIL when scaling-out.

6.4 MapReduce Job Execution
We now analyze the performance of HAIL when running

MapReduce jobs. Our main goal for all these experiments is to

understand how well HAIL can perform compared to the standard

Hadoop MapReduce and Hadoop++ systems. With this in mind,

we measure two different execution times. First, we measure the

end-to-end job runtimes, which is the time a given job takes to

run completely. Second, we measure the record reader runtimes,

which is dominated by the time a given map task spends reading

its input data. Recall that for these experiments, we disable the

HailSplitting policy (presented in Section 4.3) in order to

better evaluate the benefits of having several clustered indexes per

dataset. We study the benefits of HailSplitting in Section 6.5.

6.4.1 Bob’s Query Workload

For these experiments: Hadoop does not create any index; since

Hadoop++ can only create a single clustered index, it creates one

clustered index on sourceIP for all three replicas, as two very

selective queries will benefit from this; HAIL creates one clustered

index for each replica: one on visitDate, one on sourceIP,

and another one on adRevenue.

Figure 6(a) shows the average end-to-end runtimes for Bob’s

queries. We observe that HAIL outperforms both Hadoop and

Hadoop++ in all queries. For Bob-Q2 and Bob-Q3, Hadoop++

has similar results as HAIL since both systems have an index on

sourceIP. However, HAIL still outperforms Hadoop++. This is

because HAIL does not have to read any block header to compute

input splits while Hadoop++ does. Consequently, HAIL can start

processing the input dataset earlier than Hadoop++ and hence it

finishes before.

Figure 6(b) shows the RecordReader times8. Once more again,

we observe that HAIL outperforms both Hadoop and Hadoop++.

HAIL is up to a factor 46 faster than Hadoop and up to a factor 38

faster than Hadoop++. This is because Hadoop++ is only compet-

itive if it happens to hit the right index. As HAIL has additional

clustered indexes (one for each replica), the likelihood to hit an in-

dex increases. Then, query runtimes for Bob-Q1, Bob-Q4, and

Bob-Q5 are sharply improved over Hadoop and Hadoop++.

Yet, if HAIL allows map tasks to read their input data by more

than one order of magnitude faster than Hadoop and Hadoop++,

why do MapReduce jobs not benefit from this? To understand this

we estimate the overhead of the Hadoop MapReduce framework.

We do this by considering an ideal execution time, i.e., the time

needed to read all the required input data and execute the map func-

tions over such data. We estimate the ideal execution time Tideal =
#MapTasks/#ParallelMapTasks× Avg(TRecordReader). Here

#ParallelMapTasks is the maximum number of map tasks that

can be performed at the same time by all computing nodes. We

define the overhead as Toverhead = Tend-to-end − Tideal. We show the

results in Figure 6(c). We see that the Hadoop framework overhead

is in fact dominating the total job runtime. This has many reasons.

A major reason is that Hadoop was not built to execute very short

tasks. To schedule a single task, Hadoop spends several seconds

even though the actual task just runs in a few ms (as it is the case

for HAIL). Therefore, reducing the number of map tasks of a job

could greatly decrease the end-to-end job runtime. We tackle this

problem in Section 6.5.

6.4.2 Synthetic Query Workload

Our goal in this section is to study how query selectivities affect

the performance of HAIL. Recall that for this experiment HAIL

cannot benefit from its different indexes: all queries filter on the

same attribute. We use this setup to isolate the effects of selectivity.

We present the end-to-end job runtimes in Figure 7(a) and the

record reader times in Figure 7(b). We observe in Figure 7(a) that

HAIL outperforms both Hadoop and Hadoop++. We see again that

8This is the time a map task takes to read and process its input.

1600

0

375

750

1125

1500

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

602598598598601

11451143

651705

1160
10991099

942
1006

1094

J
o

b
 R

u
n

ti
m

e
 [
s
e

c
]

MapReduce Jobs

Hadoop Hadoop++ HAIL

(a) End-to-end job runtimes

0

1000

2000

3000

4000

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

683
333

527573

28642917

5383

2776
24422470

21122156

3358

R
R

 R
u

n
ti
m

e
 [
m

s
]

MapReduce Jobs

Hadoop Hadoop ++ HAIL

(b) Average record reader runtimes

0

375

750

1125

1500

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

J
o

b
 R

u
n

ti
m

e
 [
s
e

c
]

MapReduce Jobs

Hadoop Hadoop++ HAIL Overhead

(c) Hadoop framework overhead

Figure 6: Job runtimes, record reader times, and Hadoop MapReduce framework overhead for Bob’s query workload filtering on

multiple attributes

0

175

350

525

700

a b c a b c

450446460473
517

572

J
o

b
 R

u
n

ti
m

e
 [
s
e

c
]

MapReduce Jobs

Hadoop Hadoop++ HAIL

Syn-Q1 Syn-Q2

460
463

433
404 403 403 409

466
433 433 430 433

(a) End-to-end job runtimes

0

750

1500

2250

3000

a b c a b c

6078131139
274

495

586074
282331

572

1610161516521708
1885

2116

R
R

 R
u

n
ti
m

e
 [
m

s
]

MapReduce Jobs

Hadoop Hadoop++ HAIL

Syn-Q1 Syn-Q2

(b) Average record reader runtimes

0

150

300

450

600

a b c a b c

J
o

b
 R

u
n

ti
m

e
 [
s
e

c
]

MapReduce Jobs

Hadoop Hadoop++ HAIL Overhead

Syn-Q1 Syn-Q2

(c) Hadoop framework overhead

Figure 7: Job runtimes, record reader times, and Hadoop MapReduce framework overhead for Synthetic query workload filter-

ing on a single attribute

even if Hadoop++ has an index on the selected attribute, Hadoop++

runs slower than HAIL. This is because HAIL has a slightly differ-

ent splitting phase than Hadoop++. Looking at the results in Fig-

ure 7(b), the reader might think that HAIL is better than Hadoop++

because of the PAX layout used by HAIL. However, we clearly see

in the results for query Syn-Q1a that this is not true9. We observe

that even in this case HAIL is better than Hadoop++. The reason is

that the index size in HAIL (2KB) is much smaller than the index

size in Hadoop++ (304KB), which allows HAIL to read the index

slightly faster. On the other hand, we see that Hadoop++ slightly

outperforms HAIL for all three Syn-Q2 queries. This is because

these queries are more selective and then the random I/O cost due

to tuple reconstruction starts to dominate the record reader times.

Surprisingly, we observe that query selectivity does not affect

end-to-end job runtimes (see Figure 7(a)) even if query selectivity

has a clear impact on the RecordReader times (see Figure 7(b)).

As explained in Section 6.4.1, this is due to the overhead of the

Hadoop MapReduce framework. We clearly see this overhead in

Figure 7(c). In Section 6.5, we will investigate this in more detail.

6.4.3 FaultTolerance

In very large-scale clusters (especially on the Cloud), node fail-

ures are no more an exception but rather the rule. A big advantage

of Hadoop MapReduce is that it can gracefully recover from these

failures. Therefore, it is crucial to preserve this key property to reli-

ably run MapReduce jobs with minimal performance impact under

failures. In this section we study the effects of node failures in

HAIL and compare it with standard Hadoop MapReduce.

We perform these experiments as follows: (i) we set the expiry

interval to detect that a TaskTracker or a datanode failed to 30 sec-

onds, (ii) we chose a node randomly and kill all Java processes

on that node after 50% of work progress, and (iii) we measure the

slowdown as in [12], slowdown =
(Tf−Tb)

Tb
· 100, where Tb is the

job runtime without node failures and Tf is the job runtime with a

9Recall that this query projects all attributes, which is indeed more
beneficial for Hadoop++ as it uses a row layout.

0

375

750

1125

1500

Hadoop HAIL HAIL-1Idx

598598

1099

J
o

b
 R

u
n

ti
m

e
 [
s
e

c
]

Systems

Hadoop HAIL Slowdown

5.5 % slowdown10.5 % slowdown

10.3 % slowdown

Figure 8: Fault-tolerance results

node failure. We use two configurations for HAIL. First, we con-

figure HAIL to create indexes on three different attributes, one for

each replica. Second, we use a variant of HAIL, coined HAIL-1Idx,

where we create an index on the same attribute for all three replicas.

We do so to measure the performance impact of HAIL falling back

to full scan for some blocks after the node failure. This happens for

any map task reading its input from the killed node. Notice that,

in the case of HAIL-1Idx, all map tasks will still perform an index

scan as all blocks have the same index.

Figure 8 shows the fault-tolerance results for Hadoop and HAIL.

Overall, we observe that HAIL preserves the failover property of

Hadoop by having almost the same slowdown. However, it is worth

noting that HAIL can even improve over Hadoop. This is because

HAIL can still perform an index scan when having the same index

on all replicas (HAIL-1Idx). We clearly see this when HAIL creates

the same index on all replicas (HAIL-1Idx). In this case, HAIL has

a lower slowdown since failed map tasks can still perform an index

scan even after failure. As a result, HAIL runs almost as fast as

when no failure occurs.

6.5 Impact of the HAIL Splitting Policy
We observed in Figures 6(c) and 7(c) that the Hadoop MapRe-

duce framework incurs a high overhead in the end-to-end job run-

times. To evaluate the efficiency of HAIL to deal with this prob-

lem, we now enable the HailSplitting policy (described in

Section 4.3) and run again the Bob and Synthetic queries on HAIL.

Figure 9 illustrates these results. We clearly observe that HAIL

significantly outperforms both Hadoop and Hadoop++. We see in

1601

0

375

750

1125

1500

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

6522151516

11451143

651705

1160
10991099

942
1006

1094

J
o

b
 R

u
n

ti
m

e
 [
s
e

c
]

MapReduce Jobs

Hadoop Hadoop++ HAIL

(a) Bob queries

0

175

350

525

700

a b c a b c

1723
57

28
63

127

450446460473
517

572

J
o

b
 R

u
n

ti
m

e
 [
s
e

c
]

MapReduce Jobs

Hadoop Hadoop++ HAIL

Syn-Q1 Syn-Q2

460 466 433 433 430 433

(b) Synthetic queries

0

1500

3000

4500

6000

Bob Synthetic

315133

2655

4804

2918

5240

T
o

ta
l
R

u
n

ti
m

e
 [
s
e

c
]

Workload

Hadoop Hadoop++ HAIL

(c) Total Workload

Figure 9: End-to-end job runtimes for Bob and Synthetic queries using the HailSplitting policy

Figure 9(a) that HAIL outperforms Hadoop up to a factor of 68

and Hadoop++ up to a factor of 73 for Bob’s workload. This is

mainly because the HailSplitting policy significantly reduces

the number of map tasks from 3, 200 (which is the number of map

tasks for Hadoop and Hadoop++) to only 20. As a result of HAIL

Splitting policy, the scheduling overhead does not impact the end-

to-end workload runtimes in HAIL (see Section 6.4.1). For the

Synthetic workload (Figure 9(b)), we observe that HAIL outper-

forms Hadoop up to a factor of 26 and Hadoop++ up to a factor of

25. Overall, we observe in Figure 9(c) that using HAIL Bob can

run all his five queries 39x faster than Hadoop and 36x faster than

Hadoop++. We also observe that HAIL runs all six Synthetic

queries 9x faster than Hadoop and 8x faster than Hadoop++.

7. CONCLUSION
We have presented HAIL (Hadoop Aggressive Indexing Li-

brary). HAIL improves the upload pipeline of HDFS to create dif-

ferent clustered indexes on each replica. As a consequence each

HDFS block will be available in at least three different sort orders

and with different indexes. Like that, in a basic HAIL setup we

already get three indexes (almost) for free. In addition, HAIL also

works for a larger number of replicas. A major advantage of HAIL

is that the long upload and indexing times which had to be invested

on previous systems are not required anymore. This was a major

drawback of Hadoop++ [12], which created block-level indexes,

however required expensive MapReduce jobs to create those in-

dexes in the first place. In addition, Hadoop++ created indexes

per logical HDFS block whereas HAIL creates different indexes

for each physical replica. We have experimentally compared HAIL

with Hadoop as well as Hadoop++ using different datasets and a

number of different clusters. The results demonstrated the high

efficiency of HAIL. We showed that HAIL typically creates a win-

win situation: users can upload their datasets up to 1.6x faster than

Hadoop and run jobs up to 68x faster than Hadoop.

ACKs. We would like to thank the anonymous reviewers for their

helpful comments. Work supported by M2CI and BMBF.

8. REFERENCES
[1] S. Agrawal et al. Database Tuning Advisor for Microsoft SQL Server

2005. VLDB, pages 1110–1121, 2004.

[2] A. Ailamaki et al. Weaving Relations for Cache Performance. VLDB,
pages 169–180, 2001.

[3] S. Blanas et al. A Comparison of Join Algorithms for Log Processing
in MapReduce. SIGMOD, pages 975–986, 2010.

[4] N. Bruno and S. Chaudhuri. Constrained Physical Design Tuning.
VLDB J., 19(1):21–44, 2010.

[5] M. J. Cafarella and C. Ré. Manimal: Relational Optimization for
Data-Intensive Programs. WebDB, 2010.

[6] S. Chaudhuri et al. Index Selection for Databases: A Hardness Study
and a Principled Heuristic Solution. TKDE, 16(11):1313–1323, 2004.

[7] G. Chen et al. A Framework for Supporting DBMS-like Indexes in
the Cloud. PVLDB, 4(11):702–713, 2011.

[8] S. Chen. Cheetah: A High Performance, Custom Data Warehouse on
Top of MapReduce. PVLDB, 3(1-2):1459–1468, 2010.

[9] D. Dash et al. CoPhy: A Scalable, Portable, and Interactive Index
Advisor for Large Workloads. PVLDB, 4(6):362–372, 2011.

[10] J. Dean and S. Ghemawat. MapReduce: A Flexible Data Processing
Tool. CACM, 53(1):72–77, 2010.

[11] J. Dittrich and J.-A. Quiané-Ruiz. Efficient Parallel Data Processing
in MapReduce Workflows. PVLDB, 5, 2012.

[12] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad. Hadoop++: Making a Yellow Elephant Run Like a Cheetah
(Without It Even Noticing). PVLDB, 3(1):518–529, 2010.

[13] M. Y. Eltabakh et al. CoHadoop: Flexible Data Placement and Its
Exploitation in Hadoop. PVLDB, 4(9):575–585, 2011.

[14] A. Floratou et al. Column-Oriented Storage Techniques for
MapReduce. PVLDB, 4(7):419–429, 2011.

[15] http://engineering.twitter.com/2010/04/hadoop-at-twitter.html.

[16] Hadoop Users, http://wiki.apache.org/hadoop/PoweredBy.

[17] H. Herodotou and S. Babu. Profiling, What-if Analysis, and
Cost-based Optimization of MapReduce Programs. PVLDB,
4(11):1111–1122, 2011.

[18] S. Idreos et al. Here are my Data Files. Here are my Queries. Where
are my Results? CIDR, pages 57–68, 2011.

[19] E. Jahani et al. Automatic Optimization for MapReduce Programs.
PVLDB, 4(6):385–396, 2011.

[20] D. Jiang et al. The Performance of MapReduce: An In-depth Study.
PVLDB, 3(1):472–483, 2010.

[21] A. Jindal, J.-A. Quiané-Ruiz, and J. Dittrich. Trojan Data Layouts:
Right Shoes for a Running Elephant. SOCC, 2011.

[22] W. Lang and J. M. Patel. Energy Management for MapReduce
Clusters. PVLDB, 3(1):129–139, 2010.

[23] J. Lin et al. Full-Text Indexing for Optimizing Selection Operations
in Large-Scale Data Analytics. MapReduce Workshop, 2011.

[24] D. Logothetis et al. In-Situ MapReduce for Log Processing. USENIX,
2011.

[25] T. Nykiel et al. MRShare: Sharing Across Multiple Queries in
MapReduce. PVLDB, 3(1):494–505, 2010.

[26] C. Olston. Keynote: Programming and Debugging Large-Scale Data
Processing Workflows. SOCC, 2011.

[27] A. Pavlo et al. A Comparison of Approaches to Large-Scale Data
Analysis. SIGMOD, pages 165–178, 2009.

[28] J.-A. Quiané-Ruiz, C. Pinkel, J. Schad, and J. Dittrich. RAFTing
MapReduce: Fast recovery on the RAFT. ICDE, pages 589–600,
2011.

[29] J. Rao and K. Ross. Making B+-Trees Cache Conscious in Main
Memory. ACM SIGMOD Record, 29(2):475–486, 2000.

[30] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime Measurements
in the Cloud: Observing, Analyzing, and Reducing Variance.
PVLDB, 3(1):460–471, 2010.

[31] I. Stoica et al. Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications. SIGCOMM, pages 149–160, 2001.

[32] A. Thusoo et al. Data Warehousing and Analytics Infrastructure at
Facebook. SIGMOD, pages 1013–1020, 2010.

[33] T. White. Hadoop: The Definitive Guide. O’Reilly, 2011.

[34] M. Zaharia et al. Delay Scheduling: A Simple Technique for
Achieving Locality and Fairness in Cluster Scheduling. EuroSys,
pages 265–278, 2010.

1602

	Introduction
	Idea
	Research Challenges and Questions
	Contributions and Answers

	Overview
	Hadoop and HDFS
	HAIL
	HAIL Benefits

	The HAIL Upload Pipeline
	Data Transformation
	Upload Pipeline
	HDFS Namenode Extensions
	Which Attributes to Index?
	Indexing Pipeline

	The HAIL Query Pipeline
	Bob's Perspective
	Hadoop Perspective
	HAIL Perspective

	Related Work
	Experiments
	Hardware and Systems
	Datasets and Queries
	Data Loading
	Varying the Number of Indexes
	Varying the Replication Factor
	Cluster Scale-Up
	Cluster Scale-Out

	MapReduce Job Execution
	Bob's Query Workload
	Synthetic Query Workload
	Fault-Tolerance

	Impact of the HAIL Splitting Policy

	Conclusion
	References

